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Abstract

Responses to vaccination and to diseases vary widely across individuals, which may be partly 

due to baseline immune variations. Identifying such baseline predictors of immune responses 

and their biological basis are of broad interest given their potential importance for cancer 

immunotherapy, disease outcomes, vaccination and infection responses. Here we uncover baseline 

blood transcriptional signatures predictive of antibody responses to both influenza and yellow 

fever vaccinations in healthy subjects. These same signatures evaluated at clinical quiescence 

are correlated with disease activity in systemic lupus erythematosus patients with plasmablast

associated flares. CITE-seq profiling of 82 surface proteins and transcriptomes of 53,201 single 
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cells from healthy high and low influenza-vaccination responders revealed that our signatures 

reflect the extent of activation in a plasmacytoid dendritic cell—Type I IFN—T/B lymphocyte 

network. Our findings raise the prospect that modulating such immune baseline states may 

improve vaccine responsiveness and mitigate undesirable autoimmune disease activities.

The immune system maintains health but also contributes to diverse pathologies1. The extent 

of immune responses to a perturbation or disease vary across individuals in the population 

and thus, there is a pressing need to uncover predictors and determinants of immune 

responsiveness in humans2–4. Human immune responses are shaped not only by genetics but 

are also markedly influenced by the environment3,5,6, e.g., antibody responses to vaccination 

show little heritability after infancy/early childhood7,8. Increasing evidence supports the 

hypothesis that the immune state of an individual prior to a perturbation can predict and 

determine immune response outcomes3. However, the molecular and cellular basis for 

the few existing baseline peripheral blood cell frequency or transcriptional predictors in 

humans9–12 remains largely unknown.

Some immunologic mechanisms that contribute to protective immune responses in 

vaccination and infection can mediate undesirable disease activities (DA) in patients 

suffering from an autoimmune disease. Notably, responses to influenza, yellow fever, and 

many other vaccines and infections are characterized by a plasmablast increase detectable in 

blood3. A plasmablast increase has been shown to coincide with DA in some autoimmune 

patients, such as a subset of the patients with systemic lupus erythematosus (SLE)13, a 

chronic, heterogeneous autoimmune disease that often presents clinically with episodic 

disease flares affecting multiple organs14. We thus hypothesized that there exist common 

baseline determinants that contribute to the responsiveness to both vaccination/infection and 

autoimmunity in the form of undesirable disease activities (DA). The determinants of DA, 

such as the intensity of flares in SLE, are poorly understood and predictors of DA remain 

elusive15. Given the availability of longitudinal blood transcriptomic data in SLE13 and 

the relevance of plasmablasts in both vaccination/infection and SLE, here we use SLE as 

a model for exploring common baseline signatures associated with vaccine responses in 

healthy individuals and autoimmune disease activities in patients.

We show that a baseline, peripheral blood signature predictive of antibody responses 

to influenza vaccination12 is also predictive of responses to the yellow fever vaccine 

in individuals naïve to the virus. The same signature evaluated at clinical quiescence 

(baseline-like) is associated with disease activity in SLE patients with flares characterized 

by elevation in plasmablast signature scores (Fig. 1a). Conversely, a biologically related 

baseline indicator of disease flares derived solely from the same subset of lupus patients 

is correlated with antibody responses to influenza vaccination in healthy subjects. We thus 

provide robust evidence for baseline “set point”2 signatures shared among vaccination and 

SLE. Simultaneous protein and transcriptome analysis16 (CITE-seq) of single peripheral 

blood mononuclear cells (PBMCs) from high and low healthy responders of influenza 

vaccination revealed that our signatures reflect the extent of activation in multiple immune 

cell populations at baseline, including plasmacytoid dendritic cells (pDC) and lymphocytes. 

These findings suggest that future responsiveness potential can be stably encoded by 
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the activation status of a cellular network before perturbation and provide interventional 

targets that can potentially be modulated—at baseline and under homeostatic conditions—to 

improve human health.

Results

Development of a temporally stable transcriptional baseline signature predictive of 
antibody responses to influenza vaccination

We previously identified a baseline (pre-vaccination), temporally stable signature predictive 

of antibody responses to influenza vaccination independent of age, gender, and pre-existing 

antibody levels12. The signature consisted of several B and T cell subpopulations without 

antigen-specific information. We subsequently noticed that all the predictive B cell 

populations expressed CD20 and high levels of CD38 (CD19+CD20+CD38++), suggesting 

that these markers together defined a core predictive population (Extended Data Fig. 1a). 

We quantified this and related populations in the three baseline time-points in our original 

NIH influenza vaccination study (days −7 and 0 prior to vaccination and day 70 when the 

parameters altered by vaccination had returned to their original values)12,17(Fig. 1b). As 

expected, high and low antibody responders (defined using the “adjMFC” metric that does 

not depend on pre-existing antibody levels against influenza12) could be distinguished by 

the frequency of the CD20+CD38++ cells at all three time points (Extended Data Fig. 1b,c). 

As observed previously12, this signature was independent of plasmablasts (CD20-CD38++), 

which alone could not predict the response (AUC=0.55; Fig. 1b).

To test whether our CD20+CD38++ signature could predict immune responsiveness in other 

scenarios using independent datasets, we developed a blood-based transcriptional surrogate 

because available public datasets either do not have flow cytometry data or, if present, do 

not measure the same cell subsets. We identified temporally stable genes robustly correlated 

with the frequency of CD20+CD38++ cells across subjects on day 0 in the NIH cohort 

to build a 10-gene signature (TGSig, see Glossary in Extended Data Fig. 1d; Figs. 1c–e 

and Extended Data Figs. 2a–f, Supplementary Table 1; see Methods). TGSig has AUCs 

comparable to the frequency of CD20+CD38++ B cells when evaluated in the other two 

baseline time-points (Fig. 1f) and it was robust against addition or removal of genes 

(Extended Data Fig. 2g). Similar and statistically significant trends were observed when 

middle responders were included (Extended Data Fig. 3a).

Evaluating TGSig in independent influenza and yellow fever vaccination datasets

We next assessed TGSig in independent influenza vaccination cohorts from multiple 

institutions. These data together with our NIH cohort span three geographic locations 

within the United States (US) and vaccination years (2008, 2009, 2011, and 2012)10 

(Supplementary Table 2). Application of TGSig to the pre-vaccination, baseline data 

of multiple datasets as-is without any further model training showed good prediction 

performance (AUCs > 0.8; p<0.05 permutation test) (Fig. 2a; see also Extended Data Fig. 

3b that includes middle responders). However, it lacked predictive power when applied to 

influenza vaccination data from another US institution covering four consecutive vaccination 

years (2008–2011)18, which became available after our initial analyses (Extended Data Fig. 
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3c). While many technical or biological factors could be responsible for this result, we 

have ruled out differences in low-level data processing or high/low-responder definition (see 

Methods).

We next investigated whether TGSig could predict response to a live viral infection by 

using yellow fever (YF) vaccination (YF-17D) given to healthy adults naïve to YF-17D 

as a model19. Unlike responses to the influenza (dead/inactivated) vaccine, YF-17D is a 

live, attenuated virus that would be expected to generate an antibody response through 

partially distinct immunological mechanisms. TGSig applied to pre-vaccination PBMC 

expression data was again able to separate high and low responders in the larger of two 

independent trials (Fig. 2b; AUC=0.86, p=0.014 permutation test; see also Extended Data 

Fig. 3d that includes middle responders). A similar, but not statistically significant trend was 

observed in a smaller second independent trial that had fewer subjects (4 high and 3 low 

responders; Extended Data Fig. 4a) (AUC=0.75; p=0.11 permutation test). A meta-analysis 

of the influenza vaccination datasets for which TGSig exhibited predictive capacity at 

the individual cohort level (Stanford 2008, NIH 2009, Yale 2011, Yale 2012) indicated 

that genes in TGSig had positive “meta” effect sizes and were thus positively associated 

with antibody responses (Extended Data Fig. 4b); the effect sizes were also qualitatively 

consistent with those in the yellow fever dataset (Extended Data Fig. 4c). Together, our data 

revealed that TGSig could predict the antibody response to a live attenuated virus in subjects 

naïve to the virus and to the inactivated seasonal influenza vaccine in several, but not all, 

healthy cohorts tested.

Evaluating TGSig in SLE

We next assessed the hypothesis that TGSig evaluated at clinically quiescent periods of 

SLE patients (i.e., low or no DA resembling “baseline”) might also be associated with 

the severity of flares (Fig. 1a), which is dynamic and conceptually similar to responses 

following vaccination or infection. We analyzed a longitudinal pediatric SLE cohort13, in 

which the SLE Disease Activity Index (SLEDAI), a clinical assessment score that combines 

DA in several organs and clinical categories,13 was used to quantify DA over time. Previous 

analysis of this cohort identified seven patient groups in which DA (i.e., SLEDAI score) 

correlated with distinct combinations of blood transcriptomic signatures, including a module 

enriched for plasma cells/plasmablasts13 (Fig. 2c). We hypothesized that for patients whose 

DA was correlated with a plasma cell/plasmablast signature (Fig. 2c and Extended Data Fig. 

5a: PG2 and PG3 , and to a lesser extent, PG4), the DA-associated change in plasmablast 

score (DaCP, see Extended Data Fig. 1d) between periods of low and high DA may be 

correlated with the TGSig evaluated at clinically quiescent (low/no DA) periods (Fig. 2d).

We created a mixed-effects model to estimate the DaCP for PG2, PG3, and PG4 after 

accounting for treatments (see Methods). As expected, the DaCP values estimated by our 

procedure were correlated with the change in the average plasmablast score between low 

and high DA periods (Extended Data Fig. 5b). We detected a mild but significant correlation 

between the mean of TGSig across periods of low DA (SLEDAI<3) and DaCP (Pearson 

r=0.359, p=0.037, Fig. 2e). This correlation was stronger in PG2 and PG3 only (Pearson 

r=0.535, p=0.001) because PG4 often had weaker plasmablast signals associated with DA 
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(Extended Data Fig. 5a). To further evaluate this hypothesis, we tested the correlation 

when we removed patients whose DaCP was lower than a set threshold. We observed that 

the correlation tended to increase as the threshold increased (Extended Data Fig. 5c,d), 

confirming that the correlation between TGSig and DaCP was specific to those patients with 

plasmablast-associated flares. As a control, we performed the same analyses for patients 

who did not show a plasmablast signature (PG1, PG5, PG6, and PG7, Fig. 2c) and found 

no correlation (Pearson r=−0.116, p=0.56, Fig. 2e right panel). We also confirmed that there 

was no correlation between the DaCP and the mean plasmablast score at low DA time 

points in PG2, PG3, and PG4 (Fig. 2f). Thus, the plasmablast signature evaluated at periods 

of low disease activity was not predictive and TGSig did not reflect plasmablast activity. 

These results suggest that for SLE patients whose DA was associated with a plasmablast 

signature, TGSig evaluated during clinical quiescence can inform the magnitude of disease 

flares. These findings also expand the predictive value of TGSig from response to vaccines 

and infections to that associated with flares in a specific subtype of SLE.

An independently derived baseline signature from SLE is associated with influenza 
vaccination responses

Our results suggest a biological parallel between vaccination/infection responses and lupus 

DA. We therefore examined whether an independently derived correlate of DaCP in SLE 

patients alone may conversely associate with the magnitude of antibody responses to 

vaccination. We focused again on patient groups 2, 3, 4 (Fig. 2c) and used Weighted 

Gene Co-expression Network Analysis (WGCNA)20 to ask whether there exist temporally 

stable (across low DA time-points) gene expression modules associate with DaCP (Fig. 

3a and Supplementary Fig. 1a, Supplementary Table 3a; see Methods). One module (the 

“brown”) was mildly correlated with the DaCP (Fig. 3b and Supplementary Fig. 1b; 

Pearson r=0.31, p=0.04 permutation test; full results in Supplementary Table 3b), but it was 

intriguingly enriched for Type I IFN related blood transcriptomic modules (BTMs)21 (Fig. 

3c and Supplementary Fig. 1c), consistent with Type I IFN signatures seen in many SLE 

patients22. Our observation suggests that the magnitude of a Type I IFN signature during 

clinical quiescence may be prognostic of disease activity for patients exhibiting plasmablast 

associated flares.

To assess whether the brown module was correlated with vaccination responses, we 

used the meta-analysis results of influenza cohorts above to maximize statistical power 

(Supplementary Table 4a) and found that the brown module was significantly enriched 

for genes associated with antibody responses (p=0.01, GSEA test, Fig. 3d; Supplementary 

Table 4b). However, this was not the case for the yellow fever dataset (data not shown), 

perhaps due to the small cohort size and thus insufficient statistical power. Together, these 

observations provide independent support to our TGSig finding above that shared baseline 

signatures can exist for influenza vaccination responses and SLE disease activities.

Both baseline signatures are associated with Type I IFN responses and activation of 
dendritic cells

Given their qualitatively similar predictive profiles, TGSig and the brown module might 

reflect overlapping biology, even though they shared only one gene (EPHB1, out of the 370 
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genes in the brown module). Since TGSig was derived from the temporally-stable genes 

most robustly correlated with the frequency of CD20+CD38++ B cells (Fig. 1d), we ranked 

the temporally stable genes by their correlation with the frequency of these B cells and 

found that the most correlated genes were enriched for the brown module as well as Type I 

IFN and dendritic cell (DC) activation related BTMs (Fig. 3e; see Methods). These results 

established functional links between the brown module and TGSig, and suggest that they 

reflect aspects of the Type I IFN response/DC activation pathway. To capture the biology 

of this overlap for further analysis below we created the IFN-I-DCact (Type I IFN and DC 

activation; see Extended Data Fig. 1d) gene signature comprising genes in the brown module 

that are shared with at least one of the IFN-I/antiviral/DC activation BTMs (Fig. 3f).

We also evaluated the overlap among TGSig, the brown module, and IFN-I-Dcact from a 

predictive standpoint by using data pooled from the meta-analysis above (see Methods). 

As expected, each signature on its own contained predictive information (Extended Data 

Figs. 6a–c), and most of the predictive capacity of the brown module came from the 87 

“leading edge” genes (SLE-Sig, see Extended Data Fig. 1d; Fig. 3e, Supplementary Table 

5, Extended Data Fig. 6d). When TGSig was used together with SLE-Sig or IFN-I-DCact 

for prediction, TGSig was the dominant predictor (Extended Data Figs. 6e,f). The same was 

true for predicting DaCP in the SLE cohort (data not shown). Thus, TGSig, as a baseline 

signature, contains most of the predictive information in SLE-Sig and IFN-I-DCact for both 

influenza vaccination and SLE disease activity.

Dissecting the cellular origin of the baseline signatures: CITE-seq analysis of high and low 
influenza vaccination responders

To dissect the cellular origin of our signatures, we sorted CD19+CD20+CD38++ B cells 

from six healthy donors followed by RNA-seq (Extended Data Figs. 7a,b). However, genes 

differentially expressed in these cells compared to CD19+CD20+ B cells were not enriched 

for TGSig or SLE-Sig (Extended Data Figs. 7b–e), suggesting that both did not originate 

from these cells.

Given the large number of possible cellular origins for TGSig and SLE-Sig, we pursued 

an unbiased approach by adopting CITE-seq16 to simultaneously profile 82 surface proteins 

(covering lineage and phenotypic markers of diverse immune cells) and the transcriptomes 

of 53,201 single cells from the baseline (day 0/pre-vaccination) PBMC of 10 high and 10 

low responders from the NIH cohort (Fig. 4a; average 2660 (SD=753) cells per donor). 

A major goal was to assess whether our baseline signatures reflect transcriptional state 

differences between the high and low responders in certain cell subsets.

We clustered the cells23 at several resolutions using their surface protein expression profile 

to reveal major cell types and subsets (Figs. 4a–c; Extended Data Figs. 8a–c; see Methods). 

The frequency of most cell clusters was not significantly associated with vaccination 

responses, except, e.g., negative associations involving effector CD4+ memory (cluster 

C1.1.0) (data not shown), which is consistent with the original study (ID36 in Figure 6C 

in ref12). TGSig computed using the “pseudo bulk” data (averaged across all single cells 

for each subject; see Methods) was significantly higher in the high than the low responders 

(Fig. 4d). The same holds for SLE-Sig (Fig. 4e) and the frequency of manually gated 
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CD20+CD38++ B cells using CITE-seq data (Extended Data Figs. 8d,e; p=0.032 Wilcoxon 

one-tailed test). Thus, CITE-seq data reproduced our earlier findings from microarray and 

flow cytometric measurements.

We next evaluated TGSig and SLE-Sig differences between high and low responders 

within cell clusters (Supplementary Tables 6 and 7). Significant differences in the average 

expression of TGSig genes were found in plasmacytoid DCs (pDC – cluster C9), a major 

producer of Type I IFNs and other cytokines24 (Fig. 5a). SLE-Sig (Fig. 5b) was elevated 

broadly across cells clusters, including CD4+ central memory and CD8+ naïve T cells (C1 

and C6), classical monocytes and myeloid DCs (mDCs) (C2), transitional B cells (C3.0.0), 

and unconventional T cells (C7) (Fig. 5b). While the other clusters were not statistically 

significant, SLE-Sig trended higher in the high responders, suggesting that most peripheral 

immune cells were broadly exposed to higher levels of IFNs in high responders at baseline. 

Similar results were obtained using an independently derived Type I IFN response gene set 

(Extended Data Fig. 8f; Supplementary Tables 6 and 7; see Methods).

Given that pDCs are major producers of Type I IFN24, the elevated Type I IFN status in high 

responder cells from diverse lineages may be due to the presence of more activated pDCs 

in these individuals; we indeed found that the average expression of the genes in LI.M165 

and IFN-I-DCact—both reflective of DC activation and linked to TGSig and SLE-Sig (Figs. 

3e,f)—was significantly elevated in pDCs of high responders (Fig. 5c).

Activated pDCs are known to activate T cells that then stimulate B cells via CD40L24,25. To 

test whether we can detect the activation status of this circuit even at baseline, we derived 

a CD40 activation gene signature (CD40act, see Extended Data Fig. 1d) (Supplementary 

Table 6) from two independent studies of human B-cells stimulated with CD40L26,27 

(see Methods). CD40act was interestingly highly enriched for cell cycle processes (Fig. 

5d), likely because CD40L-activated B cells are highly proliferative28. As hypothesized, 

CD40act was significantly increased in switched B cells (C3.1.0) in high responders (Fig. 

5e). It was also elevated significantly in several lymphocyte clusters (see Figs. 4b,c and 

Extended Data Figs. 8a,c for cell cluster annotations), including CD4+ memory (C1.0.0), 

CD8+ naïve (C6), and unconventional CD161+ T cells (C7.0.0) (Fig. 5e). Together, these 

observations suggest that in high responders, the increased activation of pDCs and elevation 

of Type I IFNs led to the activation and proliferation of not only switched B cells, but also 

T lymphocytes. Furthermore, we hypothesized and indeed observed that CD40 activation 

status in switched B cells (C3.1.0) was correlated with the frequency of CD20+CD38++ B 

cells measured by flow cytometry (Fig. 5f). This suggests that the CD20+CD38++ cells, 

our original baseline signature (Fig. 1b, Extended Data Fig. 1a,b), overlapped with activated 

switched B cells.

TGSig captures the activation/cell cycle and Type I IFN response statuses of lymphocytes 
and myeloid cells

We next analyzed the correlation among the signatures, including TGSig assessed in “bulk”/

PBMCs (Figs. 1c–e), the frequency of CD20+CD38++ B cells, and the significant cell 

cluster-based signatures emerged from CITE-seq analysis (Fig. 6a). TGSig correlated with 

and thus captured the status of several signatures at the cell cluster level that delineated 

Kotliarov et al. Page 7

Nat Med. Author manuscript; available in PMC 2021 August 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



high versus low responders as determined by CITE-seq (left scatterplots in Fig. 6a). These 

signatures include both the activation/proliferation (as reflected by CD40act) and the Type 

I IFN response statuses (as indicated by SLE-Sig) of switched B cell and several T cell 

clusters, and albeit more mildly, those of pDCs and mDCs. SLE-Sig (in PBMCs as measured 

by microarrays) also captured the Type I IFN response status of both lymphocytes and 

myeloid cells. However, SLE-Sig captured less well the activation/cell cycle status of 

switched B cells (C3.1.0) and T cell subsets (C1.0.0 and C6) (Fig. 6a), which were some of 

the most significant correlates of the response as revealed by CITE-seq (Fig. 5e).

Our single cell data gave us an opportunity to drop specific combinations of cell clusters 

from the data, and then evaluate whether the signature scores computed from the remaining 

cells are still associated with the response (Extended Data Fig. 8g). Consistent with the 

observations above, this analysis revealed that TGSig became uninformative of the response 

when both the CD4+ memory and CD8 naïve T cell clusters (C1 and C6) were dropped; 

for SLE-Sig the most important predictive information originated from the monocyte/mDC 

(C2) and CD4+ memory clusters (C1). Together, these observations suggest that even though 

TGSig only contains a few genes that were originally derived based on correlations with the 

frequency of the CD20+CD38++ B cell population, it captures the responsiveness-predicting 

states of multiple cell subsets in peripheral blood, particularly those of two subpopulations 

of T lymphocytes that represent a substantial fraction of cells in blood.

Discussion

To our knowledge, predictors of autoimmune disease activity, particularly from clinically 

quiescent periods, are rare29,30, and baseline set point2 signatures shared among vaccination, 

infection, and an autoimmune disease have not been reported. Our simultaneous deep 

immunophenotyping and transcriptome analysis of single cells suggests that these predictive 

signatures reflect the extent of cell cycle/activation and Type I IFN response statuses in 

a circuit comprising pDCs, switched B cells, and T lymphocytes (Fig. 6b), thus pointing 

to a shared origin for our two independently-derived, but biologically related set point 

signatures. The sustained activation of these and related circuits have been implicated in 

the pathogenesis of SLE and other autoimmune diseases31, however, here we provide fresh 

evidence that the elevated activation status of cells in this circuit during clinically quiescent 

periods in a subset of SLE patients may indicate higher plasmablast-associated disease 

activity. Intriguingly, this circuit was also more activated in certain healthy subjects stably 

over the course of months and these individuals tended to mount higher antibody responses 

to influenza or yellow fever vaccination. Thus, the future responsiveness potential to a 

perturbation can be encoded by the sustained activation status of a circuit that is typically 

activated full-blown only after an immune challenge (e.g., an infection). The mechanisms 

that restrain full-blown systemic immune activation before antigenic and inflammatory 

stimulation (particularly in healthy individuals) and the antigen-specificity repertoire of the 

activated lymphocytes at baseline remained to be dissected (Fig. 6b).

Through CITE-seq analysis we found that the CD20+CD38++ B cells we originally 

identified likely overlapped with activated switched B cells, some of which could also be 

precursors of plasmablasts32. It is unlikely that all of these cells were influenza specific or 
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persistently activated by influenza at baseline and remained temporally stable over months. 

They could be enriched with influenza specific cells in some individuals, but the fact that 

TGSig could predict responses in YF naïve subjects (Fig. 2b) suggests that TGSig does 

not simply reflect the frequencies of memory lymphocytes specific for particular vaccine 

antigens, unless this was all due to cross-reactivity, which is also unlikely. Furthermore, 

previous analysis of antigen-specific B cells12 in the NIH cohort showed that baseline 

vaccine reactivity did not correlate with antibody responses, which was consistent with 

independent observations33 that the frequency of pre-existing influenza-specific B cells 

in peripheral blood does not correlate with antibody responses following vaccination. 

Similarly, higher frequencies of activated, influenza-specific CD4+ T cells in peripheral 

blood at baseline were not positively associated with T cell responses following influenza 

vaccination34.

pDCs were likely a major source of Type I IFNs that led to the elevated IFN response 

status across multiple cell lineages in the high responders (Fig. 5b and Extended Data 

Fig. 8f). Since they represent only a small fraction of circulating immune cells, TGSig 

and SLE-Sig likely reflect less on the activation status of the pDCs but instead capture 

pDCs’ downstream effects on lymphocytes and monocytes, which are much more abundant 

in blood. Together, these results also illustrate how deep single cell analysis in human 

subjects with distinct responsiveness phenotypes can help unmask cellular origins and 

provide mechanistic hypotheses on bulk blood transcriptomic biomarkers.

It remains to be determined why pDCs in healthy high responders were more activated—

persistent triggers of TLR7/9 could be involved24. The microbiome could be responsible 

but seemed to largely affect naïve than recall responses based on a recent study in 

influenza vaccination6. CMV status is possible but less likely because a known correlate, 

the frequency of TEMRA cells35, was not significantly associated with responder class in 

our cohort (Extended Data Fig. 9a,b). While genetics could play a role, twin studies have 

indicated that antibody responses to influenza vaccination exhibit little heritability in adults7. 

Two relevant pDC phenotypes (HLA-DR and CD86 expression on pDCs (cluster C9))35 

with strong genetic drivers were not significantly different between high and low responders 

(Extended Data Fig. 9c). Similarly, none of the genes in TGSig was associated with any 

trans expression quantitative trait loci based on a large-scale study of the genetics of blood 

gene expression in healthy subjects36. Age was not associated with TGSig in the NIH cohort 

(data not shown), but females tended to have higher TGSig scores than males (Extended 

Data Fig. 10a–c), which is consistent with earlier observation that females tend to mount 

higher responses to some vaccines but are more prone to autoimmunity37. Intriguingly, 

however, even within each sex, TGSig could predict responsiveness (Extended Data Figs. 

10d,e), again suggesting that TGSig is a general baseline predictor.

While TGSig’s applicability in influenza (across three out of four US locations and four 

different years), yellow fever, and SLE supports the notion that it reflects common baseline 

determinants shared by these immune response scenarios, it was not predictive in influenza 

datasets from a US location over four consecutive years. It also remains to be determined 

whether it is applicable to other situations such as cancer immunotherapy and additional 

autoimmune diseases with flares associated with plasmablasts. TGSig was specific to a 
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defined subtype of lupus as we had hypothesized (Fig. 2e) and all of the vaccination cohorts 

tested largely consisted of younger adults (age<45). In general, baseline set point signatures 

are likely not universally applicable but depend on factors such as age, ethnic background, 

and geographic location10,38. Rigorous clinical trials are ultimately needed to assess the 

applicability of these baseline signatures for different immune perturbations and diseases.

Given the centrality of the immune system in health and disease, our findings point 

to the prospect for longitudinal immune health assessment and monitoring as well as 

predicting future responses to vaccination, infection, and other perturbations using just 

a few markers in blood. Set point signatures could also be used to stratify populations 

in clinical trials and for properly accounting for baseline heterogeneity when analyzing 

trial outcomes. Our results motivate the search for additional shared baseline determinants 

and predictive signatures among vaccination, infection, cancer, and autoimmune and 

inflammatory diseases, which may reveal new biology including common mechanisms 

underpinning different types of immune responses.

Methods

Datasets

A summary of the datasets used in our study can be found in Supplementary Table 2. 

See also the “Life Sciences Reporting Summary” accompanying this paper and the Data 

Availability section.

Software

A summary of the software packages used and their versions can be found in Supplementary 

Table 8. See also the “Life Sciences Reporting Summary” accompanying this paper and the 

Code Availability section.

Predictive B cell populations

PBMC sample collection and processing are described in ref.12. The predictive baseline 

B cell populations identified in ref.12 (ID103, ID96, ID91, ID108; Figure 6, Table S2 in 

ref.12) had two important features: 1) high temporal stability (low within-subject variation 

(WSV)) with high inter-subject variation (ISV) (Fig. 2 in ref.12), and 2) a positive correlation 

between the baseline/pre-vaccination cell frequencies and vaccine antibody response as 

quantified by the adjusted maximum fold change (adjMFC) (Fig. 6C in ref.12). The adjMFC 

is a measure of antibody fold-change following vaccination after removing the nonlinear 

correlation between the maximum (log) fold change in antibody response and the baseline 

antibody titer, thus allowing for evaluation of predictive factors that are independent of the 

baseline antibody titer (see Methods in ref.12). As in ref.12, for all the influenza vaccination 

datasets we assessed in this study, we used the adjMFC metric to reflect the maximum titer 

to any of the vaccine components administered to a given subject, especially because the 

above B cell populations of interest, and therefore the associated transcriptional surrogate 

signatures we explored here, were not measured in an antigen specific manner.
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Flow cytometry data processing

See also the “Life Sciences Reporting Summary” accompanying this paper. All flow 

cytometric quality control (e.g., sample exclusion) and gating was performed before the 

analyses described below, e.g., predictive modeling and surrogate transcriptional signature 

(TGSig) derivation. We gated four new subpopulations (based on CD38 and CD10 

markers) inside the CD45+CD19+CD20+ live B cell gate (FlowJo ver.9.9.3, TreeStar/

Becton Dickinson Co., Ashland, OR, on Mac OS X; Fig. 1b, Extended Data Fig. 1a), 

including Gate 1: CD38+ cells with CD38 (G610-A; PE-Texas Red) fluorescent intensity 

greater than 1000; Gate 2: CD38++ cells with fluorescent intensity greater than 10000; 

Gate 3: CD38++CD10+ cells with CD10 (R780-A; APC Cy7) fluorescent intensity greater 

than 1000; Gate 4: CD38++CD10- cells with CD10 fluorescent intensity less than 1000. 

We exported cell frequencies, expressed as the percentage of the parent population. The 

above gating strategy was designed based on the following considerations: 1) high CD38 

expression was a common feature among the predictive CD20+ B cell populations from 

ref.12; 2) CD10 based gates were included because CD10 was expressed in one of the 

original predictive populations (ID91; Figure 6, Table S2 in ref.12) and these gates would 

also allow us to evaluate prediction performance with or without the inclusion of CD10 

gates (Fig. 1b, Extended Data Fig. 1a). Note that delineating CD10+ vs. CD10- cells in 

healthy individuals can be challenging42, thus we were cautious in our interpretation of the 

CD10+/CD10- fractions and focused solely on evaluating relative prediction performance 

with or without the inclusion of our CD10 gates in CD20+CD38++ cells (Fig. 1b, Extended 

Data Fig. 1a).

Quality control: Based on visual evaluation during gating, specifically taking into 

account: 1) low cell viability (<70%); 2) extremely small number of cells expressing high 

levels of CD38 (less than 5 cells in CD38++ gate); 3) non-discernable B cell populations 

(visually indistinct CD19+ population in CD45+ cells), we excluded 8 baseline samples (out 

of 78 baseline samples that: 1) had titer data published in ref.12 and 2) were either high or 

low responders based on adjMFC – only high/low responders were used in the subsequent 

analyses described below, although middle responders were also used to assess robustness 

(Extended Data Fig. 3); here again, baseline was defined as days 0, −7 and 70. Note that 

subject 262 (all three baseline time-points) was not used in subsequent analysis because 

it was erroneously labeled as an intermediate responder in the beginning, but during final 

quality check when preparing the manuscript we realized it was a high responder. In general, 

we followed the above cutoffs to remove samples, except that we also removed the day 70 

sample of subject 250 (viability 78.1% and 20 counts of CD38++ cells) because the percent 

of CD38++ cells was exceedingly lower than day 0 (0.63% vs. 3.38%). After QC, we have 

the following number of samples for subsequent analyses:

low high

Baseline 1 (day 0) 11 12

Baseline 2 (day −7) 11 12

Baseline 3 (day 70) 10 11
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Selection of CD19+CD20+CD38++ population (CBSig)

The predictive power of each of the four newly gated cell subsets (Fig. 1b, Extended Data 

Fig. 1a) were evaluated by AUC (see Performance assessment of model predictions). Of 

the four cell populations, population #2 (CD38++ of CD20+ B cells) had the highest AUC 

(Fig. 1b) and was selected as the population of interest (CBSig, red box). Note that the 

addition of CD10 in the gating scheme (CD10+CD38++ vs. CD10-CD38++) led to lower 

AUCs compared to CBSig, but the CD10+ and the CD10- subsets had similar predictive 

performance, indicating that CD10 status was not important for prediction (Fig. 1b). 

Variations of this gating scheme, such as lowering the CD38 expression level requirement 

or using CD10 to restrict to transitional or non-transitional subsets, did not result in better 

prediction performance (Fig. 1b), suggesting that CD19+CD20+CD38++ cells were indeed a 

core predictive population.

Construction of 10-gene signature (TGSig)

Microarray data processing: To develop a gene-based surrogate predictive signature 

of CBSig, we used the same influenza vaccination dataset from our previous study (the 

NIH Center for Human Immunology (NIH/CHI) dataset) in which gene expression data 

was also generated from the same PBMC samples assessed by flow cytometry12. The raw 

gene expression data are available in GEO (GSE47353); the processed data are available 

on our data portal (https://chi.niaid.nih.gov). The expression data was RMA-normalized 

and batch-corrected as described in the “Extended Experimental Procedures” (“Low‐level 

microarray data processing” section) in ref.12. Briefly we found that the hybridization date 

(batch) of array was significantly correlated with most probe sets, and we removed this 

effect using linear regression for each probe set individually. For this purpose, for the i-th 

probe set we fitted the model (i-th probe set intensity) ~ (hybridization date) and only 

retained the residuals from this fit.

Assessing temporal stability: To derive a surrogate gene signature, we looked for genes 

that: 1) correlated with the frequency of CD20+CD38++ B cells prior to vaccination (day 

0), 2) have low within-subject variation across the three baseline time points (so that it is 

temporally stable), and 3) high inter-subject variation (ISV) to help potentially delineate 

differences in responsiveness.

Here we have a data vector X={xij} (individual: i, time-point: j), where each xij is associated 

with a subject and each subject has three measurements obtained from each of the baseline 

time-points. We then fitted a one-way ANOVA model (in R notation: X ~ Subject) to 

evaluate the total variance (total sum of squares) and partitioned the total sum of squares into 

components attributable to subject-to-subject variation and the rest as the fitted residual.

SStotal   =   SSsubject +   SSresidual

SSsubject is the sum of squares of differences between the subject mean and the overall 

mean. SSresidual is the remaining sum of squares. Here we assumed that the variance 

explained by SSsubject provides an estimate of subject-to-subject differences while the 

variance explained by the residual of this fit (SSresidual) provides an estimate of the sum 
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of within-subject variation and other sources of noise, including technical noise. We then 

used this relationship:

1   =
SSsubject

SStotal
+   

SSresidual
SStotal

to evaluate the fraction of variance explained by subject (SSsubject/SStotal; ISV) relative 

to the fraction explained by the residual of the fit (SSresidual/SStotal). We defined (SSsubject/
SStotal; ISV) as the “stability score”, or the temporal stability metric (TSM), insofar as 

high ISV would indicate low residual variance and thus higher temporal stability within 

subjects over time. QCed expression data from all three baseline time-points were used in 

this analysis (see workflow below and ref.12 for QC procedures.)

Selection and evaluation of signature genes: We selected a total of 726 genes with 

TSM ≥ 0.75 for correlation analysis. Using only data from the high- and low-responders 

with both day 0 flow cytometry (see above) and gene expression data passing QC in 

the NIH/CHI dataset (22 day 0 samples total), we correlated these 726 genes against the 

frequency of CD20+CD38++ cells using day 0 data. To mitigate influence from outlier 

subjects and account for sampling noise, we used multiple iterations of subsampling of the 

cohort to derive a “robust” measure of correlation as follows: in each iteration, we excluded 

two subjects and then calculated the Spearman correlation between each gene and the cell 

frequency. We performed a total of 231 iterations (the number of subject combinations to 

exclude two out of the 22 subjects). For each gene, the “robust correlation” is defined as 

the average correlation divided by its standard deviation across all iterations. Genes were 

ranked according to this robust correlation statistic, which considers both the magnitude of 

the correlation and sampling noise. Top genes from the list can be found in Supplementary 

Table 1 together with additional information, including the mean, standard deviation, the 

percent of iterations in which the gene was ranked among the top 20.

To determine the number of top genes to construct the surrogate signature, we compared 

AUCs generated from top k genes (k=1, 2, 3, …., 30) (see “Gene-based signature score 
calculation” below) for the three baseline time points (Extended Data Fig. 2c). We 

empirically chose k (k = 10, TGSig) so that that AUC was maximized in all three time

points while including a sufficient number of genes so that when we evaluate the signature 

in other datasets with different profiling platforms we can retain a reasonable number of 

these genes. In addition, we checked how exclusion of any single gene from the signatures 

affects prediction performance (Extended Data Fig. 2g).

To estimate the null-distribution of prediction performance we generated a set of 500 

“random signatures” – top 10 genes based on the same ranking and evaluation scheme 

described above, except that the gene-cell population correlations were calculated using 

subject-label permuted data without applying the temporal stability filters. We used 

these “random signatures” generated for each dataset to evaluate whether the prediction 

performance of our signature is significantly higher than that expected by chance (Extended 

Data Fig. 2e).
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Finally, we also checked that our signature genes retained their relative rank even if we 

relaxed the stability (TSM) threshold. Because the total number of “temporally stable” 

genes is dependent on the stability threshold, instead of using absolute ranks we normalized 

the ranks of signature genes by the total number of genes passing the stability threshold 

(Extended Data Fig. 2f). The ranking of the top genes is relatively stable across TSM 

thresholds ≥ 0.75, although additional random noise dominates when the TSM threshold 

exceeds 0.75 because the number of genes became small (Extended Data Fig. 2f).

Gene set-based signature score calculation

Given a set of signature genes (e.g., TGSig) and a dataset (e.g., Yale 2011), we calculated 

the signature scores for each dataset independently. Due to profiling platform differences, 

some genes in a signature were not present in a given dataset and those genes were not 

used in the signature score computation. We used a z-score transformation to standardize the 

expression of each gene to have mean 0 and standard deviation 1 across all the samples in 

the dataset. This step was carried out to ensure that expression values of different genes were 

on the same scale and thus comparable. The signature score of a sample was then calculated 

by averaging the standardized expression value of the signature genes (Extended Data Fig. 

2d).

Evaluation of TGSig in non-CHI vaccination datasets

Dataset selection and data preparation: We obtained influenza vaccination datasets 

from a recent meta-analysis of transcriptomic signatures of influenza vaccination conducted 

by the Human Immunology Project Consortium and CHI10. These data were derived from 

PBMC (SDY400 and SDY404) or whole blood (SDY212) (Supplementary Table 2). We 

downloaded the pre-processed expression data from ImmuneSpace (http://immunespace.org) 

using the ImmuneSpaceR Bioconductor package43. These studies are also available on 

ImmPort (http://immport.org44), under study IDs SDY212 (Stanford University, season 

2008–2009), SDY400 (Yale University, season 2012–2013) and SDY404 (Yale University, 

season 2011–2012). See also the “Life Sciences Reporting Summary” accompanying this 

paper.

The influenza vaccination dataset from Nakaya et al18 (Emory; seasons 2008–2011) was 

downloaded from GEO (GSE29619 and GSE74817). The demographics and HAI titer 

data were received via private communication. Season 2007 was excluded from the 

analysis due to the small number (n=9) of subjects. The downloaded data (matrix data 

(probeset × sample) from GEO) was already pre-processed (including normalization and 

log-transformation), and we thus used it as-is in our analysis. We also conducted the same 

analyses by starting from the raw CEL files (using the same procedure as described below 

for yellow fever) and the results were similar to Extended Data Fig. 3c (data not shown.) 

We also tested defining high and low responders using the same method as reported in the 

original publication18 and the results were again similar in that the high and low responders 

were not separable statistically (data not shown).

The yellow fever vaccination dataset19 was downloaded from GEO (GSE13486). Since 

the pre-processed data was not available, we downloaded the CEL files and performed 
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background correction and normalization of the expression data with RMA algorithm 

implemented in Affymetrix Power Tools (APT).

The systemic lupus erythematosus (SLE) dataset13 was downloaded from the webSLE data 

portal (http://websle.com) as an RData file, which contained ExpressionSet objects with 

pre-processed and pre-filtered expression data together with probe annotation and sample 

information.

For expression datasets containing only probe level information, we summarized probe 

level expression into gene level data as follows: 1) we retained only probes that were 

unambiguously mapped to a single gene; 2) in the case where multiple probes were mapped 

to the same gene, we performed principal component analysis of the probes using all 

samples in the dataset, and then selected the probe maximally correlated with the first 

principal component as the reporter for the expression of the gene.

All expression data were RMA normalized and log2-tranformed prior to analysis, except 

for the SLE data where we used the pre-processed data directly (which included log2

transformation.)

Note that for the NIH/CHI dataset, TGSig was computed only for subjects with both QCed 

gene expression and titer data (see workflow below.)

Identification of high and low responders: High and low responder determination 

was performed before and independent of any predictive signature assessment. We used 

the adjMFC metric to quantify the antibody response to influenza vaccination independent 

of the initial/baseline titer (refs.12 and10). While there were differences in how antibody 

titer data were generated across different datasets/studies (e.g., the NIH/CHI dataset used 

microneutralization assays, while others used the hemagglutination inhibition (HAI) assay), 

adjMFC only reflects the normalized, relative response within a dataset/cohort, but not the 

absolute magnitude (see ref.12) and is thus applicable to all datasets to quantify the relative 

response (high vs. low responders) within each dataset. The detailed methodology can be 

found in the “Extended Experimental Procedures”/“Titer definitions” in ref.12).

For each of the influenza vaccination datasets, we classified subjects into high and low 

responders according to their adjMFC values and use these response class labels in 

subsequent analyses (see refs.12 and10 for the rationale behind only focusing on high 

and low responders). Briefly, subjects who were below the 30th percentile or above the 

70th percentile adjMFC values in a dataset were classified as low and high responders, 

respectively. Following previous HIPC-CHI analyses, these thresholds were selected to 

allow enough high and low responders for analysis. This cutoff differs from that used in the 

original NIH/CHI influenza study, in which the subjects were discretized to low and high 

responders using the 20th and 80th percentile adjMFC values as cutoffs, respectively (see 

Methods in ref.12). To be consistent with the original NIH/CHI influenza study, we kept 

the same 20/80 cutoffs for defining high and low responders when analyzing the NIH/CHI 

dataset here. These cutoffs were all pre-determined before analyses started.
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For the yellow fever vaccination dataset, neutralization titers against the yellow fever virus 

(YFV) measured on day 60 were used as the antibody response to vaccination because all 

subjects were naïve to the YFV at baseline. We discretized the original titer values within 

each of two reported trials. The thresholds to identify high and low responders were selected 

based on the distribution of titer values within each trial. Because the neutralizing titers were 

measured using different techniques (by cytopathic effect (CPE) for trial 1 and by plaque 

reduction neutralization test (PRNT) for trial 2), the exact thresholds we used were different. 

For trial 1, six subjects were classified as low responders (titer < 160), and six as high 

responders (titer > 160), while for trial 2 there are three low responders (titer < 640) and 

four high responders (titer > 640). Titer values of 160 and 640 were considered “middle 

responders” in each trial, respectively, and were excluded from analysis.

Predictive performance assessment: To assess whether TGSig was predictive of high 

vs. low responders, we computed the AUC (area under the empirical Receiver Operating 

Characteristic (ROC) curve). A permutation procedure was used for estimating one-tailed 

p values – see Statistical Procedure below for further details. We also used the one-tailed 

Wilcoxon Rank Sum test to assess whether the signature score was significantly higher 

in high compared to low responders, which also provided another measure of statistical 

significance in addition to that computed for the AUC. We used a one-tailed test because 

we knew a priori that CBSig (and the original predictive populations from ref.12 from 

which CBSig was derived) had higher frequencies in high than low responders. Thus, we 

specifically test whether TGSig (a surrogate of CBSig) was significantly higher in high than 

low responders. All statistical analyses were performed using R/Bioconductor. ROC curves 

were computed with the pROC package45.

Assessing TGSig in independent vaccination datasets: After selecting signature 

genes for TGSig using only the day 0 data of the CHI influenza dataset, we computed 

the TGSig signatures scores for each subject prior to vaccination in each of the influenza 

vaccination datasets (Stanford, Yale, and Emory) and the yellow fever vaccination dataset 

and evaluated the predictive performance of delineating high vs. low responders. The 

influenza datasets all had bi-modal age distributions (young: age<35 and older: age > 60) 

because they were originally designed to assess responses in older vs. younger individuals10; 

we thus focused on testing TGSig in young subjects only because the CHI dataset consisted 

of largely younger individuals. We did evaluate TGSig in older subjects and found that it 

was not predictive of high vs. low responders in those older than 60. For the Emory dataset, 

a higher cut-off for “young” (age < 60 years) was employed because using a cutoff of 

35 would result in a very small dataset, but we also tested using 35 as the cutoff and the 

results were similar. The yellow fever dataset contains two trials with the first having a larger 

sample size than the second, and we tested the signature in each trial independently.

Additional statistics for assessing prediction of high versus low responders can be found in 

Supplementary Table 2b.
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Application of TGSig to a pediatric systemic lupus erythematosus (SLE) cohort

See also the “Life Sciences Reporting Summary” accompanying this paper. In the SLE 

study, each patient had multiple samples (visits) collected over time, each of which may be 

collected when the patient had different levels of disease activity as reflected by the SLE 

Disease Activity Index (SLEDAI) score. The original publication13 defined seven groups of 

patients based on SLEDAI-associated gene expression patterns (correlation computed over 

time/multiple visits), and showed that for patient groups 2, 3 and 4, the SLEDAI score was 

correlated with genes associated with a plasma cell/plasmablast signature.

For reasons discussed in the main text, we focused on patients from groups 2, 3, and 4 

and evaluated whether TGSig evaluated at low DA time-points was correlated with the 

changes in plasmablast signature score associated with DA (e.g., the extent of plasmablast 

score increase between low-DA and high-DA time-points). Note that we used a mixed effect 

model – see below for details – to estimate this latter quantity. For each patient in groups 

2, 3, and 4, we calculated a plasmablast signature score for each visit (using the gene 

module DC.M4.11 as described below in “Plasmablast gene-based signature”). Because 

each patient had multiple visits and patients often had treatment (e.g., corticosteroids) that, 

in turn, may have an effect on the changes in plasmablast score as a function of DA, we 

used a linear mixed-effect model to integrate the data46 (in R/lme4 notation): PB ~ ∑Ti 

+ SLEDAI|SUBJECT, where PB is the signature score, Ti is an indicator of treatment 

group (as defined in the original paper), SLEDAI is treated as a continuous variable, and 

subject is treated as the random effect. Here the subject-dependent, “random” coefficient 

for the SLEDAI term (the “slope”) would give us an estimate on the quantitative extent by 

which the plasmablast signature score would change as DA varies. Note that the plasmablast 

signature score is presumably reflective of plasmablast frequencies, as shown previously12. 

We fitted the mixed effect model and extracted the aforementioned personal “slope” by 

using the ranef function; hereon we will refer to this patient-specific quantity as the “disease 

activity-associated change in plasmablasts (DaCP)”. We also tested treating SLEDAI as a 

discrete/categorical variable (high and low DA only, or high, middle, and low DA – see 

below on definition) and the resulting estimate for the personal DaCP was similar to the 

that obtained by treating SLEDAI as a continuous variable (data not shown.) We further 

assessed the robustness of DaCP by comparing it to the simple difference between the 

average plasmablast score of high DA time-points and that of low DA time-points (Extended 

Data Fig. 5b), and as expected they were highly correlated.

To compute TGSig from clinically quiescent/“baseline”, low-DA time-points, we adopted 

the original SLE study’s classification of samples into low-, middle-, and high-DA groups 

based on the SLEDAI score (low DA: SLEDAI < 3, medium DA: SLEDAI: 3–7, high DA: 

SLEDAI ≥ 8). We then calculated the TGSig score at low DA time points. Because each 

subject may have more than one sample from a low DA time-point, subject-specific scores 

were computed by averaging the score from all low DA time points. We then tested whether 

the TGSig signature score calculated at low DA time points was correlated with DaCP. As a 

control, we performed the same analysis described above in patient groups 1, 5, 6, and 7 to 

assess if such a correlation exists for patients whose DA did not correlate with plasmablast 

scores.
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Plasmablast gene signature

We chose the gene set DC.M4.11 “Plasma cells” from the Chaussabel blood transcriptomic 

modules to compute the plasmablast signature score47 because: 1) this was one of the 

plasma cell/plasmablast gene signatures that the original SLE study found to be correlated 

with DA (i.e., which helped define patient groups 2, 3, and 4); 2) we examined the within

module gene-gene correlation in this and additional plasmablast related gene modules (see 

below) and found that this gene set had the best coherency and exhibited the highest overall 

gene-gene correlations; 3) the score of DC.M4.11 was significantly correlated with the 

score computed from a gene set we derived earlier based on correlation with changes in 

plasmablast frequency on day 7 following influenza vaccination (see Fig. 7B in ref.12) (data 

not shown), thus suggesting that the signature score computed from DC.M4.11 was directly 

reflective of plasmablast frequencies.

From ref.47

DC.M4.11 Plasma Cells

DC.M7.7 Undetermined

DC.M7.32 Undetermined

From ref.21

LI.M156.0 plasma cells & B cells, immunoglobulins

LI.M156.1 plasma cells, immunoglobulins

Computing gene set enrichment scores for transcriptional differences between high and 
low disease activity periods (Fig. 2c and Extended Data Fig. 5a)

For each gene and patient, we first computed the average gene expression for samples with 

high DA (or middle DA if no samples with high DA were available) and separately for 

those with low DA. Then for each subject the genes were ranked by the magnitude of 

the difference between these two average values (high DA – low DA), followed by gene 

set enrichment analysis using the CERNO test from tmod48 R package to generate the 

enrichment statistics for each subject and gene set. The enrichment for each gene set in each 

subject is shown as −log10 of the FDR-adjusted p-value in the heatmap of Extended Data 

Fig. 5a. To summarize the information in this heatmap and show patient group dependent 

enrichment, we averaged the enrichment values across each patient group and gene sets with 

similar phenotypic annotations (as determined previously in the original publication13) and 

generated the compressed heatmap of Fig. 2c.

Identification and characterization of coexpression modules at low disease-activity time 
points

To identify coexpression modules in SLE patients, we first calculated the average expression 

profile for each patient using samples from low DA time-points. We focused also on 

temporally stable genes (across low-DA time-points) because those are more likely to reflect 
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stable, personal immune states. We estimated the TSM score for each gene across low DA 

time-points using a similar approach as described above for the development of TGSig 

in the NIH/CHI influenza data set, except that stable genes were selected using a more 

relaxed cutoff, i.e., using a FDR cutoff of 0.05 (calculated from the P values of the F 

statistics of the ANOVA model above), which resulted in 9601 “stable” genes, because we 

wanted to retain more genes for module analysis. We next used the WGCNA algorithm 

to determine modules20. We determined the algorithm’s hyperparameters following the 

authors’ recommended procedure, setting soft power to 4 (the lowest power for which the 

scale-free topology fit index curve flattens out upon reaching a high value, in this case, 

roughly 0.80), and network type to “signed hybrid”. We were able to assign ~2800 genes to 

18 coexpression modules (Supplementary Table 3), with module size ranging from 25 to 719 

genes (Fig. 3a and Supplementary Fig. 1a).

To assess the extent by which these modules were associated with the DaCP, we calculated 

Pearson correlation between the eigengene of each module (i.e., PC1) and the DaCP. To 

evaluate statistical significance, we generated an empirical null distribution for each module 

by randomly shuffling subject labels and recalculating correlations on the shuffled data 

(Supplementary Fig. 1b). Empirical p-values were determined by comparing the actual 

correlations with the corresponding null distributions.

For functional characterization, we evaluated whether the modules are enriched for known 

gene sets (such as the Blood Transcriptome Modules21, Supplementary Fig. 1c) with the 

hypergeometric test. The false discovery rate was controlled using the Benjamini-Hochberg 

procedure49.

Meta-analysis to identify genes associated with vaccine responses

We used random effect meta-analysis models50 to estimate the “meta” effect size of 

each gene by combining expression and antibody response data from multiple vaccination 

datasets. This method models the observed effect size yi (association between expression 

and vaccine response class as reflected by adjMFC high vs. low responders) as a draw from 

a distribution with study-specific mean θi and variance si2 (i.e. intra-study sampling error). 

Furthermore, each θi is assumed to be a draw from a distribution with overall mean μ and 

variance τ2 (i.e. interstudy variability):

yi   =   θi   +   εi,   εi   N 0,  si2

θi   =   μ +   δi,   δi   N 0,  τ2

We identified influenza response genes by applying the method to the four influenza 

vaccination studies (Supplementary Table 4a). We only evaluated the temporally stable 

genes as defined above based on the low DA time-points because those were the genes we 

used to define co-expression modules. In addition, we applied the same method to the two 

trials of yellow fever vaccine. We found that the meta-analysis results are largely consistent 
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with the first trial, but much less so with the second trial (data not shown). The relatively 

poor coherence between the two trials may be partly due to the very small sample size of the 

second trial (only 7 subjects). Our observation suggested that inclusion of data from trial two 

is more likely to introduce noise than signal, thus we decided to only focus on trial one.

Gene set enrichment analysis

Gene Set Enrichment Analysis (GSEA) is a widely-used approach to test if a particular gene 

set is enriched at the top of a ranked gene list51. Because the datasets we used are from 

peripheral blood samples, we decided to use known gene sets from the same tissue: the 

Blood Transcription Modules (BTMs)21. These gene modules were identified from network 

analysis of gene-gene correlations in multiple blood transcriptomic datasets. We used an 

efficient implementation of GSEA analysis from the fgsea R package40 with the BTM 

modules from the tmod R package48 (fgsea was used also to extract leading edge genes.)

We applied GSEA to assess whether the genes in the “brown” coexpression module 

identified in the SLE cohort are enriched at the top of the genes ranked by their meta-effect/

association with antibody response to influenza vaccination (Fig. 3d); we also performed 

the same analysis for yellow fever trial #1 (see above) but the result was statistically 

insignificant.

To test for enrichment of BTMs in genes from the NIH/CHI influenza dataset ranked by 

correlation with CD20+CD38++ B cell frequency, we selected temporally stable genes 

with TSM ≥ 0.5 from the NIH/CHI influenza study dataset, and ranked them by their 

robust correlation metric (see “Baseline gene-based predictive signature” above). Here a 

more relaxed temporal stability cutoff was used to increase the number of genes and 

statistical power for enrichment analysis. P-values from the enrichment test were corrected 

for multiple‐testing using the Benjamini-Hochberg method49.

GSEA was also applied to identify “leading edge” genes, a subset of the query set that 

maximizes the enrichment score. Applying leading edge analysis to brown module and 

the genes from the NIH influenza study ranked by correlation with CD20+CD38++ B cell 

frequency, we identified a set (87 genes) of leading edge genes in the brown module (and 

called this gene set SLE-Sig) (Fig. 3e and Supplementary Table 5). To better understand 

the predictive property of genes in the brown module, we divided it into two subsets – 

the leading-edge set (87 genes – SLE-Sig), and the remaining genes. For each subset, we 

calculated the eigengene and used it in regression analysis (Extended Data Fig. 6).

Assessing the relative contribution of TGSig and SLE-Sig to predicting vaccination 
responses

We used logistic regression to model association with vaccine response (high vs. low 

responder based on adjMFC) by pooling all four influenza vaccination datasets (Extended 

Data Fig. 6). We fitted three models, all having the following form (high responder: 

response=1; low responder: response=0):

Pr response  =  1 =  X ⋅ β   +   ε
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where X is a matrix of covariates, and β is a vector of coefficients estimated from the 

data. Model 1 includes both TGSig and SLE-Sig (represented by the eigengene or PC1 

of genes in the respective set) as covariates, while Models 2 and 3 only include one of 

the two covariates. In addition, all three models include dataset ID (encoded by dummy 

variables) as a covariate. To assess statistical significance, we performed the likelihood ratio 

test comparing two nested models (e.g., Model 1 and Model 2).

The same approach was used to evaluate the relative contribution of TGSig and 1) genes 

outside the leading edge in brown module; 2) IFN-I-DCact genes. Similarly, instead 

of evaluating vaccine responses, we applied this same approach to evaluate the relative 

contribution of TGSig and these other gene signatures in predicting DaCP in SLE.

Sorting of B cell populations from healthy donors

Peripheral blood mononuclear cells (PBMCs) were obtained from peripheral blood of 6 

healthy individuals (demographics shown in table below) by density-gradient centrifugation 

and cryopreserved until day of B cell analysis and sorting. Multicolor flow cytometry 

was performed to identify PBMC B cell populations (Extended Data Fig. 7a) using 

the following mAbs: CD19-PerCP-Cy5.5, CD27-PE-Cy7 (ThermoFisher); CD20-APC-H7, 

CD38-BV421 (BD Biosciences); CD3-BV510 (Biolegend). For transcriptional analysis, 

total CD19+CD20+ and CD19+CD20+CD38hi B cells (5000 each) were sorted into Trizol LS 

(Sigma) or ATACseq buffer using a FACSAria II (BD Biosciences). Flow data analyses were 

performed using FlowJo software (TreeStar/Becton Dickinson Co., Ashland, OR). Purity of 

B cell sorts was ~99%.

Donor demographic information is available in Supplementary Table 9. See also the “Life 

Sciences Reporting Summary”. Healthy donors were recruited under NIH IRB approved 

protocol NCT00001281. Informed consent was obtained from all study participants.

RNAseq library preparation and analysis

RNA was isolated from cells sorted into Trizol LS using the Zymo Direct-zol Micro-prep 

columns (Zymo Research, Irvine, California). Total RNA sequencing libraries were prepared 

using the NuGEN SoLo RNAseq library kit (NuGEN Technologies, San Carlos, California) 

according to the manufacturer’s instructions, using 1 ng of RNA as input. Libraries were 

sequenced using the Illumina NextSeq with version 2 sequencing reagents to an average 

of 20 million paired-end 37 base pair length reads per sample. Fastq files were generated 

from raw sequencing data using bcl2fastq version 2.17.1.14 (Illumina). Reads were mapped 

using STAR52 version 2.5.2 aligner and the UCSC hg19 genome annotation and the -

quantMode GeneCounts option. Counts-per-feature data output from STAR was imported 

into R 3.4.1. The average number of exonic-feature mapped counts was 3.14 million per 

sample. Differential gene expression was estimated using the DESeq2 package53 version 

1.16.1. MAplot shown in Extended Data Fig. 7b was produced using ggplot254 version 

2.2.1(https://cran.r-project.org/web/packages/ggplot2/index.html).
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Statistical evaluations

All statistical analyses were performed in R version 3.4.1, except for the low-level 

processing of single-cell data and some of the analyses in CITE-seq and RNA-seq (e.g., 

Extended Data Figs. 7–9), which were performed using R 3.5.1. Effect sizes and p-values 

of Pearson and Spearman correlations were computed using the cor.test function. P-values 

for Wilcoxon Rank Sum Test were computed using the wilcox.test function. Unless noted, 

all Wilcoxon tests were two-tailed. Hedges’ g effect sizes were computed using the cohen.d 
function in the effsize55 package. Meta-analysis was performed with the MetaDE56 package. 

Enrichment analysis was performed using the fgsea40 package in Bioconductor (when we 

want to extract leading edge genes; the similar CERNO test was used when leading edge 

genes are not needed, e.g., Fig. 2c and Extended Data Fig. 5a.) Jonckheere-Terpstra trend 

test for ordered differences among multiple classes was performed using jonckheere.test 
function in the clinfun package57. Area under ROC curve (AUC) and 95% confidential 

interval were computed using the pROC package45. The p value for AUCs was estimated 

by a permutation procedure: we shuffled the subject labels to create a mismatch between 

the responder class and the gene expression data and generated 1000 permutations test the 

null hypothesis that the observed AUC was drawn from this null distribution. Metrics to 

further assess prediction performance (Supplementary Table 2b) were computed using the 

MLmetrics package58. Some metrics required a cutoff for calling high vs. low responders: 1) 

for gene expression based predictors we used zero since we used scaled (z-score based) gene 

expression values to compute the score of a gene set for each subject; 2) for cell frequency 

based predictors the cutoff was set to the median of cell frequencies.

Simultaneous protein and transcriptomic single cell profiling via CITE-seq

Combined surface target protein and mRNA expression single cell analysis was performed 

using the CITE-seq methodology according to refs59–61 with the following modifications: 

n=20 high and low responders were split between two experimental batches with n=5 high 

and n=5 low responders in each batch. See also the “Life Sciences Reporting Summary”. 

The high and low responder groups were not significantly different in age and sex (p=0.16 

for age and p=0.37 for sex, Wilcoxon two-tailed test). In each batch, samples were 

stained using cell “hashing”59 antibodies such that samples could be demultiplexed using a 

combination cell hashing identifiers and SNP genotype demultiplexing62. After cell hashing 

antibody staining, cells from each batch were pooled into one tube and stained with a 

mixture of oligo-labeled antibodies against target surface proteins. The two experimental 

batches were performed on consecutive days, using aliquots of the same pool of antibodies 

for each batch. Final antibody concentrations used for staining were determined using 

titration experiments; the concentration of antibody that appeared to saturate ligand was 

utilized, or for cases in which apparent saturation was not reached, the manufacturer’s 

recommended amount was used. Oligo-labelled antibodies for cell hashing and surface 

target protein detection were obtained from Biolegend (see Supplementary Table 10 for 

list of reagents). The same pool of donor cells from each batch were distributed evenly 

across 6 lanes of 10x Genomics Single Cell 3’ expression reagents (version 2). Cell hashing 

(HTO) and surface target protein (ADT) libraries were prepared according to59–61. cDNA 

tag libraries were prepared using the 10x Genomics v2 kit according to manufacturer’s 

instructions. Libraries were sequenced using the Illumina HiSeq 2500 and v4 reagents. 
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Additional statistics: mean number of gene detected per cell was 746, mean number of 

UMIs per cell was 2139. The mean read depth per cell was approximately 43,000–84,000 as 

reported by CellRanger. The fraction of reads mapped to the genome was above 90% for all 

lanes; sequencing saturation was typically around 90%.

Computational low-level processing of CITE-seq data

Bcl2fastq version 2.20 (Illumina) was used to demultiplex the sequencing data. CellRanger 
version 3.0.1 (10x Genomics) was used for alignment (using the Hg19 annotation file 

provided by 10x Genomics) and counting unique molecular identifiers (UMI). CITE-seq 

ADT and HTO tag alignment and UMI counting was done with CITE-seqCount63 version 

1.4.2. The following computational analysis of CITE-seq data was performed using the 

Seurat 2.3.4 R package23 and the SingleCellExperiment Bioconductor class64. Hashing 

antibodies were used to identify the response class (high vs. low adjMFC) in each batch. 

Samples demultiplexed with Seurat’s HTODemux k-means function corresponded to either 

one or two possible sample identities Sample labels were then assigned to each cell using 

demuxlet62; only cells that met the following conditions were retained: 1) the cell must be 

defined as a “singlet” by both hash demultiplexing and Demuxlet; 2) the identified donor 

from Demuxlet must match either of the two expected donors based on HTO hashing.

Surface protein data normalization: For each protein, ADT data was normalized by 

taking the log + 1 of raw counts, then subtracting the mean and divided by the standard 

deviation of the corresponding antibody count from the same batch measured in negative 

droplets. In addition, to account for droplet-to-droplet differences in the ADT capture rate 

as well as background noise from unbound antibody, we denoised each cell by removing a 

covariate corresponding to the background counts for each cell using the removeBatchEffect 
function in limma65 package; this covariate was defined for each cell as the eigenvector 

of: 1) the mean of non-staining antibodies in that cell; 2) counts from 4 isotype control 

antibodies. mRNA data was normalized with scran66 after removing cells with greater or 

less than 3 median absolute deviations from the median library size.

Cell clustering and annotation

The cell clusters were identified by a shared nearest neighbor (SNN) modularity 

optimization based clustering algorithm67 implemented in the Seurat R package23. Only 

ADT data (surface protein expression) were used to generate the Euclidean distance matrix 

computed for all single cells. The matrix was then used to build the SNN graph followed 

by k-nearest neighbors clustering (k = 50). Three clustering resolutions were applied, 0.1, 

0.3 and 1, to generate three sets of cell clusters; the relationship between these cluster 

sets were visualized using the clustree68 and ggraph69 R packages (Fig. 4b). The clusters 

were labeled accordingly to reflect this hierarchical relationship (e.g. C1→C1.0→C1.0.0). 

We annotated the protein-based clusters post hoc, linking them to canonical immune cell 

populations by visualizing both the average and distribution of all proteins in each cluster at 

multiple resolutions (Fig. 4c).
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Single cell tSNE visualization

tSNE (t-distributed Stochastic Neighbor Embedding) analysis was performed using ADT 

(surface protein expression) data only with the RunTSNE function from the Seurat package. 

Note that tSNE was used only for visualization. We used PCA for dimensionality reduction: 

the number of dimensions (7) used for tSNE was determined with the “elbow” plot 

(not shown). In the tSNE plot (Fig. 4a), the 10 clusters resulted from the resolution=0.1 

clustering above (with the perplexity parameter equal to 130) were shown.

Manual gating of CITE-seq data

To determine frequency of the CD19+CD20+CD38++ B cell population for each subject, 

we first gated the total B cells in the dataset as CD3-CD56-CD14-CD19+. The gates were 

determined based on the density plot of each marker. We then applied the CD20+CD38++ 

gate on total B cells. After we determined the cells in the gate, we used subject labels to 

compute the number of total B cells and CD20+CD38++ B cells for each subject, and then 

the frequency of CD20+CD38++ B cells as a fraction of the total number of cells.

Computing and evaluating subject-level gene set signature scores for cell clusters using 
CITE-seq data

Our goal was to assess, using only cells in a given cell cluster, whether the average 

(across single cells) relative expression of genes in a signature gene set is higher in the 

high responders compared to low responders. The procedure we devised below was used 

in two related situations: 1) given a bulk predictive signature (e.g., TGSig), determine 

whether average relative expression of genes in the signature is significantly higher within a 

specific cluster of cells in high than low responders—this was used to uncover the cellular 

contributors to a bulk predictive signature such as TGSig; 2) given a gene signature that 

reflects a cell state (e.g., CD40act), assess whether a particular cluster of cells tends to 

have higher average relative expression of genes in the signature in high than low responders

—when interpreting results from this analysis we are often making the assumption that 

higher average relative expression corresponds to a greater strength of signal that drove 

the cells to or kept the cells in that state. Thus, for situation (2) we focused on signatures 

containing genes with evidence of increased expression when exposed to the “signal” (e.g., 

see CD40act below.) This assumption is sound because here we focus on genes that respond 

to signals such as CD40L and Type I interferons, which lead to activation of transcriptional 

programs that shape the mRNA profile within specific types of cells.

There were two levels of averaging in our procedure: 1) averaging across single cells – 

single cell mRNA expression data can be noisy and since our goal here is to evaluate cell 

clusters, we took advantage of the power of statistical averaging to increase robustness 

and derive conclusions at the cell cluster level; 2) averaging across genes—information 

obtained from individual genes can also be noisy and often does not reflect cell states, 

which are typically more robustly captured by the level of multiple genes as a set of genes, 

for example, can be shaped by common upstream regulators. As also demonstrated by the 

success of methods such as GSEA and eigengene analysis, gene set level information can 

be more robust and can better reflect cell state shifts that affect multiple genes. Our single 
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cell normalization procedure (see above) and simple z-score scaling (see below and “Gene 

set-based signature score calculation” section above) helped to enable such averaging.

To compute the subject-level signature score for a gene set in a given cell cluster, we 

first created a cell-averaged gene expression data set for the cell cluster: for a given cell 

cluster and subject, we averaged the normalized single cell expression counts for each gene 

across single cells in that cell cluster for the subject. For each cell cluster (e.g., cluster C0—

naïve CD4+ T cells; see Fig. 4b–c), this procedure generated a gene-by-subject expression 

matrix. We then applied the same z-score based procedure as we used for microarray gene 

expression data (see “Gene set-based signature score calculation” section above) to compute 

the gene set signature score for each subject. We then used the non-parametric one-tailed 

Wilcoxon test to evaluate whether the signature scores are significantly higher in the high 

responders compared to the low responders.

As a robustness check for results involving the SLE-Sig signature (Fig. 5b), which is 

enriched for Type I IFN responses and related processes (Fig. 3c,f), we also created another 

Type I IFN gene signature (IFN, see Supplementary Table 6) using modules from an 

independent collection (see ref.47). This signature was created by combining (i.e., the union) 

genes from the following three blood transcription modules47: DC.M1.2, DC.M3.4, and 

DC.M5.12.

Gene signature for CD40 activated B cells (CD40act)

Our goal was to construct a transcriptional signature that reflects CD40 activation in human 

B cells. We focused on genes with evidence of increased expression following CD40L 

stimulation because we wanted to evaluate whether these genes tended to be elevated 

in B cells in high responders compared to low responders using CITE-seq data. The 

CD40act gene signatures (49 genes) was generated as the intersection between two gene 

sets (Supplementary Table 6). The first gene set (163 genes) was obtained by reading off the 

heatmap in Supplemental Figure 1 in ref.26, which corresponded to genes/probe sets with 

higher expression in CD40 activated B cells in comparison to mock-activated B cells (i.e., 

those that appeared red and blue on the right and blue sides of the heatmap, respectively). 

Since the expression data was not available, we transcribed the probe set labels directly from 

the figure. The labels were then converted to probe set IDs with Affymetrix annotation and 

then converted to gene symbols by using the hgu95av2.db Bioconductor package70. The 

second gene set (295 genes) were generated by using publicly available expression data 

from ref.27. We downloaded the data from GEO (GSE54017 series) and selected genes more 

highly expressed in CD40-activated B cells than in resting B cells. The statistical cutoff was 

determined using a one-sided paired t-test: we selected genes with an FDR-adjusted p-value 

lower than 0.05 and a log2-fold-change greater than 1.5.

Code availability: The source code and software pipeline to reproduce our analyses can be 

assessed at https://github.com/kotliary/baseline.

Data availability: All data used in this study, including CITE-seq and flow data, are 

available at figshare (https://doi.org/10.35092/yhjc.c.4753772). The original/raw public gene 

expression data are available in the National Center for Biotechnology Information Gene 
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Expression Omnibus (GEO) under accession numbers: GSE47353, GSE41080, GSE59654, 

GSE59743, GSE29619, GSE74817, GSE13486, and GSE65391 (see also Supplementary 

Table 2).

Extended Data

Extended Data Fig. 1. Identification and characterization of the CD19+CD20+CD38++ B cell 
population, a baseline, pre-vaccination cell frequency-based signature (CBSig) of antibody 
responses to influenza vaccination.
a, Flow cytometric gating strategy for the CD19+CD20+CD38++ B cell population. 

Populations 1–4 are further described in (Fig. 1b). b, Box plots (top) showing the frequency 

of CD19+CD20+CD38++ cells (CBSig; y-axis) at the three baseline time points from ref.12 
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(days −7 and 0 are prior to vaccination and day 70 is after vaccination) in low and high 

responders (x-axis) to the seasonal and pandemic H1N1 influenza vaccines as defined by 

the Adjusted Maximum Fold Change (adjMFC) metric (see ref.12). There are 11 low and 12 

high responders for day −7 and 0, and 10 low and 11 high responders for day 70. P values 

from the Wilcoxon one-tailed test results are shown on the boxplots (based on results from 

ref.12 our hypothesis was that the high responders have higher frequencies of these cells than 

low responders). Boxplots’ center line corresponds to the median value, lower and upper 

hinges correspond to the first and third quartiles (the 25th and 75th percentiles); lower and 

upper whiskers extend from the box to the smallest or largest value correspondingly, but 

no further than 1.5x inter-quantile range. (Bottom) Corresponding receiver operator curves 

(ROC) for vaccine response at each of the above baseline time points and their AUC (area 

under the curve) and corresponding permutation based one-tailed p value are shown. c, Dot 

plots (CD38 vs. CD10 of CD19+CD20+ B cells) for example high and low responders.
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Extended Data Fig. 2. Derivation of TGSig, a transcriptional surrogate signature for CBSig.
a, Step 1: Identification of genes with high temporal stability across the three baseline 

time points (days −7 and 0 are prior to vaccination and day 70 is after vaccination) in 

the NIH influenza study12. The middle box shows the distribution of the temporal stability 

metric (TSM) across all the genes. The boxes on the right and left show examples of 

genes with high and low temporal stability, respectively; each line corresponds to an 

individual. Genes with high temporal stability (≥0.75) across the three baseline time points 

(depicted to the right of the red dashed line) were subsequently evaluated for correlation 

with CD19+CD20+CD38++ B cell frequency. b, Step 2: 726 temporally stable genes 

were ranked by their “robust” correlation with CD19+CD20+CD38++ B cell frequency. 

Robustness is evaluated using all 231 random samplings of 20 subjects out of the cohort 
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of 22 subjects (i.e., two random subjects were dropped out from each sampling); the mean 

Pearson correlation coefficient divided by the standard deviation across the samplings (x

axis left panel) was used to rank the genes. Top genes are shown together with the predictive 

performance of each gene evaluated at day 0 (AUC; right panel). The red dashed line in the 

right panel corresponds to AUC = 0.50 (prediction performance as expected by chance); the 

top 10 genes were selected in TGSig (the black dashed line; see Supplementary Table 1 for 

full list of ranked genes) based on (c). c, Performance (AUC; y-axis) of the gene signature 

by baseline time point (different lines) and number of top genes included in computing 

the signature score (x-axis). The vertical dashed line corresponds to a gene signature 

(TGSig) containing the top 10 genes achieving the best AUC across all three time-points. d, 
Schema for gene signature score calculation. Gene expression data is standardized through 

calculation of Z-scores for each gene (i.e., each gene would have mean 0 and standard 

deviation 1). The Z-scores for each gene in the signature are then averaged to generate the 

gene signature score. e, Distribution of predictive performance (AUC; x-axis) of 500 random 

top-10 gene signatures generated from subject-label shuffled gene expression data using 

the robust correlation metric approach described above. The dashed red line indicates the 

observed AUC of TGSig at each of the baseline time points. One-tailed empirical p-values 

are shown. f, Relative rank (rank position divided by the total number of genes) of the 

top 20 genes from (b) and Supplementary Table 1 at different TSM thresholds. The black 

line shows TSM cutoff = 0.75, the value used in selecting the top 10 genes for inclusion 

in TGSig (boxed). g, Change in AUC (x-axis) of TGSig score following removal of the 

indicated gene in the signature (y-axis) at each of the three baseline time points in the NIH 

influenza study.
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Extended Data Fig. 3. Comparison among response classes by including middle responders and 
evaluating TGSig in the influenza datasets from Emory18.
a, similar to Figs. 1e and 1f but including middle responders (for day 0 n=11/19/13 for low/

middle/high responders, respectively; for day −7 n=10/22/14 and for day 70 n=11/21/12); 

p values from the Jonckheere trend test (with an a priori alternative hypothesis that the 

high responders >= middle responders >= low responders.) For all boxplots the center line 

corresponds to the median value, lower and upper hinges correspond to the first and third 

quartiles (the 25th and 75th percentiles); lower and upper whiskers extend from the box to 

the smallest or largest value correspondingly, but no further than 1.5x inter-quantile range. 

b, Similar to (a) but related to Fig. 2a; note that Yale 2012 does not have middle responders 

based on data retrieved from ImmuneSpace (n=9/10/10 (Stanford 2008), 7/3/6 (Yale 2010), 

7/0/8 (Yale 2012)). c, Similar to Fig. 2a but testing TGSig using influenza datasets from 
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Emory University over four years (n=14/8 low/high responders for year 2008, 8/8 for 2009, 

11/11 for 2010, 12/10 for 2011). Box plots (top) showing the TGSig score (y-axis) in low 

and high responders (x-axis) as defined by adjMFC in the indicated season. P values shown 

on the boxplots were obtained from the Wilcoxon one-tailed test. (bottom) Corresponding 

receiver operator curves (ROC) for vaccine response and the AUC (area under the curve) 

and corresponding permutation-based one-tailed p values are shown. d, Similar to (a) but for 

yellow fever and related to Fig. 2b.

Extended Data Fig. 4. Further evaluation of TGSig in yellow fever and influenza datasets.
a, (top) Box plots (top) showing the TGSig score applied to pre-vaccination PBMC 

expression data (y-axis) between low and high responders (x-axis) to yellow fever vaccine 

in trial #2 (x-axis; 4 high vs. 3 low responders). (bottom) Corresponding receiver operator 

curves (ROC) for vaccine response and the AUC (area under the curve) and corresponding 

one-tailed permutation based p value are shown. This vaccination cohort included 10 

subjects (see Fig. 2b for results on a first, larger trial with 15 subjects). Boxplots’ center 

line corresponds to the median value, lower and upper hinges correspond to the first and 
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third quartiles (the 25th and 75th percentiles); lower and upper whiskers extend from the 

box to the smallest or largest value correspondingly, but no further than 1.5x inter-quantile 

range. P-value is from Wilcoxon one-tailed test. b, Forest plot showing the meta effect 

sizes (Hedge’s g reflecting correlation strength with adjMFC) of the TGSig genes from a 

meta-analysis of four influenza datasets (Stanford 2008, NIH 2009, Yale 2011, Yale 2012; 

genes in gray were not present in all datasets); the bars represent the 95% CI. c, Similar to 

(b) but for yellow fever vaccination (computed from trial #1).

Extended Data Fig. 5. SLE patient phenotypes based on DA-associated transcriptional signatures 
and assessing the association between TGSig (at low DA) and DaCP after the removal of patients 
with lower DA-associated plasmablast signature scores.
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a, Recreation of Figure 6a from ref.13 but as a robustness check here we used a different 

method: for each patient we ranked genes based on the difference between their average 

expression at high/middle and low DA time points and then performed GSEA analysis 

using the blood transcriptomic modules (columns) to fingerprint the patient. The colors 

on the heatmap denote the statistical significance (−log10 of BH-adjusted p-values from 

CERNO39) of the gene set enrichment test. Here we kept the order of patients (rows) and 

modules (columns) the same as in the original heatmap, although some patients from the 

original heatmap were removed due to the absence of low DA time points. The original 

patient groups were used to annotate the patients (rows). The overall fingerprinting pattern 

is visually highly consistent with the original heatmap. This heatmap/matrix was then used 

to construct Fig. 2c by averaging individual patient values within each patient and phenotype 

group combination. b, DaCP versus average plasmablast score difference between high (or 

middle if no high was available) and low DA time points in SLE patients from patient 

groups 2, 3 (in blue, n=19) or groups 2, 3, and 4 (group 4 in grey, n=12) from ref.13 

(see patient groups in Fig. 2c). Spearman rho for groups 2 and 3 is 0.87 (two-tailed 

p=2.2×10−16); and for groups 2, 3 and 4 is 0.85 (two-tailed p=4.9×10−7). c, Similar to 

Fig. 2e, but here patients are from patient groups 2 and 3 only (n=22) and are shaded based 

on their DaCP. Note that there are more patients here for analysis from groups 2 and 3 than 

those shown in (a) and (b) because there we required that every patient has at least one 

low DA and one high/mid DA sample, while here (and in Fig. 2) the DaCP was estimated 

using all patients with at least one sample including those without high/mid DA time-points 

(see Methods). Pearson correlation coefficient and two-tailed p values are shown. Spearman 

correlation coefficient is 0.47 (p=0.029 two-tailed). d, Evaluating the correlation between 

DaCP and mean TGSig score at low DA time-points (as in (c)) by removing patients with 

DaCP below the indicated cutoff (y-axis). The first panel shows the number of patients in the 

evaluation given the threshold; the second and third panels show the corresponding Pearson r 

and two-tailed p value (shown as −log10(p)).
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Extended Data Fig. 6. Evaluating the predictive capacity and information overlap among the 
TGSig, SLE-Sig, and IFN-I-DCact signatures.
a-d, The predictive profile of SLE-Sig (Fig. 3e) (a), TGSig (b), IFN-I-DCact (Fig. 3f) (c), 

and the non-leading edge genes from the brown module (Fig. 3e) (d) used as the sole 

predictor in logistic regression models of high versus low influenza vaccination responder 

status. Influenza vaccination data pooled from four datasets (Stanford 2008, NIH 2009, Yale 

2011, Yale 2012) were used (n = 71 high and low responders). Note that for the brown 

module (Fig. 3a–d), most of the predictive information come from the leading-edge genes 

since the signature score of genes outside of the leading edge is not predictive (shown in 

(d)). e, f when both TGSig and SLE-Sig were used as predictors in the logistic regression 

(e) or when both TGSig and IFN-I-DCact score were used as predictors (f). In these graphs, 

the predictor scores are shown on the x axis and the probability that a high responder falls 

within the predictor score bin is shown on the y axis. The error bars correspond to 95% CIs. 

The two-tailed p value indicates the probability that the coefficient (“effect”) of the term 

(e.g., TGSig score) in the logistic regression is 0.
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Extended Data Fig. 7. RNA-seq analysis of CD19+CD20+CD38++ B cells sorted from healthy 
individuals.
a, Sorting strategy and approach: CD19+CD20+ and CD20+CD38++ B cell populations 

were isolated by FACS from peripheral blood samples of six healthy donors. RNA-seq 

libraries were prepared for each isolated sample using the Nugen Ovation SoLo low-input 

RNAseq library preparation kit. b, Differential gene expression between the CD20+CD38+

+ B cells and parental CD19+CD20+ B cells from six paired samples was compared 

using DESeq2. Plot shows the log2 fold change versus the log2 of the mean normalized 

counts across all samples for each gene. TGSig genes are shown in red; genes from 

the differentially expressed gene set (BH-adjusted two-tailed p-value < 1%, log of mean 

normalized counts > 1; total genes in set: 105) that fall into the top enriched Gene 

Ontology Biological Processes category “Cell Activation” (enrichment analysis done using 
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ToppGene41) are shown in cyan (21 genes). c, Enrichment of the 87 SLE-Sig genes in genes 

ranked by differential expression between CD19+CD20+CD38++ versus CD19+CD20+ 

cells. The p value shown was computed from the GSEA test. d, Similar to (c) but instead 

of the SLE-Sig genes here the top k (k=10 (TGSig), 30, 50) genes correlated with the 

frequency of CD20+CD38++ B cells is assessed (only 713 temporally stable genes with 

TSM≥ 0.75 were included in the analysis); also see Extended Data Fig. 2. e, Similar to 

(d) but using 7731 genes with TSM ≥ 0.5. A lower/more relaxed TSM cutoff was used to 

evaluate whether by starting with more genes (therefore potentially more statistical power 

for enrichment analysis) an enrichment signal can be detected.

Extended Data Fig. 8. Supporting data for CITE-seq single cell analysis to dissect the cellular 
origin of baseline signatures.
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a, Single cell scatterplots of key markers in the CD4+ T cell clusters. C0.0.0 (Naïve), 

C1.0.0 (Central/Transitional Memory), and C1.1.0 (TEMRA/Effector memory) clusters 

show different distributions of CD62L, CD45RA, CD27, and CD28. b, Distributions of 

key markers in the CD8+ Memory T cell clusters. CD45RA vs. CD62L expression are 

shown in the top panels, ridge plots of CD45RO and CD28 are shown in lower panels. 

Similar to CD4+ cells, these CD8+ clusters show differences in CD62L and CD45RA 

distributions; C4.0.1 (TEMRA/Effector Memory) are mainly CD62L negative and CD28 

negative, with CD45RA+ (TEMRA) and CD45RO+ (Effector Memory) subsets within this 

cluster. C4.0.0 and C4.0.3 show highly similar protein expression, with C4.0.3 being defined 

by high CD103 expression (upper right panel). c, Unconventional T cells (C7 clusters) show 

variable CD161, CD8, and CD56 expression. C7.0.0 and C7.0.1 are both CD3+/CD161+, 

with C7.0.1 being CD8 positive while C7.0.0 is CD8 negative. C4.0.2 (NKT-like) are also 

CD3 positive, but express CD57/56 and are CD8/CD161 negative or low. The C4.0.2 cluster 

also showed distinctly low CD27 and high in CD45RA compared to the C7 clusters, making 

it more similar to the C4.0.1 TEMRA/Effector memory CD8+ subset, except expressing 

CD56/CD57; this could also be consistent with a Terminal Effector phenotype. d, Hand 

gating strategy for CD20+CD38++ B cells using CITE-seq data (number of cells in the gate 

shown in red). e, Boxplot comparing the hand gated frequency of CD20+CD38++ B cells 

between 10 high and 10 low responders; p value from Wilcoxon one-tailed test. Boxplots’ 

center line corresponds to the median value, lower and upper hinges correspond to the first 

and third quartiles (the 25th and 75th percentiles); lower and upper whiskers extend from the 

box to the smallest or largest value correspondingly, but no further than 1.5x inter-quantile 

range. f, Similar to Fig. 5b (10 high versus 10 low responders) but for an independently 

obtained Type I IFN signature gene set (Supplementary Table 6: IFN gene set; see Methods). 

One or two asterisks denote significance with p<0.05 or p<0.01, respectively (Wilcoxon 

one-tailed test because we are interested in assessing whether the high responders are higher 

than the low responders; see also Supplementary Table 7). g, Results of the “drop out” 

analysis using CITE-seq data. The goal was to assess which cell clusters (or combination of 

clusters) that were individually significant delineators of high versus low responders were 

essential for prediction using the baseline signatures in bulk (i.e., simulating transcriptional 

data from PBMCs). The “pseudo bulk” results (average across all single cells for every 

subject in 10 low and 10 high responders) of the three signatures tested are shown on the 

first row. For subsequent rows cells from the indicated cell cluster(s) were dropped before 

repeating the pseudo-bulk analysis as in row 1. P values obtained from one-tailed Wilcoxon 

test: *: p<0.05; **: p<0.01.
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Extended Data Fig. 9. Evaluating CMV correlates and pDC surface expression phenotypes 
strongly influenced by genetics from ref.35 in high versus low responders.
Since CMV status is not available for the cohorts we evaluated, we evaluated whether 

CMV correlates are significantly different between high and low responders in the NIH 

influenza vaccination cohort. a, Boxplots comparing the frequency of CD4+ TEMRA cells 

between 10 low and 10 high responders using CITE-seq (left panel) and between 9 low and 

8 high responders using flow cytometry (center panel) data. Wilcoxon two-tailed p values 

are shown. The third panel is a scatter plot of CITE-seq versus the flow cytometry cell 

frequencies (n=17). Pearson correlation and two-tailed p values are shown. b, Same as (a) 
but for CD8+ TEMRA cells. c, Boxplots comparing the relative surface protein expression 

of CD86 and HLA-DR in pDCs (cluster C9) between 10 low and 10 high responders using 

CITE-seq data. Wilcoxon two-tailed p values are shown. For all boxplots the center line 
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corresponds to the median value, lower and upper hinges correspond to the first and third 

quartiles (the 25th and 75th percentiles); lower and upper whiskers extend from the box to 

the smallest or largest value correspondingly, but no further than 1.5x inter-quantile range.

Extended Data Fig. 10. Relationship between sex and baseline signatures.
a, Box plots comparing the TGSig and SLE-Sig scores in females versus males; here 

only subjects with CITE-seq data are included to indicate that sex was not a driver of the 

differences between 10 high and 10 low responders emerged from CITE-seq data analysis 

(see Fig. 4). Wilcoxon two-tailed p values comparing 11 females and 9 males are shown. 

For all boxplots the center line corresponds to the median value, lower and upper hinges 

correspond to the first and third quartiles (the 25th and 75th percentiles); lower and upper 

whiskers extend from the box to the smallest or largest value correspondingly, but no further 
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than 1.5x inter-quantile range. b, Same as (a) but including all high and low responders from 

original NIH study12. (day 0: 12 females and 12 males; day −7: 13 females and 11 males; 

day 70: 11 females and 12 males) c, same as (b) but including middle responders (i.e., all 

subjects in the study: day 0: 27 females and 16 males; day −7: 30 females and 16 males; day 

70: 27 females and 17 males). d, Box plots comparing TGSig scores among low, middle, 

and high responders in males only (all subjects in the original NIH study12 used: day 0: 

6/4/6 for low/middle/high responders, respectively; day −7: 5/5/6; day 70: 6/5/6). e, same 

as (d) but in females only (day 0: 5/15/17 for low/middle/high responders, respectively; day 

−7: 5/17/8; day 70: 5/16/6). All p values shown for two-group comparison were from the 

Wilcoxon two-tailed test; one-tailed p values shown for three-group comparison were from 

the Jonckheere trend test (with an a priori alternative hypothesis that the high responders >= 

middle responders >= low responders).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Study questions and the derivation of a baseline, pre-vaccination signature predictive 
of response using an influenza fever vaccination cohort.
a, Overview of the study and research questions. b, Prediction performance for antibody 

response in the NIH influenza study12 using the frequency of several B cell subsets (y-axis) 

(see Methods and gating strategy outlined in Extended Data Fig. 1a). The left panel shows 

the AUC (area under receiver operator curve; x-axis) for predicting high and low responders 

(n = 23 with flow cytometry data) to the seasonal and pandemic H1N1 influenza vaccines 

in ref.12. The right panel shows the temporal stability metric (TSM) (x-axis); higher TSM 

indicates greater temporal stability over the three baseline time points (days −7 and 0 prior 

to vaccination and day 70 after vaccination) using 136 samples from 51 subjects. Population 

2 (red box) is the CD19+CD20+CD38++ B cell population. c, Flow chart showing the 

steps to derive the gene expression-based surrogate signature (TGSig). d, Top temporally 

stable genes correlated with the frequency of CD19+CD20+CD38++ B cell and the selected 

genes in TGSig (red box). 22 high and low responders (those with both gene expression 
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and flow cytometry data) are used to assess correlations and rank genes. Genes are ranked 

based on the average Spearman correlation divided by the standard deviation obtained from 

231 iterations (as a safeguard against noise we iterated over all sub-cohorts containing 20 

subjects by taking out 2 random subjects at a time [i.e., excluding 2 out of 22 subjects] 

to assess the correlation). See Extended Data Fig. 2a–d and Methods for further details 

about temporal stability, gene selection, and signature score calculation. e, Top: box plots 

comparing the TGSig score (y-axis) at day 0 (pre-vaccination) between low (n=11) and 

high (n=13) responders (x-axis) (Wilcoxon one-tailed p value shown); bottom: receiver 

operating curve (ROC) for assessing predictive capacity (area under the curve (AUC) and 

one-tailed permutation test p value shown). Boxplots’ center line corresponds to the median 

value, lower and upper hinges correspond to the first and third quartiles (the 25th and 75th 

percentiles); lower and upper whiskers extend from the box to the smallest or largest value 

correspondingly, but no further than 1.5x inter-quantile range. f, Similar to (e) but for the 

other two baseline time points: days −7 (10 low and 14 high responders) and day −70 (11 

low and 12 high responders).

Kotliarov et al. Page 45

Nat Med. Author manuscript; available in PMC 2021 August 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: Assessing TGSig in independent influenza vaccination, yellow fever vaccination, and 
SLE datasets.
a, Same as Fig. 1e in terms of statistical tests and plot types but here showing the predictive 

performance of TGSig (evaluated at baseline/pre-vaccination) in the indicated independent 

datasets: Stanford 2008 (purple boxes; 10 high vs. 8 low responders), Yale 2011 (turquoise 

boxes; 6 high vs. 7 low responders) and Yale 2012 (green boxes; 8 high vs. 7 low 

responders) with the corresponding ROC shown at the bottom. b, Similar to (a) but for 

yellow fever vaccination. This cohort (trial #1) included 6 high and 5 low responders; see 

Extended Data Fig. 4a for results on a second, smaller cohort (trial #2) with 10 subjects (4 

high and 3 low responders) from the same publication19). See also Extended Data Fig. 3 

for boxplots that include middle responders. c, SLE patient groups determined based on the 

blood gene expression signatures associated with disease activity/flares (see also Extended 

Kotliarov et al. Page 46

Nat Med. Author manuscript; available in PMC 2021 August 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Data Fig. 5a and Methods.) The color and size of the circle denote the average statistical 

significance (−log10 of BH-adjusted p-values from the CERNO test39) of the association 

across patients in the group. The patient group IDs (columns) are listed with the number of 

patients in each group in parentheses. The same phenotypic annotations from ref13 are used: 

ER = erthryopoiesis; IFN = IFN response/neutrophils; ML = myeloid linage/neutrophils; PB 

= plasmablasts; LL = Lymphoid lineage. The three groups with prominent PB signatures 

are boxed in red. d, Overview of the analysis approach. The dynamics of disease activity as 

measured by the SLEDAI score of an actual patient is shown. Individual visits are shown as 

dots (low DA (blue dots) = SLEDAI < 3, medium DA (grey dots) = SLEDAI: 3–7, high DA 

(red dots) = SLEDAI ≥ 8)). The TGSig score was computed from the low DA time points 

and the DaCP was computed from all time-points using a mixed-effect model accounting 

for treatment effects (see Methods); the correlation between TGSig (averaged across low DA 

time-points) and DaCP was then evaluated. e, Scatterplot showing the relationship between 

the DaCP (y-axis) and the mean TGSig score at low DA time points (x-axis) in (left panel) 

patient groups 2, 3, and 4 (34 subjects) and (right panel) subjects whose DA tended not 

to be associated with a plasmablast signature (patient groups 1, 5, 6, and 7; 27 subjects). 

Pearson correlation coefficient and two-tailed p values are shown, and for the left panel 

separately for patient groups 2 and 3 only (blue dots, n=22) or groups 2, 3, 4 (blue and grey 

dots; n=34). As a robustness check we also computed the Spearman correlation: rho=0.47 

(p=0.029 two-tailed test) for groups 2 and 3; rho=0.36 (p=0.038 two-tailed test) for groups 

2, 3 and 4; rho=−0.12 (p=0.56 two-tailed test) for the rest of the patient groups. f, Same as 

in (e) but the plasmablast (PB) signature score was computed from the low DA time-points 

instead of TGSig. Groups 2,3: Spearman rho=0.014 (p=0.95 two-tailed test); groups 2,3,4: 

rho=−0.006 (p=0.97 two-tailed test).
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Figure 3: A transcriptional correlate of plasmablast-associated disease activity in SLE is also 
associated with influenza vaccination responses and functionally related to TGSig.
a, Identification of 18 transcriptomic modules from genes whose expression was temporally 

stable across low DA time-points in SLE patients from patient groups 2, 3, and 4. The 

heatmap shows the eigengene of each module averaged across low-DA time-points of each 

patient. Rows and columns correspond to modules and SLE patients, respectively. The 

number of genes in each module is shown in Supplementary Fig. 1a. b, Scatterplot showing 

the relationship between the brown module score and the DaCP for patients in groups 2, 3, 

and 4 as above (n=34; Pearson correlation=0.31, p=0.04 based on a one-tailed permutation 

test (Supplementary Fig. 1b)). Spearman rho=0.29 (p=0.05 one-tailed permutation test) c, 
Top enriched blood transcriptome modules21 (BTMs) of the brown module (370 genes) 

based on the hypergeometric test with BH-adjusted p values (FDR) shown; the red line 
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corresponds to 1% FDR (no additional BTMs were identified at 5% FDR cutoff). Complete 

results of the enrichment analysis can be found in Supplementary Fig. 1c. d, Gene set 

enrichment analysis (GSEA) of the brown module genes (370 genes). 6563 genes were 

ranked by their magnitude of association with antibody responses based on a meta-analysis 

of four influenza vaccination datasets (the enrichment P value shown was computed from 

the GSEA test40). The tick marks denote the location of the genes in the brown module. 

e, (top) Enrichment analysis of blood transcriptome modules and the brown module in the 

temporally stable genes from the NIH influenza study as ranked by their correlation with 

the frequency of CD20+CD38++ B cells. A temporal stability score (see Methods) cutoff 

of 0.5 is used here to define 7889 stable genes; the enrichment results are robust to the 

threshold used. 5% and 1% FDR are indicated by the red dashed lines (BH-adjusted p values 

shown were computed from the GSEA test). (bottom) GSEA enrichment plot for the brown 

module. The top 87 genes in the brown module (based on the gene rank on the x axis) were 

identified by GSEA as the “leading edge genes” (i.e., the main driver of the enrichment 

signal) (we called this gene set SLE-Sig). The P value shown was computed from the GSEA 

test. The full list of leading-edge genes can be found in Supplementary Table 5. f, Genes in 

the brown module that are also in at least one of the three top Type I IFN /antiviral/dendritic 

cell activation BTMs from (e); black dots indicate that the gene is present in the indicated 

gene set.
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Figure 4: CITE-seq (simultaneous protein and transcriptome expression profiling in single cells) 
analysis of high and low influenza vaccine responders.
a, Experiment and analysis overview: single PBMCs from 10 high (red) and 10 low (blue) 

responders (as defined by adjMFC from ref.12) were profiled by CITE-seq (measuring 82 

cell surface proteins and transcriptome). Cells from all subjects were clustered together 

using only surface protein expression profile at three increasingly detailed clustering 

resolutions (referred herein as levels 1–3, denoting the lowest to the highest resolutions; 

see Methods). 10 cell clusters (C0-C9) were identified at level 1 and shown in different 

colors in the tSNE plot. b, Cell clusters from levels 1–3 are shown in three columns and 

depicted as circles (size is proportional to the number of cells in the cluster). The edges 

denote containment relationship between the clusters at neighboring resolutions: an edge 

connecting one cluster to another cluster indicates that some fraction (or all) of the cells 
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in the former are found in the latter. Annotations are provided for levels 1 (1st column) 

and 3 (3rd column) clusters. The clusters/circles are colored, matching those in the tSNE 

visualization. c, A heatmap showing the average expression of selected protein markers 

(columns) in each of the cell clusters (rows) derived from the three different clustering 

resolutions. The cell cluster names are color matched with those in (b). See Extended Data 

Fig. 8a–c and Supplementary Fig. 2 for additional details. d, Boxplot comparing the TGSig 

score between high (solid dot; n=10) and low (empty dot; n=10) responders using “pseudo 

bulk” data (average across all single cells within each subject; see Methods); p value from 

Wilcoxon one-tailed test. Boxplots’ center line corresponds to the median value, lower and 

upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles); lower 

and upper whiskers extend from the box to the smallest or largest value correspondingly, but 

no further than 1.5x inter-quantile range. e, Same as (d) but for SLE-Sig.
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Figure 5: Dissecting the cellular origin of baseline signatures.
a, Evaluating the difference in TGSig score between high (n=10) and low (n=10) responders 

in each cell cluster from Fig. 4b (see Methods). Left panel: boxplot comparing high (solid 

dot) and low (empty dot) responders in each of the level 1 (1st column) clusters; each 

dot corresponds to the signature score of a subject. Red asterisks denote significance with 

p<0.05 (Wilcoxon one-tailed test; see also Supplementary Table 7). Right panel uses the 

same visualization as in Fig. 4b but here the color reflects the average normalized difference 

in TGSig signature score between the high and low responders (shown here as a t statistic). 

One or two asterisks denote significance with p<0.05 or p<0.01, respectively (Wilcoxon 

one-tailed test because we are interested in assessing whether the high responders are higher 

than the low responders; see also Supplementary Table 7). For all boxplots the center line 
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corresponds to the median value, lower and upper hinges correspond to the first and third 

quartiles (the 25th and 75th percentiles); lower and upper whiskers extend from the box to 

the smallest or largest value correspondingly, but no further than 1.5x inter-quantile range. 

b, Same as (a) but for SLE-Sig. c, Similar to the boxplots in the left panel of (a) (10 high 

versus 10 low responders) but for the signature score of the LI.M165 BTM (top panel: 

enriched for dendritic cell activation) and the IFN-I-DCact (bottom panel; see Fig. 3f) gene 

sets evaluated for cells in the pDC cluster only (cluster C9). d, Enrichment analysis result 

of the CD40act gene set (Supplementary Table 6; 49 genes) using the hyper-geometric test 

against the BTMs from ref21. All 32,738 detected genes were used as a background. BTMs 

with an adjusted one-tailed p-value (FDR computed using the BH method) of 0.05 (red line) 

or lower are shown. e, Same as (a) but for CD40act. f, Scatterplot (based on ranks since 

Spearman correlation is being evaluated) assessing the correlation between the frequency 

of CD20+CD38++ B cells (see Fig. 1b) and the CD40 activation signature score in the 

switched B cell cluster (C3.1.0 – see Fig. 4b,c). Spearman correlation and two-tailed p value 

are shown (based on 9 high and 9 low responders because not all 20 subjects assessed by 

CITE-seq have corresponding flow cytometry data). Detailed test statistics for data shown in 

(a), (b), and (e) can be found in Supplementary Table 7.
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Figure 6: 
a, Matrix heatmap showing the pairwise Spearman correlation among the select signature 

scores across subjects. Example scatterplots similar to the one in Fig. 5f are shown for 

assessing the correlation between the original TGSig (computed using microarray data 

generated from PBMCs – see Figs. 1c–e) and the cell cluster based signature scores found 

to be significantly different between high (n=10) and low (n=10) responders. Spearman 

correlation and two-tailed p value are shown. The name of the cell cluster (see Fig. 4a,b) 

for which the indicated signature score was computed is in parentheses. Each example 

scatterplot corresponds to a highlighted (yellow) entry in the matrix on the right. The 

matrix is symmetrical: row and column profiles are identical. The size and shade of the 

circle indicate the correlation strength (Spearman rho) and asterisks denote significance 
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level (two-tailed test) as shown in legend below. Note that SLE-Sig (PBMC) was computed 

using the original bulk microarray data (the same as TGSig (PBMC)). b, Model describing 

the molecular/cellular underpinnings and differences between high versus low responders. 

Activation of this entire circuit (including the components in the plasmablast/plasma cell 

box on the right) typically follows infection, vaccination, or during autoimmune disease 

flares. Here we propose that the high responders tend to have more activated pDCs and thus 

more Type I IFNs and activated B and T cells at baseline, but only upon additional antigenic 

and/or inflammatory co-stimulation (and flare trigger in the case of SLE patients) does the 

system mount a full-blown plasmablast/plasma cell response cumulating in the generation 

of antibodies. Open questions include: 1) What sets the system into such temporally stable 

“activated” states in pDCs, lymphocytes, and other myeloid cells?; 2) What constrains the 

activated immune baselines from mounting full-blown plasmablast/plasma cell responses?; 

3) What is the antigen specificity repertoire of the activated lymphocytes at baseline?
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