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Abstract

Several algorithms have been developed that use amino acid sequences to predict whether or not a protein or a region of a
protein is disordered. These algorithms make accurate predictions for disordered regions that are 30 amino acids or longer,
but it is unclear whether the predictions can be directly related to the backbone dynamics of individual amino acid residues.
The nuclear Overhauser effect between the amide nitrogen and hydrogen (NHNOE) provides an unambiguous measure of
backbone dynamics at single residue resolution and is an excellent tool for characterizing the dynamic behavior of
disordered proteins. In this report, we show that the NHNOE values for several members of a family of disordered proteins
are highly correlated with the output from three popular algorithms used to predict disordered regions from amino acid
sequence. This is the first test between an experimental measure of residue specific backbone dynamics and disorder
predictions. The results suggest that some disorder predictors can accurately estimate the backbone dynamics of individual
amino acids in a long disordered region.
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Introduction

Intrinsically disordered proteins (IDPs) are widespread in

eukaryotes and overrepresented in a number of human diseases,

including cancer and neurodegenerative diseases [1,2,3,4,5,6,7,8,

9,10,11,12,13,14,15]. While the development of robust general-

izations to describe the structure and function of IDPs is ongoing,

a number of algorithms have been developed to identify IDPs and

distinguish them from ordered proteins. This is achieved using the

compositional differences in the amino acid sequences observed

between ordered and disordered proteins [16,17,18,19]. These

algorithms can identify disordered regions that are 30 amino acids

or longer with 75–80% accuracy, but it is unclear whether they

provide any information about backbone dynamics at the level of

single amino acid residues.

Three popular disorder predictors, VL-XT (www.pondr.com),

IUPred (iupred.enzim.hu), and VSL2B (ist.temple.edu) were

selected to investigate whether there is a relationship between

disorder probability and backbone dynamics. These algorithms

were tested because they predict disorder using different principles.

The VL-XT predictor integrates three feed forward neural

network predictors (NNP). One NNP was trained using 8 long

disordered regions identified from missing electron density in x-ray

crystallographic studies, and 7 long disordered regions character-

ized by nuclear magnetic resonance (NMR) spectroscopy [19].

The other two NNPs were also trained using missing electron

density from x-ray crystallographic data [20]. For these NNPs, N-

and C-terminal disordered regions of 5 or more amino acids were

used in the training set. The abbreviation, VL-XT, stands for the

use of Various methods to characterize Long disordered regions

combined with Terminal disordered regions that were character-

ized using X-ray crystallography. When making predictions, VL-

XT gives an output between 0 and 1 that is smoothed over a

sliding window of 9 amino acids. If a residue value exceeds or

matches a threshold of 0.5 the residue is considered disordered.

IUPred is an abbreviation for Intrinsically Unstructured protein

Predictor. This algorithm distinguishes ordered regions from

disordered regions by estimating pairwise interaction energies.

This interaction energy is determined using amino acid compo-

sition, the local sequence environment, and potential intramolec-

ular interaction partners. When predicting long disordered

regions, IUPred calculates interaction energies over a 100 residue

sequential neighborhood. IUPred also provides an output that

varies between 0 and 1 with a threshold for the transition between

order and disorder of 0.5 [21,22]. VSL2B was also considered, it is

a disorder prediction algorithm developed by the same group that

developed VL-XT [23,24]. VSL2B stands for Various Short Long

predictor and is the second version of VSL, and B denotes that it

does not include the PSI-BLAST feature set. VSL2B was

developed using a larger database of experimentally characterized

IDPs than VL-XT, it incorporates 26 sequence-based features,

including secondary structure prediction. VSL2B is more accurate

than VL-XT at predicting short disordered regions; it accom-

plishes this by having a two tiered prediction method with separate

prediction mechanisms for long or short disordered regions that

are then combined by a Meta predictor [25,26]. VSL2B also

provides an output scale from 0 to 1 with 1 being most disordered
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with a disorder threshold of 0.5. All of these predictors do a good

job making a gross distinction between the ordered and disordered

regions in proteins, but it remains unclear if the variation observed

in the prediction values has any relationship to the backbone

dynamics of individual amino acids.

NMR spectroscopy is the best available tool for investigating the

molecular motions of IDPs [27,28,29,30]. In particular, the

NHNOE provides an unambiguous measure of protein backbone

motion at single residue resolution. The value of the NHNOE is

proportional to the local correlation time for rotational motion. As

expected, local rotational correlation times for IDPs are typically

shorter than those observed for ordered proteins with a similar

molecular weight and can range from 100 ps to 1 ns. IDPs also

have more variation in their local correlation times than ordered

proteins and this variation reflects the formation of transient

secondary structure and, in some cases, transient long-range

contacts.

The transactivation domain of the tumor suppressor p53

(p53TAD), is being used as a model for investigating the structure

and dynamics of disordered proteins. There is a wealth of

functional data for this domain and several NMR studies have

shown it is intrinsically disordered with some minimal preferences

for transient secondary structure and transient long-range contacts

[31,32,33,34,35,36,37,38]. p53TAD regulates the transcriptional

activity and cellular stability of p53. This domain contains binding

sites for the ubiquitin ligase, MDM2, the 70 kDa subunit of

replication protein A, RPA70, and numerous kinases and

phosphatases. When bound to MDM2, p53 becomes ubiquiti-

nated and targeted for proteasome-mediated degradation. When

bound to RPA70, p53 may be stabilized and available to amplify

the cellular response to DNA damage. The transient secondary

structure observed in free p53TAD is stabilized when bound to

either protein [36,39,40].

Figure 1 shows protein sequence alignments for p53TAD from

seven mammals. Sequence identity for these homologues ranges

from 91% between human and macaque to 42% between dog

and mouse. Previous work on ordered proteins has shown that

amino acid sequence identity of greater than 40% leads to nearly

identical protein folds that often have identical functions

[41,42,43,44,45]. We are currently investigating whether there

is a similar relationship between sequence and structure for the

p53TAD homologues shown in Figure 1. As part of this

investigation, NHNOE data was collected for human, dog,

mouse, cow, guinea pig, and rabbit p53TAD and compared with

disorder probabilities from VL-XT, IUPred, and VSL2B.

Significant correlations were observed between the NHNOE

and disorder probabilities, indicating that all three are accurate

predictors of backbone dynamics at the level of single amino acid

residues.

Results and Discussion

Correlating backbone dynamics and disorder
probabilities of p53TAD homologues

Backbone resonance assignments and NHNOE values were

obtained for the non-proline residues from human, dog, mouse,

cow, guinea pig, and rabbit p53TAD (See materials and methods).

The measured NHNOE values for each homologue were

converted to NHNOE* values by taking the antilog and dividing

this number by the maximum resulting value. This produces a

number that varies between 0 and 1, with 0 corresponding to the

most flexible residues and 1 corresponding to the least flexible.

This number can be plotted on the same scale as the disorder

probability plots, allowing a test of their residue specific accuracy.

Figure 2 shows plots of the NHNOE* values and the disorder

probabilities calculated by VL-XT, IUPred, and VSL2B for

residues 1–70 of human, 1–70 of dog, 1–68 of the aligning mouse

residues, 1–67 of cow, 1–70 of guinea pig, and 1–70 of rabbit

p53TAD. These residue ranges were chosen for non-human

homologues because the human construct does not include a

polyproline domain that separates the transactivation domain

from the sequence specific DNA binding domain of p53. The plots

for all three homologues clearly show a negative correlation

between the NHNOE* values and the disorder probabilities.

Strong correlations are observed near the termini. Many IDPs

exhibit a general polymer effect where terminal residues are more

flexible than interior residues. This is indicated by small NHNOE*

values at the termini. VL-XT is expected to perform well at the

termini because part of the training set was terminal residues. This

can explain the correlation at the N-termini but not the C-termini,

because the VL-XT predictions were based on the sequences of

the full-length p53 proteins. To test whether there was an effect on

the predictions at the C-terminus, the VL-XT predictions were

repeated using just the p53TAD sequences. This did not result in

significant differences in the disorder probabilities at either

terminus. The IUPred predictions were made using the setting

for long disordered regions, which does not correct for terminal

residues. However, differences in the IUPred predictions were

observed at the termini when sequences of p53TAD or full-length

p53 were used. These differences are due to the fact that IUPred

calculates interaction energies over a 100 residue sequential

neighborhood. The best correlations were observed between the

NHNOE* values and the IUPred predictions using only the

p53TAD sequences. A previous study comparing the ensemble

structure of human p53TAD to the same domain in the full-length

protein showed there is no interaction between p53TAD and the

rest of p53, so it is reasonable to use the IUPred predictions for

p53TAD [37]. Like VL-XT, the VSL2B training set included N-

and C-terminal residues. Using VSL2B there are no significant

differences at the C-termini in the disorder probabilities between

Figure 1. Protein sequence alignment of the p53 transactivation domain from seven mammals. The protein sequences correspond to
residues 1–74 of human p53. Percent identity ranges from 91% (between human and macaque) to 42% (between dog and mouse).
doi:10.1371/journal.pone.0029207.g001
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the full length and p53TAD sequences. The PSI-BLAST feature

set was excluded since it incorporates sequence homology, and this

dataset compares homologues already.

Visual inspection of the plots in Figure 2 show a strong negative

correlation between the residue specific backbone dynamics and

the disorder probabilities of residues 15–30 for all three predictors

and all six homologues. Residues 15–30 form the MDM2 binding

region of p53. This region forms transient helical structure in the

absence of MDM2 that is stabilized upon binding [34,36,40].

Formation of transient helical structure in IDPs increases the local

rotational correlation time, corresponding to a reduction in overall

molecular motion and a higher NHNOE*. The NHNOE* values

for the six homologues show a peak in this region, which is

consistent with the previous observations of transient helical

structure for human p53TAD. Transient helical structure is also

observed for residues 15–30 of the non-human p53TAD

homologues (data not shown). All three predictors are sensitive

to this behavior and show a dip (to some extent) in the MDM2

binding region. This behavior was expected for VL-XT. It was

previously shown that this predictor is able to discriminate regions

of IDPs that become ordered upon binding to a protein partner

[46,47]. The data presented in Figure 2 suggest that VL-XT,

IUPred, and VSL2B are sensitive to regions of reduced flexibility

in IDPs. These regions often correlate with protein binding regions

and contain local elements of transient secondary structure.

Although there is known transient secondary structure in these

regions, VSL2B shows the smallest dips in the binding sites, which

is surprising given its programming takes secondary structure

prediction into account. However, the dips for VSL2B more

accurately align with the NHNOE* peaks, whereas IUPred and

VLXT are shifted toward the C-termini. Reasonable negative

correlations between experiment and prediction were also

observed for the RPA70 binding region, which encompasses

residues 40–60 of human p53TAD. This region is not as conserved

as the MDM2 binding region (see Figure 1) and is more dynamic.

However, there are still small peaks for the NHNOE* values and

small dips for all of the disorder probabilities in this region, with

the exception of the VL-XT probabilities for mouse p53TAD.

Regression Analysis
Linear regression was performed on the NHNOE* and disorder

probabilities to assess the statistical significance of the correlations

shown in Figure 2. Correlation coefficients and two-tailed p-values

for the linear regression are shown in Table 1. All the p-values are

less than 0.002 and in most cases are less than 0.0001, indicating

the correlations are significant. While these three predictors were

specifically designed to identify long disordered regions they can

also accurately estimate the backbone dynamics of individual

amino acids in these long disordered regions.

Figure 3 shows the correlation plot between NHNOE* and the

disorder probabilities with the strongest correlation for each of the

six homologues, respectively. There is no single predictor with the

strongest correlation for a majority of the homologues; in fact the

predictors split the homologues evenly, with each having the

strongest correlation for two of the six homologues. Interestingly,

the homologues appear to be apportioned according to their

molecular flexibility. Based on the raw NHNOE data the overall

molecular flexibility of the six homologues ranks in increasing

disorder as follows: Guinea Pig,Rabbit,Mouse,Human,

Cow,Dog. VLXT probabilities have the highest correlation with

the two most dynamic homologues, dog and cow. VSL2B

probabilities have the highest correlation with the two least

dynamic homologues rabbit and guinea pig. IUPred probabilities

have the highest correlation with the two homologues displaying

Figure 2. NHNOE* and Disorder probabilities smoothed over a 5 residue window. (a) Human, (b) Dog, (c) Mouse, (d) Cow, (e) Guinea Pig,
and (f) Rabbit p53TAD.
doi:10.1371/journal.pone.0029207.g002
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intermediate dynamics, human and mouse. While this result is

interesting, the dataset is too small to assign any statistical

significance to this partitioning.

Accuracy of residue specific correlations between
backbone dynamics and disorder probability

Figure 4 shows the relative percentages for amino acid residues

with VL-XT, IUPred, or VSL2B values that were $1s from the

mean value estimated using the linear regression equations.

Relative percentages were determined by identifying the number

of times a particular residue type had a VL-XT, VSL2B or IUPred

value that was $1s from the mean. This number was then divided

by the total number of a given residue type in the six sequences

and converted to a percentage. All disorder probabilities from

each of the three predictors were within 2s of the linear regression

means, which is a common cutoff used to identify outliers. A cutoff

of 1s was chosen for the current analysis because values of

disorder predictors that are $1s from the mean are structurally

significant. For instance, W53 in human p53TAD has a VL-XT

disorder probability of 0.94, which is $1s but #2s from the

mean, this disorder probability corresponds to an NHNOE* value

of 0.27, compared with the measured NHNOE* value of 0.66.

The difference in the predicted and measured NHNOE* values

for W53 is structurally significant and corresponds to the

difference between an amino acid residue that is completely

disordered versus one that has some transient secondary structure.

In Figure 4, relative percentages are zero for P because the

NHNOE cannot be measured due to its lack of an amide

hydrogen. Relative percentages are also zero for all K residues, but

in this case all three predictors were within 1s of the mean for

these residues. The predictors make an average of 22.0%63.98%

errors, with disorder probabilities $1s from the mean, excluding

residues that do not occur at least once per homologue. Only the

A, E, L, and V residues are above this range for all three

predictors. This indicates that VL-XT, VSL2B, and IUPred are

inaccurately predicting the dynamic behavior for these residue

types. Probability values $1s for A and E residues occur most

Table 1. Linear Regression of NHNOE* Versus Disorder
Probability.

Species Predictor Sample Size r
Two-tailed p-
values

Human IUPred 58 0.55 0.000008

Human VL-XT 58 0.54 0.000012

Human VSL2B 58 0.42 0.00103

Dog IUPred 60 0.44 0.000435

Dog VL-XT 60 0.65 ,0.000001

Dog VSL2B 60 0.49 0.000071

Mouse IUPred 60 0.65 ,0.000001

Mouse VL-XT 60 0.58 0.000001

Mouse VSL2B 60 0.51 0.000031

Cow IUPred 59 0.59 0.000001

Cow VL-XT 59 0.66 ,0.000000

Cow VSL2B 59 0.62 ,0.000000

Guinea Pig IUPred 61 0.58 0.000001

Guinea Pig VL-XT 61 0.53 0.000014

Guinea Pig VSL2B 61 0.71 ,0.000000

Rabbit IUPred 62 0.43 0.000524

Rabbit VL-XT 62 0.43 0.000515

Rabbit VSL2B 62 0.48 0.000065

doi:10.1371/journal.pone.0029207.t001

Figure 3. Correlation Plots of the Best fitting plots for Human IUPred. (a), Dog VL-XT (b), Mouse IUPred (c), Cow VL-XT (d), Guinea Pig VSL2b
(e), and Rabbit VSL2b (f).
doi:10.1371/journal.pone.0029207.g003
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frequently above the regression line, which indicates that all three

algorithms predict these residue types to be less ordered than they

actually are. For A residues there are 17 predictions that are

greater than the mean and 6 that are less, while for E residues

there are 29 predictions that are greater than the mean and 21

that are less. Conversely L and V probabilities $1s from the

mean are most often below the regression line, which indicates

that all three algorithms predict these residue types to be more

ordered than they actually are. For L residues there are 47

predictions that are less than the mean and 15 that are greater,

while for V residues there are 10 predictions less than the mean

and 7 that are greater.

L, and V were previously classified as order-promoting residues

based on their low frequency of occurrence in a database of

experimentally characterized disordered proteins [48]. A was

classified as a neutral amino acid, while E was classified as a

disorder promoting residue. The frequency of L and E residues in

the p53TAD homologues are approximately 90% and 70% higher

than the values observed in the database, respectively. A and V

residues are approximately 20% and 30% less frequent in the

p53TAD homologues than in the database, respectively. Accord-

ing to the NHNOE, L and V residues are more dynamic than

predicted, while A and E residues are less dynamic than predicted.

L is particularly interesting because over 75% of disorder

probabilities $1s from the mean value are predicted to be more

ordered than the dynamics data indicate. The high frequency of

an order-promoting residue may account for why VL-XT,

VSL2B, and IUPred make so many incorrect predictions for L

residues in these p53TAD sequences.

Summary
In this report, we show that three popular algorithms for

predicting disorder probability based on amino acid sequence can

accurately estimate the backbone dynamics of individual amino

acids in long disordered regions from a family of disordered

proteins. These findings are consistent with the results from three

previous studies, which observed correlations between backbone

dynamics and disorder probability using either molecular

dynamics simulations or NMR dynamics measurements. In one

of these studies, increased internal flexibility was suggested by both

disorder predictors and molecular dynamics simulations [49]. In a

second study, the insertion of a b-hairpin between two chimeric

proteins resulted in a significant increase in predicted disorder

probabilities that were subsequently confirmed using NMR

dynamics measurements [50]. The third study found a strong

negative correlation between the degree of predicted disorder and

the stability of the protein complexes. In the third study, molecular

dynamics simulations were used to show that binding regions with

higher predicted disorder probabilities correlated with weaker

complex formation [51]. While the dataset used for this

comparison is small, the correlations observed are robust, and

demonstrates the accuracy of the disorder predictors for backbone

dynamics at single amino acid resolution. As more experimental

data on the backbone dynamics of IDPs is collected we predict this

relationship will be refined so that in the future the NHNOE and

other NMR measurements that provide information about residue

specific structure and dynamics can be used to guide the

development of disorder predictors.

Materials and Methods

Protein purification
Samples of human p53TAD (residues 1–73) that were uniformly

labeled with either 15N or 15N and 13C, were prepared as

previously described [36]. Samples for dog (residues 1–77), mouse

(residues 1–87), cow (residues 1–82), guinea pig (residues 1–88),

and rabbit (residues 1–87) p53TAD were prepared using this same

method.

NMR data collection and analysis
Resonance assignments for human p53TAD were previously

reported [36]. Experiments on mouse, dog, cow, guinea pig, and

rabbit p53TAD were carried out at 25uC on a Varian VNMRS

600 MHz spectrometer equipped with a triple resonance pulse

field Z-axis gradient cold probe. To make the amide 1H and 15N

as well as 13Ca, 13Cb and 13CO resonance assignments, sensitivity

enhanced 1H-15N HSQC and three dimensional HNCACB and

HNCO experiments were performed on the uniformly 15N and
13C labeled samples of dog (0.47 mM), mouse (0.36 mM), cow

(0.38 mM), guinea pig (0.57 mM), and rabbit (0.341 mM)

p53TAD in 90%H2O/10% D2O, PBS buffer, at a pH of 6.8.

For the HNCACB experiment, data were acquired in 1H, 13C and
15N dimensions using 8012.8 (t3)612000 (t2)62000 (t1) Hz sweep

widths, and 512 (t3)6128 (t2)632 (t1) complex data points. For the

HNCO, the sweep widths were 8012.8 (t3)63770 (t2)62000 (t1) Hz,

complex data points were identical to the HNCACB. The sweep

widths and complex points of the HSQC were 8012.8 (t2)62000

(t1) Hz and 512 (t2)6128 (t1), respectively. For dog p53TAD,

processing and analysis of the HNCACB data resulted in 65 non-

proline, amide 1H, 15N, 13Ca and 13Cb resonance assignments

plus 10 proline 13Ca and 13Cb resonance assignments. 63 13CO

resonance assignments were gained from HNCO data analysis.

For mouse p53TAD, 75 non-proline, amide 1H, 15N, 13Ca and
13Cb resonance assignments plus 12 proline 13Ca and 13Cb

Figure 4. Relative percentage of incorrect predictions for VL-XT, IUPred, and VSL2B. An incorrect prediction is defined as a VL-XT, IUPred,
or VSL2B value that is at least 1$s from the mean value estimated using the linear regression equations.
doi:10.1371/journal.pone.0029207.g004
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resonance assignments were gained from HNCACB. 72 13CO

resonance assignments were gained from HNCO data analysis.

For cow p53TAD, processing and analysis of the HNCACB data

resulted in 67 non-proline, amide 1H, 15N, 13Ca and 13Cb

resonance assignments plus 12 proline 13Ca and 13Cb resonance

assignments. 65 13CO resonance assignments were gained from

HNCO data analysis. For rabbit p53TAD, processing and analysis

of the HNCACB data resulted in 71 non-proline, amide 1H, 15N,
13Ca and 13Cb resonance assignments plus 12 proline 13Ca and
13Cb resonance assignments. 71 13CO resonance assignments were

gained from HNCO data analysis. For guinea pig p53TAD,

processing and analysis of the HNCACB data resulted in 73 non-

proline, amide 1H, 15N, 13Ca and 13Cb resonance assignments plus

11 proline 13Ca and 13Cb resonance assignments. 74 13CO

resonance assignments were gained from HNCO data analysis

All NMR spectra were processed with nmrPipe and analyzed

using nmrView software [36,52]. Apodization was achieved in the
1H, 13C and 15N dimensions using a squared sine bell function

shifted by 70u. Apodization was followed by zero filling to twice

the number of real data points and linear prediction was used in

the 15N dimension of the HNCACB and HNCO. The 1H carrier

frequency was set on the water peak, and 4.753 ppm was used as

the reference frequency in this report.
1H-15N steady-state NOE experiments were recorded in the

presence and absence of a 120u off-resonance 1H saturation pulse

every 5 ms for a total of 3 s. A total of 512 (t2)6128 (t1) complex

points were recorded with 128 scans per increment. The NHNOE

values were determined by taking the quotient of the intensity for

resolved resonances in the presence and absence of proton

saturation. Three measurements were made on each protein and

the values were averaged.

Disorder Prediction
For IUPred (iupred.enzim.hu) the N-terminal residues compris-

ing the TAD were input using the long disordered region

prediction setting, human 1–90, dog 1–77, mouse 1–87, cow 1–

82, rabbit 1–87, and guinea pig 1–88. The VL-XT (www.pondr.

com) predictions represent the full length predictions for each

homologue. For the VSL2B (ist.temple.edu) predictions the full

protein sequences were entered, using only the VSL2B feature set.
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