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Abstract: Past-oriented rumination and future-oriented worry are two aspects of perseverative nega-
tive thinking related to the neuroticism endophenotype and associated with depression and anxiety.
Our present aim was to investigate the genomic background of these two aspects of perseverative
negative thinking within separate groups of individuals with suboptimal versus optimal folate intake.
We conducted a genome-wide association study in the UK Biobank database (n = 72,621) on the
“rumination” and “worry” items of the Eysenck Personality Inventory Neuroticism scale in these
separate groups. Optimal folate intake was related to lower worry, but unrelated to rumination.
In contrast, genetic associations for worry did not implicate specific biological processes, while
past-oriented rumination had a more specific genetic background, emphasizing its endophenotypic
nature. Furthermore, biological pathways leading to rumination appeared to differ according to
folate intake: purinergic signaling and circadian regulator gene ARNTL emerged in the whole sample,
blastocyst development, DNA replication, and C-C chemokines in the suboptimal folate group, and
prostaglandin response and K+ channel subunit gene KCNH3 in the optimal folate group. Our results
point to possible benefits of folate in anxiety disorders, and to the importance of simultaneously
taking into account genetic and environmental factors to determine personalized intervention in
polygenic and multifactorial disorders.
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1. Introduction

Neuroticism is a personality trait manifested as a tendency to experience negative,
distressing emotions and cognitions [1,2]. The association of neuroticism with depression
or anxiety symptoms has been demonstrated to be either fully or partially mediated by
rumination, worry, or both [2–5]. Rumination and worry represent two types of repetitive
thought or perseverative cognition. They are negatively valenced, attentive and frequent
thoughts about oneself and one’s world which dysfunctionally prolong mental representa-
tions of a stressor [6–8]. While rumination is considered a past-oriented form of repetitive
thought concerning themes of loss and worry is future-oriented negative thinking [7], they
share a common latent factor in their variance which predicts future depression and anxiety
levels in case of stress [9].

Neuroticism and rumination, in addition to their shared phenotypic variance that has
important mental health correlates, have been revealed to have a partially overlapping
genetic background, which explains a considerable portion of variance in internalizing—
but not in externalizing—symptoms [10].

Among genetic associations for rumination [11–13], genes of folate metabolism [14]
may warrant a special interest. They underpin several biological pathways, properties
of which can easily be influenced by diet or supplementation. Low folate levels may
be associated with a more severe and endogenous subtype of depression, with marked
affective and motivational symptoms and a poorer response to antidepressants [15]. Low
folate intake has indeed been associated with an increased risk of later depression [16].
Although results are contradictory [17], folate has been found to be an effective and safe
adjuvant antidepressant treatment for major depressive disorder [18,19], especially at a
dose of <5 mg/day (or 15 mg/day in case of methylfolate) and as an adjunct to selective
serotonin reuptake inhibitor therapy [20]. As a gene-by-environment interaction, folate
status may also moderate the effect of folate pathway genes on cognitive flexibility, such
that these genetic effects could be detected only in the case of a low erythrocyte folate
level [21].

Although a genome-wide association study (GWAS) was recently published on rumi-
nation and its two subtypes [11], the role of folate intake has never been investigated within
this framework. Our present aim was a GWAS on the two perseverative negative thinking
items of neuroticism scale, within separate groups of individuals with suboptimal versus
optimal folate intake, in the UK Biobank database (http://biobank.ctsu.ox.ac.uk/, accessed
on 27 November 2019). We expected distinct genetic associations in different folate intake
groups. We also aimed to test the explanatory value of top risk variants on neuroticism
score, rumination score and scores of the two subtypes of rumination in a separate database.
We expected shared genetic factors between the two perseverative negative thinking items
and the investigated comprehensive personality traits. Participants’ current depressive
symptoms and lifetime depression status were controlled for in all analyses, to uncover
the potential transdiagnostic relevance of the endophenotype of perseverative negative
thinking beyond its importance in depression.

2. Materials and Methods
2.1. Participants

Invitation and recruitment in the UK Biobank study were based on NHS patient
registers of people aged 40–69 years [22], with an ethical approval from the National
Research Ethics Service Committee North West–Haydock [23].

In the NewMood study, participants aged 18–60 years were recruited through ad-
vertisements, general practices and a website, with ethical approvals from the North
Manchester Local Research Ethics Committee, Manchester, United Kingdom, and the
Scientific and Research Ethics Committee of the Medical Research Council, Budapest,
Hungary [11].

All participants in both databases provided written informed consent. All procedures
were carried out in accordance with the Declaration of Helsinki.

http://biobank.ctsu.ox.ac.uk/
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Our study was based on UK Biobank Application Number 1602, which focused
on the Oxford WEbQ dietary questionnaire data, completed by a subset of UK Biobank
participants. In our present analyses, we included white British UK Biobank participants
who had passed genomic quality control (QC) and had non-missing values on all of the
variables of interest (both perseverative negative thinking items, folate intake, sex, age
and both depression measures, as detailed below). White British ancestry was defined
by a self-report and genetic ancestry in data-field 22006, and we decided to analyze
only this population because it is the one that constitutes the vast majority of the UK
Biobank database [24]. All of these restrictions yielded a total of 72,621 participants in our
analyses. Of these, 10,638 subjects belonged to the suboptimal folate intake group and
61,983 belonged to the optimal folate intake group.

Within our NewMood database, we restricted our present analyses to a set of 1746 sub-
jects that were very similar to those in our previous rumination GWAS paper [11], specifi-
cally, white Europeans from Manchester, United Kingdom and Budapest, Hungary, who
did not overlap UK Biobank participants, passed genomic QC and provided information
on sex, age, both depression phenotypes (detailed below), as well as on rumination and
neuroticism.

2.2. Phenotypes

In UK Biobank, the two phenotypes on perseverative negative thinking were two
items from the neuroticism scale of the Eysenck Personality Inventory, assessed at base-
line [22,23,25]: “Do you worry too long after an embarrassing experience?” (data field 2000;
rumination item, because of its orientation towards the past) and “Are you a worrier?”
(data field 1980; worry item, because its content is restricted to this trait). Both items are
used as dichotomous variables: their values can be either yes or no.

In UK Biobank, current depression level was determined by the sum of four item
scores [26] detailed in Supplementary File S1, each one measured at a four-point Likert
scale at the baseline time point. Lifetime depression status was assessed also at baseline,
by a verbal interview (data field 20002).

Folate intake in UK Biobank was estimated via food and beverage consumption
the day before, excluding any supplements (data field 100014). It was based on Oxford
WEbQ, a 24 h dietary recall questionnaire, which was validated against an interviewer-
administered 24 h dietary recall [27]. To control for seasonal variability of dietary intake,
more time points of assessment were used, with a maximum of five. 41.82% of participants
provided dietary data at only one time point, 20.28% had two, 18.29% had three, 14.45%
had four, and 5.15% had five instances of assessment. 59.78% of all participants provided
dietary data at the baseline time point, others only at online follow-up instance(s). Values
over multiple instances were averaged for each subject, and nutrient calculation has been
detailed elsewhere [28]. Cut-off point of a healthy level of folate intake was set to 200 µg per
day. This value was based on the recommendation of the British government, as detailed
in Supplementary File S1.

In our NewMood database, folate intake was not measured. However, we had
measures on comprehensive scales of personality traits. Neuroticism was measured by
the 44-item Big Five Inventory (BFI-44) [29]. Rumination and its two subtypes were
assessed by the 10-item Ruminative Response Scale (RRS) [30]. Five items belong to the
brooding subscale, which denotes a “moody pondering”, passive comparisons of the
person’s current situation with unachieved standards [30]. The other five items of RRS
belong to the reflection subscale, denoting a purposeful turning inward with the aim of
problem solving and alleviating depression [30].

In NewMood, current depression level was addressed by the sum of depression item
scores and additional item scores of Brief Symptom Inventory (BSI) [31]. Lifetime depres-
sion status was measured by a self-reported question within the background questionnaire
and was validated with diagnostic interview within a subsample [32].
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In order to handle item-level missingness properly for neuroticism, rumination, brood-
ing, reflection, and BSI depression in NewMood, and current depression score in UK
Biobank, the sums of item scores were divided by the number of responded items.

2.3. Genotyping, Imputation and Genomic Quality Control

In UK Biobank, we selected participants with a genetically defined white British
ancestry subset (data field 22006), without putative sex chromosome aneuploidy (data field
22019), and, as part of a further QC process, those involved in the maximal set of unrelated
individuals (data field 22020) [24].

In both UK Biobank release v3 and our NewMood database, genetic variants were re-
stricted to biallelic single-nucleotide polymorphisms (SNPs), analyzing directly genotyped
and imputed variants as well. QC steps are detailed in Supplementary File S1.

2.4. Analyses

Descriptive statistical analyses, as well as calculation of standardized residuals for
polygenic risk score (PRS) testing were performed with SPSS 25. LD Score regression [33]
was used to calculate the SNP heritability of rumination and worry; namely, the phenotypic
variance explained by the whole set of SNPs in each of the three groups of UK Biobank par-
ticipants (whole study sample, suboptimal folate intake group, optimal folate intake group).
In each group, the top ten principal components of the genome were calculated with the
approximative method [24,34] implemented in Plink2 (www.cog-genomics.org/plink/2.0/,
accessed on 26 March 2020) [35], after respective linkage disequilibrium (LD) pruning in
that group. Plink v1.9 (www.cog-genomics.org/plink/1.9/ (accessed on 26 June 2020)) [35]
was used to explore identity-by-descent parameter to detect potential overlap between UK
Biobank and NewMood participants.

For SNP-level analyses, logistic regression models were run in Plink v1.9, for each
of the rumination or worry items as outcome, in all three groups according to folate
intake. We applied the strictest method to correct for multiple testing: the Bonferroni
correction. The number of tests entailed a p ≤ 1.38 × 10−9 significance threshold (detailed
in Supplementary File S1).

To go further with these SNP-level results, FUMA v1.3.6 [36] was used. Within FUMA,
MAGMA v1.07 [37] was used for gene-based and gene set-based analyses, and for gene
property analysis that assessed tissue specificity. Gene-based testing assigned SNPs to
protein-coding genes based on position, with gene boundaries extended by 10,000 base
pairs, and entailed a p ≤ 4.36 × 10−7 as a significance threshold by the strictest Bon-
ferroni method. To further analyze the resulting gene p-values, gene set testing used
15,496 gene sets from MsigDB v7.0: 5500 C2 curated gene sets and 9996 C5 GO terms,
yielding a p ≤ 5.38 × 10−7 significance threshold, again by the strictest Bonferroni method.
To explore associations between gene p-values and tissue specificity of genes, expression
databases used for testing included the 30 general tissue types of GTEx v8 [38] and the
11 general developmental stages of BrainSpan’s developmental brain samples [39], entailing
a 2.03 × 10−4 p-value threshold with the strictest Bonferroni method.

In additional FUMA analyses, to overcome the limitations of using only position-
based assignment and protein-coding genes within MAGMA, top SNPs of SNP-level tests
were mapped to genes based not only on position, but also on functional annotations:
expression quantitative trait loci (eQTL) and 3D chromatin interaction. These mapped
genes were then further analyzed with hypergeometric tests if overrepresented in any
pre-defined gene set of the above detailed MsigDB gene set collections. As a built-in
function of FUMA “GENE2FUNC” analysis, a Benjamini–Hochberg false discovery rate
(FDR); p < 0.05 significance criterion was applied within each subcategory of gene sets.

Further details of FUMA analyses are provided in Supplementary File S1.
PRSice-2 [40] was used for PRS analyses. Explanatory value of PRS composed of each

of UK Biobank’s six SNP-level logistic regression analyses was tested for standardized
residuals of NewMood’s neuroticism, rumination, brooding and reflection scores. To

www.cog-genomics.org/plink/2.0/
www.cog-genomics.org/plink/1.9/
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control for false positive results due to multiple testing, the built-in permutation function
of PRSice-2 was used to run 10,000 permutations for each of these 24 models, and models
with a resulting empirical p ≤ 0.05 were considered significant.

PRS calculation, using the same procedure, was also applied to test the explanatory
value of top SNPs within the suboptimal folate intake group for the same perseverative
negative thinking item within optimal folate intake group, and vice versa.

A more detailed description on PRS calculation is provided in Supplementary File S1.
Figures on results were exported from FUMA or PRSice-2, and labels were added to

them in Microsoft Word and PowerPoint.

3. Results
3.1. Descriptive Statistics and Single-Nucleotide Polymorphism (SNP) Heritability

In the UK Biobank, folate intake was inversely related to worry, but unrelated to
rumination. The NewMood sample was younger, more depressed and more predominated
by females than the UK Biobank sample. Descriptive statistics and relationships between
phenotypes are further detailed in Supplementary Tables S1–S4 of Supplementary File S1.

Table 1 depicts proportions of phenotypic variance explained by the whole set of SNPs.

Table 1. Proportion of variance of “rumination” and “worry” items explained by all SNPs (SNP heritability) in the whole
study sample, in the suboptimal folate intake group, and in the optimal folate intake group.

“Do You Worry Too Long after an
Embarrassing Experience?” “Are You a Worrier?”

SNP h2 S.E. of SNP h2 SNP h2 S.E. of SNP h2

Whole sample 0.0286 0.0041 0.0339 0.0044
Suboptimal folate intake group 0.0433 0.0256 0.023 0.0246

Optimal folate intake group 0.0272 0.0046 0.0348 0.005

SNP: single-nucleotide polymorphism, h2: heritability, S.E.: standard error.

3.2. SNP-Based Results

Supplementary Figure S1 of Supplementary File S1 shows that no SNP survived
genome-level Bonferroni correction for multiple testing. QQ plots and lambda values for
each analysis are provided in Supplementary Figure S2 of Supplementary File S1.

3.3. MAGMA’s Gene-Based Results

Only two genes survived correction for the six tests: ARNTL, for rumination in the
whole sample (Figure 1a), and KCNH3, also for rumination, in the optimal folate intake
group (Figure 1b). Manhattan and QQ plots of gene-based p-values for the two items in the
three groups, are shown in Supplementary Figures S3 and S4 of Supplementary File S1.
Gene-based results are detailed fully in Sheet 1 of Supplementary Files S2–S7.

3.4. MAGMA’s Gene Set-Based Results

No gene set survived multiple testing correction. Sheet 2 of Supplementary Files S2–S7
detail full gene set-based results for the six analyses. Among folate-related pathways, only
the two gene sets related to transmembrane folate transport emerged in the top few ones,
and only for rumination in the whole sample. Specifically, these ranked at positions 24 and
34 (Sheet 2 of Supplementary File S2).

Homocysteine metabolism is closely linked to folate metabolism and it emerged in top
ten pathways—but only of rumination and only in the suboptimal folate group, as Table 2
points out, along with ranks of these top ten pathways in the other five groups.
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Figure 1. Manhattan plots of gene-based tests for “rumination” item in the whole study sample
(a) and in the optimal folate intake group (b). −log10 of p-value is displayed in function of genomic
position. Red line denotes significance threshold, corrected within only one analysis. In the whole
sample (a) ARNTL, and in the optimal folate intake group (b) KCNH3, MCRS1, ARNTL, PRPF40B,
FAM186B and TMBIM6 survived this less strict correction.

Table 2. Most significant ten gene sets by MAGMA analysis, for “rumination” in the suboptimal folate intake group, and
their ranks in the other five groups. GO_bp: biological processes, and GO_mf: molecular function subcategories of MsigDB
C5 gene set collections.

for “Rumination”, Suboptimal Folate Rank for “Rumination” Rank for “Worry”

Rank Gene Set Number of Genes p-Value Optimal Folate Whole Sample Suboptimal Folate Optimal Folate Whole Sample

1.
GO_mf:go_vascular_
endothelial_growth

_factor_binding
7 4.55 × 10−6 8786 3400 14,266 4007 4642

2. Curated_gene_sets:petrova_
prox1_targets_dn 56 4.17 × 10−5 9925 596 12,720 3257 8036

3. GO_bp:go_response_
to_nitric_oxide 19 4.91 × 10−5 209 137 1869 296 641

4. GO_bp:go_diaphragm
_development 9 1.64 × 10−4 12,105 7551 754 14,661 14,533

5. GO_mf:go_platelet_
derived_growth_factor_binding 11 5.28 × 10−4 412 100 3414 7910 1621

6.
GO_bp:go_

positive_ regulation_
of_centriole_replication

6 5.28 × 10−4 6508 1879 8768 10,420 5176

7.
Curated_gene_sets:bandres

_response_to_carmustin_without
_mgmt_48hr_dn

30 6.51 × 10−4 12,804 9844 483 14,015 14,062

8. Curated_gene_sets:zhan
_multiple_myeloma_subgroups 31 8.33 × 10−4 6439 7505 9613 75 1219

9. GO_bp:go_homocysteine
_metabolic_process 12 8.48 × 10−4 5316 745 7168 10,786 13,211

10. GO_bp:go_ductus_
arteriosus_closure 5 9.93 × 10−4 12,033 6912 6821 9481 14,774

3.5. MAGMA’s Tissue-Specific Upregulation of Genes Relevant in Rumination or Worry

Gene property analysis for tissue-specific upregulation uncovered no significant
results. However, at a nominally significant level, Figure 2 depicts results indicating that
genes that showed strong association with rumination in the suboptimal folate group
were highly expressed during late-mid and late prenatal brain development. Moreover,
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also at a nominally significant level, genes with strong association with worry in the
whole study sample were highly expressed in the pancreas (Supplementary Figure S6b of
Supplementary File S1). Results are fully detailed in Supplementary Figures S5 and S6.
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Figure 2. Brain developmental stage-specific expression of genes that are strongly associated with
“rumination” in the suboptimal folate intake group. −log10 p-value is displayed for each of the
11 general developmental stages of BrainSpan’s brain development samples. Dashed line denotes
significance threshold corrected for the 11 tissues only within this analysis. Results suggest that genes
that showed strong association with rumination in the suboptimal folate group are highly expressed
during late-mid and late prenatal brain development.

3.6. Genes Mapped Both by Position and Functional Annotations, and Their Enrichment in
MsigDB C2 and C5 Gene Sets

For each of the six analyses, Sheets 3 and 4 of Supplementary Files S2–S7 (and
Supplementary File S8) detail genes mapped to top SNPs, based on expression quanti-
tative trait loci (eQTL) and 3D chromatin interaction databases, respectively. These full
results are sorted according to tissue or cell type and gene names within each tissue or
cell type.

Enrichment tests of mapped genes revealed a possible significance of purinergic
signaling in rumination in the whole study sample (Supplementary Figure S7 of Supple-
mentary File S1), although the involved genes (P2RY1, P2RY12, P2RY13, P2RY14, GPR87
and GPR171) all reside in the q25.1–2 regions of chromosome 3 (https://genome.ucsc.edu/
(accessed on 14 May 2020)). Similarly, for rumination in the suboptimal folate group, di-
verse immune system gene sets, ERK cascade, regulation of DNA replication, and blastocyst
development might be implicated (Supplementary Figure S8 of Supplementary File S1),
but most of these genes (CCL2, CCL7, CCL11, CCL8, CCL13, CCL1, MMP28, ZNF830, LIG3,
SLFN11, NLE1, HNF1B, RFFL) are located in the same region of chromosome 17q12. For ru-
mination in the optimal folate group, some general pathways emerged, such as responses

https://genome.ucsc.edu/
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to fatty acids and prostaglandin (Supplementary Figure S9 of Supplementary File S1)
involving PTGDR, PTGER4, GNG2, APOB and CREB1, among others.

For worry, significantly enriched gene sets are detailed in Supplementary Figures
S10–S12 of Supplementary File S1. The majority of these very few hits were related to
cancer diseases.

3.7. Explanatory Value of UK Biobank’s Risk SNPs in NewMood’s Phenotypes

Polygenic risk scores (PRS) that had been calculated based on UK Biobank’s risk SNPs
for rumination and worry items in the three (whole sample, suboptimal and optimal folate
intake) groups, were tested for neuroticism, rumination, brooding and reflection scores
of the NewMood sample. Sheets 5–8 of Supplementary Files S2–S7 show that from these
24 analyses, only one result survived permutation: the most significant (with a p-value
inclusion threshold of 5.01 × 10−5) variants (n = 23) that denoted a risk for rumination item
in the optimal folate group significantly explained 0.56% of variance in the rumination
scale (Supplementary Figure S13).

3.8. Potential Overlap in Risk SNPs of “Rumination” or “Worry” between Suboptimal and
Optimal Folate Intake Groups

PRS based on the suboptimal folate intake group explained 0.054% of rumination and
0.051% of worry within the optimal folate intake group. In contrast, PRS based on the
optimal folate intake group explained 0.3% of rumination and 0.35% of worry within the
suboptimal folate intake group (Sheet 9 of Supplementary Files S4–S7). All these results
are significant at a permuted p = 1 × 10−4 level.

4. Discussion

Perseverative negative thinking is a complex cognitive process leading to several
somatic and mental disorders. Our study demonstrated that the past-focused rumination
component of perseverative negative thinking has a more specific genetic background
compared to general worry, which seems more heterogeneous. Namely, our data, in line
with previous findings, suggested that the ARNTL gene and purinergic genetic pathway
contributed to rumination in the whole sample. However, when we focused on the sub-
group of suboptimal folate intake, well-known folate-dependent pathways emerged in the
background of rumination, such as regulation of DNA replication, blastocyst development,
homocysteine metabolism, and diverse immune responses including chemotaxis, ERK
cascade, interferon-, interleukin 1- and tumor necrosis factor-response. Furthermore, genes
that were strongly associated to rumination in the suboptimal folate intake subgroup are
involved in brain development during late-mid and late prenatal period, emphasizing the
role of these genes not only in brain development but in adult cognitive processes. Poly-
genic genetic compositions of rumination within different folate intake groups explained
much less variance from each other than the total set of SNPs from rumination within
each group. These observations suggested that lack of adequate folate intake can divert
biological processes in the background of rumination.

4.1. Time Perspective and Event-Specificity of Perseverative Negative Thinking

In our study, significant and plausible results emerged only for rumination, i.e., no
such results were found for worry. Nagel et al. [23] conducted analyses on the same
neuroticism items within the same UK Biobank database as our present work, and with a
considerable overlap in analysis methods. Results for rumination seemed more consistent
across the two studies of different sample sizes and different covariates than results for
worry (discussed in detail in Supplementary File S1).

Content of the two items (“Do you worry too long after an embarrassing experience?”
and “Are you a worrier?”) differ from each other only in that the former has a focus on
specifically defined past events, while the latter has no specific time or event focus. The
“Are you a worrier?” item could itself possibly be further decomposed into distinct elements
with divergent underlying cognitive processes, thus somewhat impeding the delineation of
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a compact, well-defined genetic background. The rumination item, in contrast, represents a
well-defined target and mode of perseverative negative thinking, and may involve specific
deficits of cognitive control and memory—namely, difficulties in discarding no longer
relevant negative information from working memory [13,41]. Because of these specific
cognitive underpinnings, in addition to more robust results across studies, it may be a
better endophenotype [42] than the more general and wide concept of worry.

A further difficulty in the detection of replicable genetic underpinnings of worry may
be that worry or its distinct components might be more dependent on interactions between
different genetic variants with each other or with external factors.

Nevertheless, folate intake itself was inversely associated only with the more general
item of worry, but not with the more specific form of perseverative negative thinking,
rumination. Previous studies have yielded contradictory results on the associations be-
tween folate levels and anxiety disorders. While an early study found decreased serum
folate level in adult patients with obsessive-compulsive disorder (OCD) compared to con-
trols [43], no later studies could replicate this finding in pediatric OCD [44], in generalized
anxiety disorder (GAD) [45], or in higher anxiety score within a cohort study [46]. On the
other hand, the same studies found higher homocysteine levels in patient groups of adult
OCD [43], pediatric OCD [44], and GAD [45]—but again, no association with anxiety level
within a cohort study [46]. Similar to results on folate levels in patient groups, results have
also been contradictory on the beneficial effects of adjuvant folates in treatment. While a
retrospective study suggested the benefits of l-methylfolate calcium in multimorbid pedi-
atric patients [47], a double-blind controlled study found no differences between placebo
group and folic acid group in OCD patients treated with fluoxetine [48]. Further studies are
needed to clarify the associations between folate and the emergence (as well as treatment)
of different kinds of anxiety disorders, and our results within a large population study may
fuel these investigations.

4.2. Genetic Determinants of Past-Focused Perseverative Negative Thinking

Nagel et al.’s [23] rumination results were in line with our whole study sample’s results.
In our study, despite the lack of association between folate intake and rumination, nominal
significance of gene sets related to transmembrane folate transport for rumination in the
whole sample suggested the importance of folate metabolism in this form of perseverative
negative thinking. Moreover, we could reveal different biological mechanisms in the
background of rumination in different groups stratified according to folate intake. Herein,
we proposed a summary model to depict the complexity of the pathomechanisms behind
rumination, detailing its currently identified aspects and integrating our results with the
results of former studies (Figure 3). Nevertheless, future studies are also needed to uncover
causal directions in these gene-by-diet interactions in the background of rumination.

We postulated that there may be some general, umbrella-like, multifaceted biological
mechanisms in the background of rumination, which affect several distinct, narrower
processes and pathways. As such, ARNTL (or BMAL1) gene emerged for rumination in
the whole sample. This gene is a key positive regulator of the circadian clock, showing
a circadian oscillation in transcription and translation, and this rhythm then regulates
the expression of more than 10% of the transcriptome [49]. ARNTL is a shared gene
between rumination and several neuropsychiatric disorders [49–53] and obesity [54], sug-
gesting this past-focused form of perseverative negative thinking as a potential transdiag-
nostic endophenotype. Another umbrella-like mechanism behind rumination, detected
only in the whole sample, may be the importance of purinergic signaling. Genes of
P2Y purinergic receptors, implicated in our results and in animal studies of persevera-
tive cognition [55,56], may exert their effects on rumination through divergent biological
pathways [11,12,32,57–61]. Purinergic effects on each of these narrower pathways are hy-
pothesized to point to the same direction regarding the generation of rumination. These
effects add up and convey a significance to the general, umbrella-like mechanism. However,
external factors such as folate intake may modulate each of these distinct, narrow pathways
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in a different magnitude or manner [62–64]. Consequently, in determining the level of
rumination in cases of different folate statuses, some of these pathways will become less
important, while others will become more so.
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4.3. Genetic Determinants of Past-Focused Perseverative Negative Thinking in Case of Suboptimal
Folate Intake

In the suboptimal folate intake group, the genetics of rumination may be best deter-
mined by the specific pathways and processes most sensitive to folate deficiency. Indeed,
DNA synthesis and repair [65], early prenatal development [66], prenatal brain develop-
ment [67] and levels of C-C chemokines [68] and homocysteine [69] have been demon-
strated to be influenced by folate levels, even in interaction with genetics [63,70,71], and
have shown associations with neuropsychiatric phenotypes [63,72,73], as well. Adverse
effects of genetic, intrauterine or immunometabolic factors on these phenotypes may be
compensated by sufficient folate intake, although our results suggested that developmental
timing is crucial in folate’s compensatory impact in case of these biological pathways and
rumination, as adult folate intake has not showed association with rumination. In line
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with our results, cohort studies suggested an association between conception during a
severe famine and increased prevalence of neurodevelopmental disorders, such as neural
tube defects, as well as schizophrenia and schizoid personality [74]. Somewhat contrary to
our results, independent additive effects of genetics and prenatal nutrition, not gene-by-
nutrition interaction, on childhood processing speed have been suggested by a randomized,
placebo-controlled, double-blind study [75].

Concurrent folate intake was not associated with an event-specific past-focused form
of adults’ perseverative negative thinking in our study, perhaps because the effect of folate
intake on rumination is not linear and may depend on some genetic vulnerabilities or
other factors. It is important to highlight however, that folate has been suggested to impact
the nervous system at all ages [15]. Higher plasma folate level has been associated with
better global cognitive functioning and faster psychomotor speed as well as a reduced
risk of severe white matter lesions in non-demented elderly participants [76]. Although
a study did not find any associations between folate status and cognitive dysfunction
or brain atrophy in Alzheimer’s patients or controls [77], a randomized, double-blind
study revealed that treatment with B vitamins slowed brain atrophy [78]. Hemodynamic
activity in the brain can indeed serve as an intermediate phenotype between B vitamins
and cognitive functioning [79].

4.4. Genetic Determinants of Past-Focused Perseverative Negative Thinking in Case of Optimal
Folate Intake

In cases of optimal folate intake, genetic vulnerabilities within numerous specific
pathways may be compensated, and only narrow specific processes emerge in genetics.
Hippocampal neuronal excitability [80] may be such a mechanism, which was reflected
in voltage-gated K+ channel alpha subunit gene KCNH3 (BEC1 or ELK2) within our re-
sults, in line with our former rumination GWAS result KCTD12 [11]. KCTD12 acts on
the same pathway between GABAB receptor and Kir3 K+ channel as G-protein subunit
γ2 [81], implicated in our mapped genes. Former results were contradictory regarding
folate dependence of prostaglandin D2 and E2 pathways [82–84] and of apolipoprotein B
effects [85,86]; however, these pathways also emerged in our results in the optimal folate
intake group.

Polygenic scores of rumination significantly explained some variance of the whole,
validated rumination scale, but only if based on top risk variants within the optimal folate
intake group. Although we have no information on folate intake or folate status in the
target sample with the whole rumination scale, this result underlined the importance of
differentiating between folate intake levels when considering genetics. Indeed, genetic
background of rumination (and worry) in case of suboptimal folate intake explained less of
rumination in the optimal folate intake subgroup than vice versa. This discrepancy may
suggest that a high amount of genetic vulnerabilities may be compensated by an optimal
folate intake. However, even the explained variance in the direction from optimal to
suboptimal folate intake was around one tenth of SNP heritability, suggesting considerably
different genetic underpinnings depending on folate intake level.

4.5. Limitations

Our study had some limitations. First of all, folate intake was assessed only once
in 41.82%, and only as follow-up in 40.22% of all participants, with a 24 h dietary recall
questionnaire with multiple pass method. However, the aim was to determine habitual di-
etary pattern, and validation studies suggest that this method is suitable to cost-effectively
establish this information in large cohorts [87]. Second, a precise relative timing of dietary
habits and perseverative cognition would be needed, serum and/or erythrocyte folate
levels should be assessed, and further intervention studies should be implemented in order
to validate the proposed mechanism of folate intake effects. Third, the lower sample size in
the suboptimal folate intake group resulted in lower statistical power to determine genetic
factors of rumination. However, the genetic pathways identified had well-known biological
connections to folate metabolism, supporting their validity. Fourth, to validate our PRS
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results, a target sample with reliably measured folate intake and/or folate status will be re-
quired. Fifth, enrichment tests of mapped genes did not correct for LD between close genes.
Therefore, our results with this methodology, though plausible, need future replication.

5. Conclusions

Our results point to a more specific genetic background of past-focused perseverative
negative thinking, in contrast to the more general “Are you a worrier?” item. Importance of
the specificity of past-focus was also underlined by the shared genetics between this past-
focused perseverative negative thinking item and the widely used RRS rumination scale
across two different populations. Rumination can thus be regarded as a good candidate for
a transdiagnostic endophenotype. Furthermore, rumination as a potential endophenotype
could differentiate between different risk biological pathways in different folate intake
groups. This is especially interesting because rumination did not show any association
with folate intake itself, in contrast to the negative association between worry and folate
intake. These results point to the importance of simultaneously taking into account genetic
and environmental factors to determine personalized intervention in polygenic and multi-
factorial disorders. Inconsistent benefits of folate supplementation in depression [17–20],
and a potential benefit of folate in anxiety disorders could also be reframed in light of
our results.
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