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Abstract

Mycobacterium tuberculosis (MTB), causative agent of tuberculosis, is one of the most dreaded diseases of the 
century. It has long been studied by researchers throughout the world using various wet-lab and dry-lab techniques. 
In this study, we focus on mining useful patterns at genomic level that can be applied for in silico functional char-
acterization of genes from the MTB complex. The model developed on the basis of the patterns found in this study 
can correctly identify 99.77% of the input genes from the genome of MTB strain H37Rv. The model was tested 
against four other MTB strains and the homologue M. bovis to further evaluate its generalization capability. The 
mean prediction accuracy was 85.76%. It was also observed that the GC content remained fairly constant 
throughout the genome, implicating the absence of any pathogenicity island transferred from other organisms. 
This study reveals that dinucleotide composition is an efficient functional class discriminator for MTB complex. 
To facilitate the application of this model, a web server Tuber-Gene has been developed, which can be freely ac-
cessed at http://www.bifmanit.org/tb2/. 
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Introduction

Today, an estimated one-third of the world’s popula-
tion is infected with Mycobacterium tuberculosis 
(MTB), the causative agent of tuberculosis, which 
causes nearly 2 million deaths annually (1, 2). WHO 
estimates that over 13 million people are suffering 
from tuberculosis (3). However, to date, many aspects 
of the interactions between MTB and its human host 
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remain occult. The bacterium not only evades the de-
fences of the host’s immune system, but also stays in 
the host’s body for years and may reactivate, causing 
the disease decades after infection. Hence it is not 
hard to imagine the significance of understanding the 
pathogen at genomic level in order to improve or de-
velop treatment strategies. 

The MTB complex comprises of four species, in-
cluding M. tuberculosis, M. bovis, M. microti, and M. 
africanum. These four species share high similarity in 
DNA sequence, which are even completely conserved 
in several gene regions (16S rDNA, the 16S-to-23S 
rDNA internal transcribed spacer, and DNAJ family) 
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(4-6). Moreover, numerous strains of MTB are known 
to exist. This has limited the use of sequence analysis 
for strain differentiation. Out of these strains, H37 
variants are widely used as reference strains in myco-
bacteriology and molecular biology studies. The geno-
typing of MTB, primarily for outbreak identification, 
has become a model for the application of strain typing 
in the field of molecular epidemiology (7).  

Functionally characterizing genes through experi-
mental techniques roughly takes a year. The develop-
ment of computational models for characterizing genes 
will complement the existing experimental technologies 
and provide a much quicker, less expensive way to mo-
lecular biologists and other scientists working towards 
alleviating the sufferings of mankind. 

Proteomic analysis has been conventionally used 
for the classification and understanding of organisms 
and their physiology (8-10). A number of attempts are 
reported in the literature to classify protein sequences 
in various organisms based on amino acid composi-
tion (11, 12). However, to our knowledge, no attempt 
has been reported to classify nucleotide sequences 
based on genomic information of MTB. Support vec-
tor machine (SVM) is widely used in pattern recogni-
tion tasks over other classification algorithms. The 
seminal work pertaining to the application of SVM in 
solving biological problem was reported by Guyon et 
al (13).  

In view of above, here an effort has been made to 
recognize patterns correlating the gene with the func-
tion of its protein product, employing SVM algorithm 
for classification and prediction. The genome infor-
mation contained in the nucleotides and the 
higher-order composition has been used for evaluation 
of the organism. A web-based tool has also been de-
veloped, which can identify the function of 99.77% of 
the total genes of H37Rv, since H37Rv is extensively 
employed in biomedical research (14).  

Methods

Sequence dataset 

In the current study, 3,906 gene sequences of the 
MTB H37Rv strain were retrieved from the Tubercu-
losis Database (15) and arranged according to their 

functional classes (derived from www.sanger.ac.uk/ 
Projects/M_tuberculosis/Gene_list). A complete list of 
all the gene accession numbers used in this study can 
be found in Table S1. 

Functional hierarchy 

The adopted classification is strictly hierarchical, 
constituting three levels of branching. The top two 
levels of the hierarchy with the gene distribution are 
shown in Table 1. According to the function that their 
products perform, genes are broadly divided into six 
categories: I. small-molecule metabolism; II. macro-
molecule metabolism; III. cell processes; IV. other; V. 
conserved hypotheticals and VI. unknowns. 

Support vector machine 

SVM is widely used for learning separating functions 
in pattern recognition tasks and in performing func-
tional estimation in regression problems. Classifica-
tion tasks usually involve training and testing data 
that consist of some data instances. Every training 
dataset constitutes of a class label and a set of attrib-
utes. The aim of SVM is to produce a model based on 
these training datasets, which are capable of correctly 
predicting the target label of an instance, given its 
attributes. To achieve this, the instances are first 
mapped to a higher (maybe infinite) dimension and 
then a linear separating hyper-plane with the maximal 
margin in this higher dimensional space is computed 
(16). 

The function ),( ji xxK  represented by Equation 

1 is called the kernel function: 
)()(),( j

T
iji xxxxK  (1) 

It describes the nature of the separating hyper-plane 
that will be used for classification purpose. There are 
four types of basic kernels (17-19): 

Linear: j
T
iji xxxxK ),(  (2) 

Polynomial: 0,)(),( d
j

T
iji rxxxxK  (3) 

Radial Basis Function (RBF):  

0),exp(),(
2

jiji xxxxK  (4) 

Sigmoid or Hyperbolic:  
)tanh(),( rxxxxK j

T
iji                    (5) 

Here, , r and d are kernel parameters.  
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Table 1  Top two levels of gene functional class hierarchy 

Hierarchy order Class name No. of genes Percentage distribution (%) 

I. Small-molecule metabolism 1,066 27.29 

I.A. Degradation 163 4.17 

I.B. Energy metabolism 292 7.48 

I.C. Central intermediary metabolism 45 1.15 

I.D. Amino acid biosynthesis 95 2.43 

I.E. Polyamine synthesis 1 0.03 

I.F. Purines, pyrimidines, nucleosides and nucleotides 60 1.54 

I.G. Biosynthesis of cofactors, prosthetic groups and carriers 117 3.00 

I.H. Lipid biosynthesis 65 1.66 

I.I. Polyketide and non-ribosomal peptide synthesis 41 1.05 

I.J. Broad regulatory functions 187 4.79 

II. Macromolecule metabolism 653 16.72 

II.A. Synthesis and modification of macromolecules 215 5.5 

II.B. Degradation of macromolecules 87 2.23 

II.C. Cell envelope 351 8.99 

III. Cell processes 206 5.27 

III.A. Transport/binding proteins 123 3.15 

III.B. Chaperones/heat shock 16 0.41 

III.C. Cell division 19 0.49 

III.D. Protein and peptide secretion 14 0.36 

III.E. Adaptations and atypical conditions 12 0.31 

III.F. Detoxification 22 0.56 

IV. Other 463 11.85 

IV.A. Virulence 38 0.97 

IV.B. IS elements, repeated sequences and phage 132 3.38 

IV.C. PE and PPE families 164 4.20 

IV.D. Antibiotic production and resistance 14 0.36 

IV.E. Bacteriocin-like proteins 3 0.08 

IV.F. Cytochrome P450 enzymes 22 0.56 

IV.G. Coenzyme F420-dependent enzymes 3 0.08 

IV.H. Miscellaneous transferases 61 1.56 

IV.I. Miscellaneous phosphatases, lyases, and hydrolases 18 0.46 

IV.J. Cyclases 6 0.15 

IV.K. Chelatases 2 0.05 

V. Conserved hypotheticals 914 23.40 

VI. Unknowns 604 15.46 

Total 3,906 100

 
RBF kernel was selected for the training purpose 

since it can handle both linear and non-linear data 
efficiently with fewer numerical difficulties in con-
trast to polynomial kernel, in which kernel values may 

go to infinity or zero at large degrees (20). The pa-
rameter selection for RBF was done by running a grid 
analysis on each dataset using LIBSVM software 
(19). 
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Design of the prediction systems 

In this study, correlations are mined by three different 
approaches to generate a system that is most compe-
tent of predicting the correct gene function for a given 
input gene sequence. The basic difference between the 
developed systems is the feature vectors used (Table 
2). Since MTB belongs to the Kingdom Bacteria and 
bacterial genes lack intron regions, the compositions 
would, hence, be characterizing the operon (21) as 
well as coding region only. 

In each case, the addressed problem becomes a 
multi-level multi-class classification problem. One 
strategy to handle this problem is to reduce it to a se-
ries of binary-class classification problems, i.e., for 
the ith sub-problem, all the instances belonging to the 
class i are labelled as positive samples and the in-
stances belonging to other classes are treated as nega-
tive samples.  

Each system is a model consisting of 119 model 
files representing each node of the hierarchy. Figure 1 
depicts how each system was developed. 

To resolve the conflicts arising at different levels 
due to the presence of hierarchy, a systematic ap-
proach of decision making is adopted at each level. 
Rather than testing the input desultorily with the 
whole set of model files, the subset of model with 
which the input is to be tested is decided by the 
precedent level.  

Assessment of the prediction systems  

To assess the absolute prediction quality of the three 
systems, each gene of H37Rv was provided as an in-
put to each system and the output was recorded. Af-
terwards, the predicted class was compared with the 
actual class to evaluate the accuracies of the predic-
tion. 

To estimate the generalization capacity, the best 
performing system was tested against four other 
strains of MTB (H37Ra, F11, C1, and CDC1551) and 
a homologue, M. bovis. The gene functional hierar-
chies for these organisms were first generated by run-
ning BLASTn for all the sequences from each strain 

Table 2  The parameters used to form the vectors in the three systems in the current study 

System Composition employed Vector length Feature attributes 

A Mononucleotide 4 Composition of A, T, G, C 

B A+T and C+G 2 Composition of A+T and G+C 

C Dinucleotide  16 Composition of AA, AT, AG, AC, TA, TT, TG, TC, GA, GT, 
GG, GC, CA, CT, CG, CC 

 

Figure 1  Flow chart describing the whole process. The steps involved in designing of the system A, B and C are depicted. 
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against the database of H37Rv. Thus, a comparison 
between BLAST (sequence-order dependent) and the 
concerned system (sequence-order independent) was 
also performed. 

Results

Prediction accuracy 

Misclassification rate was evaluated in two terms: (a) 
incorrect classification rate – percent of false positive 
instances and (b) failed classification rate – percent of 
instances that the system failed to predict completely 
at the concerned level.  

The resulting accuracies are summarized in Table 3. 
SVM algorithm failed to find any separating hy-
per-planes in all the kernels at any level in System B, 
implicating that the dataset was inseparable. System A 
correctly predicted 97.49% of the input sequences at 
the top level of the hierarchy and with 97.19% and 
75.49% accuracy at the following levels. Incorrect 
classification was 0.67%, and failed classification of 
1.84% of the input genes was observed at level 1. The 
performance of System C was found to be most effi-
cient, with an accuracy of 99.77% at level 1, 99.96% 
and 78.77% accuracy at subsequent levels. In addition, 
no incorrect classifications were present and only 
0.23% (9 instances) failed classification was noticed 
at level 1. 

The compression ratio of information in the output 

models was calculated as: 

 
inputtheinvectorsofNo
delmotheinSVsofNoRationCompressio

.
.  (6) 

where SVs stand for support vectors, i.e., the vectors 
in the output model. The compression ratio for system 
A and C was observed to be 0.991 and 0.876, respec-
tively.  

Based on these results, system C was preferred over 
the other two for further analysis. In the test with 
homologues, system C performed fairly well in pre-
dicting the function of their genes (Table 3). 

Software tools and access 

In order to carry out the study, we developed a 
web-based tool, DCoS (DNA COmposition Server), 
to assist calculating the composition of a given input 
nucleotide sequence. DCoS can be accessed for free at 
http://www.bifmanit.org/dcos/. Based on the current 
study, another free web-based server, Tuber-Gene, has 
been developed (Figure S1), which can be accessed at 
http://www.bifmanit.org/tb2/. Sequences of length 
>50 bp can be input in Fasta/Pearson format in the 
text area provided. Depending on the level of accu-
racy, the output will display the putative function of 
the input gene with the computed degree of confi-
dence or will display “No function predicted” if it 
fails to do so. The degree of confidence is determined 
as the product of output class value at each level as 
computed by the SVM. The core SVM algorithm 
software is SVM Light developed by Joachims (22).

Table 3  Prediction accuracies of gene functions 

Accuracy (%) 
Strain No. of genes 

Level 1 Level 2 Level 3 

Not classified 
(%) 

Misclassified  
(%) 

H37Rv   System A 3,906 97.49 97.19 75.49 1.84 0.67 

System B 3,906 0.00 0.00 0.00 100.00 0.00 

System C 3,906 99.77 99.96 78.77 0.23 0.00 

H37Ra 3,960 95.48 95.83 75.59 4.52 0.00 

F11 3,898 87.04 87.49 68.27 12.96 0.00 

M. bovis BCG 3,910 73.81 67.52 50.86 26.19 0.00 

C1 3,841 73.57 73.66 56.59 26.43 0.00 

CDC1551 3,893 73.21 75.93 60.19 26.79 0.00 

Note: Gene functions were predicted using various systems and the resulting accuracies at each level are shown. The model built by system C was 
further tested against other members of MTB complex and the homologue M. bovis to evaluate the capability of System C to generalize its prediction 
power.
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Discussion

The purpose of the study was to discover the rela-
tionship between the composition of nucleotides 
within a gene and the gene function (System A). The 
results clearly depict that the nucleotide composition 
varies notably among the genes of H37Rv (Figure 2). 
System B was developed to verify any dependency 
that the gene function has with its CG content. This 
system highlighted the high and fairly constant per-
centage of CG as compared to AT, with a mean of 
65.44% and 34.56%, respectively, supported by a 
standard deviation of 3.36 in both cases (Figure 3). 
These data suggest that no pathogenicity island of 
unusual composition exists (23), which are consistent 
with the findings of Cole et al (14). 

Dinucleotides have long been used in practice as 
potential discriminators and for generating various 
probabilistic models such as the Markov Chains (24). 
Probably beginning with the discovery of nearest 
neighbor patterns in both prokaryotic and eukaryotic 
DNA sequences (25), dinucleotide composition (DNC) 
has found numerous applications. Nakashima et al (26) 
effectively separated genes from nine different ge-
nomes based on the DNC space. They noted that the 
DNC varied significantly from organism to organism 
and postulated that the distinct feature in the DNC 
may reflect the phylogenetic relationship of organisms. 
Later on, they succeeded in establishing a linear rela-
tionship between optimal growth temperature and 
DNC on the basis of regression analysis of the se-
quence data for thermophilic, mesophilic and psy-
chrophilic bacteria (27). 

A Markov chain for DNA is shown in Figure 4 as 
explained previously (28). Each edge in the graph 
represents the probability of occurrence of a nucleo-
tide following another nucleotide. DNC is a version of 
these probabilities with 100 times scaled up. Exercis-
ing DNC as a class differentiation factor is synony-
mous to comparing the characteristic of probabilistic 
models between classes. System C models these dif-
ferences and produces the gene function as the output 
using a given gene sequence as an input. This model 
was able to correctly classify all except 9 cases, for 
which no functional class could be characterized. 
These cases were found to belong to class VI (Un-
knowns) and their biological function is yet not 

available/known. Apparently, DNC provides the 
highest degree of differentiation and thus can be used 
as signatures for each class. Furthermore, the top oc-
currence of transitions was C to G, followed by G to C 
and G to G (Figure S2). 

Additionally, the decrease in the accuracy from 
level 1 to 3 was due to the less availability of data at 
lower levels. Based on the basic performance of clas-
sical techniques of modelling, it has been observed  

 

 

Figure 2  Compositional differences between the classes us-
ing System A. The clustered column graph indicates the mean 
composition of the four nucleotides in each of the six func-
tional classes. Although the variation of each nucleotide among 
the classes is not significant, all the classes have markedly 
higher percentage (in the range of 30%-35% for each) of cyto-
sine and guanine in their sequences. This CG-richness in the 
genome is the basis for system B. 
 

 

Figure 3  Compositional differences between the classes us-
ing System B. The clustered column graph indicates the mean 
composition of AT and CG for each of the six functional 
classes. A more stable composition can be observed as com-
pared to that of System A, implying the absence of pathogenic-
ity islands in the genome (23). 
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Figure 4  Markov chain model for DNA. Each edge in the 
graph represents the probability of occurrence of a nucleotide 
following another nucleotide. All the possible four transitions 
starting from A are shown in grey. 
 
that the modelling error increases as the input data 
size decreases (15). 

Conclusion

This study was aimed in analyzing any “sequence 
pattern – gene function” relationship in the genome of 
M. tuberculosis H37Rv strain. To perform the analysis, 
three systems (System A, B and C) were developed, 
differing by the type of sequence patterns used. Sys-
tem A, which was based on simple mononucleotide 
composition, clearly depicted that the nucleotide 
composition differed notably among the genes. Sys-
tem B was developed to verify any dependency of the 
gene function to its CG content. However, the results 
showed a nearly static composition throughout the 
genome. System C was based on the influence of a 
nucleotide base on the base following it, depicted by 
the DNC of genes. The results showed a noticeable 
variation in the pattern of DNC among the functional 
classes, which makes System C more efficient in dif-
ferentiating genes belonging to different classes. It 
was established that the success rate of System A and 
C was 97.49% and 99.77%, respectively, while Sys-
tem B had failed completely concurring to the stable 
CG content throughout. The higher success rate in 
System C leads to a higher degree of confidence in 

the results obtained by System C. Thus, the study sug-
gests that the relationship between DNC and gene 
function is more potent and can be safely used in the 
practical application of predicting the gene function 
given its DNC. 
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