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Actin is an important cytoskeletal protein involved in signal transduction, cell structure and
motility. Actin regulators include actin-monomer-binding proteins, Wiskott-Aldrich
syndrome (WAS) family of proteins, nucleation proteins, actin filament polymerases and
severing proteins. This group of proteins regulate the dynamic changes in actin assembly/
disassembly, thus playing an important role in cell motility, intracellular transport, cell
division and other basic cellular activities. Lymphocytes are important components of the
human immune system, consisting of T-lymphocytes (T cells), B-lymphocytes (B cells) and
natural killer cells (NK cells). Lymphocytes are indispensable for both innate and adaptive
immunity and cannot function normally without various actin regulators. In this review, we
first briefly introduce the structure and fundamental functions of a variety of well-known
and newly discovered actin regulators, then we highlight the role of actin regulators in T
cell, B cell and NK cell, and finally provide a landscape of various diseases associated with
them. This review provides new directions in exploring actin regulators and promotes
more precise and effective treatments for related diseases.
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1 INTRODUCTION

Actin is a highly conserved protein that is abundantly expressed in most eukaryotic cells. Like
intermediate filaments and microtubules, actin is a major component of the cytoskeleton and plays
an extremely significant role in the structure, motility, activation and maintenance of cells.

Actin exists in the form of monomers (globular actin or G-actin) or filamentous polymers
(filamentous actin or F-actin). G-actin is formed by a polypeptide chain containing 375 amino acid
residues, which can be structurally divided into two parts: the endostructural domain and the
exostructural domain (1). There are two clefts between these two domains, the nucleotide-binding
cleft and the target-binding cleft, which binds to nucleotides and proteins, respectively, to regulate
the activity of actin. F-actin is a right-handed helical structure consisting of two chains coiled
around each other (2). G-actin and F-actin can interconvert through polymerization and
depolymerization, and this process often requires the assistance of several regulatory proteins
org March 2022 | Volume 13 | Article 7993091

https://www.frontiersin.org/articles/10.3389/fimmu.2022.799309/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.799309/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.799309/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:yubing@hust.edu.cn
mailto:chaohongliu80@126.com
https://doi.org/10.3389/fimmu.2022.799309
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.799309
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.799309&domain=pdf&date_stamp=2022-03-16


Sun et al. Actin Regulators in Lymphocytes
and the involvement of various small molecules. ATP-bound G-
actin has greater affinity and nucleation when interacting with
nucleation proteins, such as the Arp2/3 complex, which form
stable oligomers consisting of three to four monomers (3) that
are then extended and assembled into F-actin. Simultaneously, F-
actin undergoes depolymerization via the hydrolysis of ATP. The
rate of actin polymerization and depolymerization depends on
the available concentration of G-actin and ATP. Due to the
polarity of F-actin, in order to extend a filament in one direction,
the rate of polymerization at the one end (barbed end), must be
relatively faster than the depolymerization at the other end
(pointed end). This phenomenon, known as “treadmilling” (4),
maintains the dynamic equilibrium between G-actin and F-actin.

As an important component of microfilaments, actin plays a
critical role in the maintenance of cell structure (5). Under the
action of “treadmilling”, filaments extend at barbed ends,
forming protrusions at the leading edge of the cell (6). This is
the basis for the formation of lamellipodia, microvilli and
filopodia (7), which are necessary for cell motility and food
intake. Together with other molecules, actin is also involved in
cellular endocytosis (8). In addition, actin also interacts with
myosin. Myosin has ATPase activity and hydrolyzes ATP to
generate energy, leading to the sliding of actin and myosin
filaments against each other, thus generating the tension
required for the basic mechanism of muscle contraction (9).
Similar processes are also present in non-muscle cells, and the
resulting contractile force is important for cell migration,
cytoplasmic division, or other biological processes.

Actin regulators are a series of proteins that control the
assembly/disassembly dynamics of actin for cell motility,
intracellular transport, muscle contraction, cellular structure
maintenance, cytokinesis and other fundamental cell
activities. Well studied actin regulators include: 1) Actin
Capping Proteins that interact with actin and regulate the
capping of the ends of ac t in po lymers , 2 ) Act in
Depolymerizing Factors that severe and depolymerize actin
filaments, 3) Actin-Related Protein 2/3 Complex (Arp2/3) that
nucleates branched actin, and 4) Wiskott-Aldrich Syndrome
Protein (WASP) Family that interacts with and activates
Arp2/3 (Figure 1) (10).

Lymphocytes are an important constituent of leukocytes in
humans, and include T lymphocytes (T cells), B lymphocytes (B
cells) and natural killer cells (NK cells) that play an essential role
in both innate and adaptive immunity (11). T lymphocytes are
divided into T helper cells (Th cells), cytotoxic T cells (CTLs),
regulatory T cells (Tregs) and other subsets according to
biomarkers on the cell membrane and their functions, which
are mainly involved in cell-mediated immunity. However, they
are also indispensable in humoral immunity via their helper
effector functions, such as cytokines release. Whereas B
lymphocytes are the major players of humoral immunity and
the exclusive source of antibodies (12, 13), NK cells are crucial to
the innate immune system, which function in a cell-mediated
and cytotoxic way that is essential in defending against tumors
and viral infections (13). These three types of lymphocytes help
form a sophisticated immune network to recognize and eliminate
Frontiers in Immunology | www.frontiersin.org 2
non-self antigens, thus maintaining the stability of the internal
environment in humans.

In lymphocytes, actin is of great significance for cell
activation, adhesion, and migration (14–18). For example, the
actin cytoskeleton can mediate the formation of the
supramolecular activation cluster (SMAG) or cap (15), which
in the case of leukocytes, is the cellular immune synapse (IS) (19)
that exerts regulatory effects on cellular signaling (15). In
particular, actin plays an essential role in the developmental
maturation of T cells. Studies have shown that Pak2-mediated
actin cytoskeleton remodeling is important for T cell maturation
in the thymus (20). In B cells, actin is involved in the regulation
of B cell receptor (BCR) clustering, IS formation, antigen
internalization and presentation (21). Concurrently, BCR-
mediated antigen transport in B cells is also actin-dependent
(22). In addition, differences in actin kinetics in various B cell
subsets contribute to their specific regulation of activation (16).
In NK cells, actin can be induced to reorganize by upstream
signaling molecules, triggering downstream biological processes,
such as granule polarization, synapse formation and target cell
lysis (23), and the density of the actin cytoskeleton mediates the
cytotoxic effects of NK cells (24). Thus, the regulation of the actin
cytoskeleton is essential to the function and stability of the
human immune system.

In this review, we will provide an overview of the structures
and functions of several important actin regulators and how they
play an important role in lymphocytes and regulating the human
immune system (Figure 2). And we will also introduce some
diseases related to the deficiency or dysfunction of these proteins
and potential targets for treatment.
2 STRUCTURE AND BASIC FUNCTION

2.1 Actin-Monomer-Binding Proteins
2.1.1 Profilin
Found by Carlsson in 1976, profilin is a 12-15 kDa protein
ubiquitously expressed in eukaryotic cells of a large variety of
organisms and highly expressed under hyperoxia condition (25,
26). In different organisms, profilins have a highly conserved
structure: 7 b-pleated-sheets and 4 helices (27), and have 4
isoforms containing 100-130 amino acids. Profilin I is
expressed in many cell types while other isoforms have tissue
specificity: profilin II is brain-specific and the expression of
mouse profilin III and IV is in testis, while profilin III can also
be found in rat kidney (28–31). At the cellular level, profilins
localize in the ruffles of peripheral lamellae and the nascent stress
fibers of spreading cells, but not in peripheral belts of stationary
cells in epithelioid sheets, and it is likely that profilin levels are
higher in areas of active actin dynamics (32, 33). The major
ligands of profilin are actin monomers, N-WASp/WAVE, PI
(4,5)-P2 and poly-L-proline (34). Phosphorylation at the residue
threonine 89 of profilin by protein kinase A (PKA) enables
enhanced binding to actin and poly-L-proline but has no effect
on phosphatidylinositol-4,5-bisphosphate (PIP2) (35, 36).
Besides PKA, profilin can also be phosphorylated by
March 2022 | Volume 13 | Article 799309
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Rho-associated kinase (ROCK) and dephosphorylated at Ser-137
by Protein phosphatase 1 (PP1) (37).

Profilins play an important role in cell development, motility,
membrane trafficking and signal transduction via binding to
different ligands (38). Profilin’s main function is promoting actin
polymerization (39). By binding to and changing the affinity of
actin monomers, profilins slow down the elongation, thus
optimizing the process of actin polymerization (40). This
mechanism of action speeds up nucleotide exchange, which
acts opposite of thymosin-b4 (41). In addition, profilins can
also enhance microtubule growth directly and take part in single
cell wound repair (42, 43). Different isoforms have their specific
functions. Profilin I and II play opposite roles in cell motility,
migration and membrane protrusion, whereby profilin I
principally enhances these processes while profilin II
suppresses them (44).

As profilin can regulate actin polymerization, it plays a crucial
role in cell migration (45, 46). As for its interaction with WASp-
interacting protein (WIP), proteins like Mena and vasodilator-
stimulated phosphoprotein (VASP) can directly bind profilin
through a proline-rich Actin Based Motility (ABM) motif, such
as APPPPP (47–49). WASP-WIP’s function of regulating actin
polymerization may be heightened by recruiting profilin to
ABM-2 motifs on WIP (45). Also, in mammalian cell lines,
Frontiers in Immunology | www.frontiersin.org 3
profilin directly binds to actin monomers to sequester them
when actin barbed ends are capped, this activity assures that the
G-actin pool will not be monopolized by Arp2/3 and thereby
formins have the chance to enter the G-actin pool and bind actin
monomers, therefore profilins hinder actin assembly mediated
by Arp2/3 to promote formin activity (50, 51). Thus, profilin
selectively regulates actin monomers to flow from Arp2/3 to
formins and Ena/VASP (51).

2.1.2 Thymosin-b4
Thymosin beta 4 (Tb4) is a 43-amino-acid protein found to be
widely expressed in thymocytes and hematopoietic cell lines, as
well as in a variety of organs, such as brain, thymus, spleen, and
lung (52–55). As one of the most abundant proteins in the highly
conserved beta-thymosin family, Tb4 is an important actin
binding protein that binds to both the barbed and pointed
ends of G-actin, which causes conformational changes in Tb4
to spatially block actin polymerization (56, 57). This binding of
Tb4 to actin is influenced by nucleotides. It was demonstrated
that the affinity of Tb4 for ATP-actin is about 50-fold higher
than that of ADP-actin (58). In addition to its role in the
cytoplasm, Tb4 also translocates to the nucleus and binds actin
monomers to regulate actin dynamics (59). Overall, Tb4’s effect
on G-actin leads to an increased ratio of G-actin to F-actin in the
A

B

FIGURE 1 | (A) Domain structures of actin regulators important for lymphocytes. THY, thymosin b actin-binding motif; WH1, WASP Homology domain-1; B, Basic
domain; GBD, GTPase binding domain; PP, poly-proline; WH2, WASP Homology domain-2; C, Connecting sequence; A, Acidic sequence; SHD, SCAR-homology
domain; WAHD1, WASH Homology domain; TBR, Tubulin binding region; HD, Helical domain; DID, diaphanous autoregulatory domain; DD, dimerization domain;
CC, coiled coil region; FH1, formin homology domain 1; FH2, formin homology domain 2; DAD, diaphanous autoregulatory domain; ADF, actin depolymerizing factor;
U, unique region; CC, coiled-coil. (B) Conformation of Arp2/3 complex. ARP2; ARP3; and ARP complex-1~5 (ARPC1~5) are shown.
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cell, thereby regulating the cytoskeleton and affecting the
biological activity of cells and tissues.

2.2 Wiskott-Aldrich Syndrome (WAS)
Family of Proteins
Wiskott-Aldrich syndrome (WAS) is an X-linked primary
immunodeficiency disease characterized by thrombocytopenia,
eczema, episodes of fever, bloody diarrhea, recurrent bacterial
infections, innate and adaptive immune deficiency, and a high
rate of autoimmunity and malignancies (60, 61). The disease is
due to mutations of the gene which encodes the WAS protein
(WASp) (62). WASp was the first identified member of a family
of proteins comprised of WASp/N-WASP, SCAR/WAVE,
WHAMM/JMY/WHAMY, and WASH subfamilies (63). WAS
proteins are nucleation-promoting factors (NPFs) that activate
Arp2/3 to nucleate branched actin filaments in response to
extracellular signals. This plays an important role in many
cellular processes that happen at the cell surface, such as
cellular motility, endocytosis, exocytosis and intracellular signal
transduction (64). WAS family proteins are also present in the
nucleus, where they regulate transcription and remodel
chromatin (65). Distinct WAS family proteins participate in
different cellular processes, therefore, they differ from each
other in the structure of their N-terminal portions. However,
contrary to their diverse N termini, all WAS family proteins
possess an identical C-terminal structure, the verprolin
homology (WH2)/connecting peptide/acidic domains (VCA)
domain, which mediates interaction with the Arp2/3 complex
and actin (Figure 1) (64). It was also reported that WAS family
proteins function as polymerases, accelerating elongation of
uncapped actin filaments (66). In summary, WAS family
proteins have the following functions: nucleating branched
Frontiers in Immunology | www.frontiersin.org 4
actin filaments, linking actin networks to membranes,
mediating transcription and chromatin remodeling, and
accelerating filament elongation.

2.2.1 Wiskott-Aldrich Syndrome Protein (WASp)
WASp is a 502-amino-acid protein expressed exclusively in
hematopoietic cells (62), which has several domains with
different functions. The pleckstrin homology (PH) domain is
close to the N-terminal region and is involved in the localization
of WASp through interactions with other proteins or lipids, such
as PIP2. The PH domain is very important since missense
mutations in this region lead to severe diseases (67). The PH
domain overlaps the Ena/VASP homology 1 (EVH1) domain
(also known as WH1 domain), which constitutively interacts
with the proline-rich region of the WIP in resting cells (68). The
EVH1/WH1 domain is followed by a basic region (BR), a
GTPase-binding domain (GBD), a poly-proline region (PP)
and a VCA domain in the C-terminal (Figure 1) (60). In the
inactive state, WASp is in an auto-inhibited conformation in
which the GBD of WASp conceals the VCA domain. This
prevents the interaction between WASp and Arp2/3 and
inhibits actin polymerization. However, upon receptor
activation mediated by extracellular stimulation, such as T cell
receptor (TCR) and BCR signaling, WASp is recruited to the
signaling site at the membrane and transformed to the active
conformation (69). This process is induced by activated GTP-
bound cell division control protein 42 homolog (Cdc42), which
binds to the GBD and transforms WASp to an open-activated
structure, allowing it to interact with Arp2/3 and promote actin
polymerization. Additionally, proteins with Src homology 3
(SH3) domains, including Grb2, p47nck, Fyn, and Lck,
combine with Cdc42 to enhance WASp conformational
FIGURE 2 | Different actin regulators play distinct roles in actin dynamics in lymphocytes. As actin-monomer-binding proteins, profilin and thymosin beta 4 (Tb4)
bind G-actin and prevent it from polymerizing, while formins act in an opposite manner, promoting actin filament polymerization. The activation of Arp2/3 complex
requires NPFs including WAVE, JMY, WASp/N-WASp, WASH, and WAHMM, which is needed for branching F-actin. The severing of F-actin is mediated by cofilin. In
the above process, actin undergoes dynamic changes in lymphocytes, thereby regulating cellular activity and function.
March 2022 | Volume 13 | Article 799309
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changes. Furthermore, Src-family kinases, such as Lyn and the
Tec family of cytoplasmic tyrosine kinases, including Btk, Tec,
and Itk, phosphorylate WASp at Tyr 291 (Y291) in a Cdc42-
dependent fashion, which modulates the affinity of WASp for
Cdc42 and later targets WASp for degradation via a ubiquitin-
dependent proteasomal pathway (60, 68, 70). After activation of
WASp, actin branching is mediated by the Arp2/3 complex,
which is initiated by several steps. First, the V/WH2 segment of
VCA binds to G-actin monomers, while the CA segment binds
two sites on the Arp2/3 complex. These WASp-recruited actin
monomers will be the first actin subunits added onto the newly
branching filament. Second, the WASp-Arp2/3 complex
undergoes a conformational change where two actin-related
subunits in the complex, Arp2 and Arp3, are transformed into
a short pitch conformation, which imitates an actin dimer within
a filament. Finally, WASp interacts with an existing actin
filament to initiate nucleation, which ensures only branched
actin filaments are generated (64). After the filament branching
process is finished, activated WASp is down-regulated by
ubiquitination and proteasome degradation. In the resting
state, WIP can inhibit WASp degradation by concealing its
ubiquitination sites (69). Following activation, WIP undergoes
phosphorylation and conformational changes, which exposes
WASp’s ubiquitination sites in the WH1 domain. After
ubiquitinated by E3 ligases, c‐Cbl and Cbl‐b, WASp is targeted
for protease calpain degradation (68).

2.2.2 Neuronal Wiskott-Aldrich Syndrome
Protein (N-WASP)
Another WASP family protein that plays a crucial role in cells is
the Neuronal Wiskott-Aldrich Syndrome Protein (N-WASP).
Unlike WASp, which is expressed exclusively in hematopoietic
cells, the mRNA of N-WASP has been found to be widely
localized in several organs including brain and colon (71). N-
WASP has 50% homology with WASp at the protein level (71,
72), with the main structural difference being that N-WASP
contains two verprolin homology sequences in the VCA
structural domain (VVCA), which allows it to bind to Arp2/3
more efficiently than WASp (73). The structural similarity of N-
WASP with WASp allows for their similar regulatory roles in
cells. For example, expression of the N-WASP gene in WASp-
deficient hematopoietic stem cells can partially rescue the
signaling defect in T cells (74). However, mutations in the
WASp gene predisposes someone to WAS syndrome, while N-
WASP deletion is embryonic lethal (75). This suggests that the
two proteins do not function in exactly the same way, which is
supported by the experimental finding that N-WASP lacking the
WASp-specific I30 region cannot rescue the chemotactic defects
of WASP knockout Jurkat T-cells (76).

The activity of N-WASP is synergistically regulated by Cdc42
and PIP2. In the inactivated state, the VCA domain of N-WASP
binds to the GBD and is in a self-inhibited state that cannot
interact with Arp2/3 (77). N-WASP has binding sites for Cdc42
and PIP2. Binding of one of these molecules induces a
conformational change in N-WASP that exposes the binding
site for the other, which allows for both molecules to bind and
Frontiers in Immunology | www.frontiersin.org 5
activate N-WASP (78). N-WASP can also be activated by Src
family kinases through phosphorylation (79) and proteins
containing SH3 structural domains (such as cortactin) are
also able to bind to N-WASP and activate its Arp2/3 binding
capacity. Phosphorylation of cortactin by Erk facilitates this
process, while phosphorylation by Src inhibits it (80). N-
WASP and Cdc42 play a unique role in the formation of
cellular filopodia (81) and the complex formed by N-WASP
with WIP and Nck is necessary for the construction of dorsal
ruffles (82).

2.2.3 Wiskott-Aldrich Syndrome Protein (WASp) and
SCAR Homologue (WASH)
WASH is one of the novel members of the WASP protein family
and has been found to be distributed in several human tissues
including blood cells (83). The C-terminal structural domain
(VCA domain) in WASH proteins, similar to WASP, enables it
to function as a downstream effector molecule of Rho in
Drosophila and as an Arp2/3 activator (84). Additionally, its
unique N-terminal structural domains, including WASH
homology domain 1 (WAHD1) and tubulin-binding region
(TBR), give it the ability to interact directly with tubulin (85).
Such structural properties allow WASH to localize to multiple
types of endosomes and help maintain the stability of endosome
morphology and the proper recycling pathway, especially for
membrane surface receptors (86, 87). Also, WASH plays an
important role in processes such as autophagy and cell
differentiation (88, 89).

2.3 Nucleation Proteins
2.3.1 Arp2/3 Complex
The Arp2/3 complex is an important actin filament nucleation
factor that was first purified from Acanthamoeba (90). It is
evolutionarily conserved in most eukaryotic cells and consists of
seven subunits (91), two of which, Arp2 and Arp3, are actin-
related proteins that are structurally similar to actin (92). The
other five subunits are ARPC1 through ARPC5, of which ARPC2
and ARPC4 form the center of the complex (93) called the clamp
subunit. Recent studies have confirmed that the composition of
the Arp2/3 complex was not constant (94), for instance, in
humans, ARPC1 contained two isoforms, ARPC1A and
ARPC1B, and different Arp2/3 complexes could play different
biological roles.

The most basic function of the Arp2/3 complex is nucleation
and branching of the actin filament. Previous in vitro studies
have shown that the Arp2/3 complex itself had a weak nucleation
capacity (95) and required a class of proteins called nucleation-
promoting factors (NPFs) for activation. NPFs can be divided
into two types. Type I NPFs, including WAVE, WASp, N-
WASP, WASH and junction-mediating and regulatory protein
(JMY), contain a VCA structural domain (i.e., the verprolin-
homology domain, the cofilin-homology domain and the acidic
domain) that interacts with the Arp2/3 complex and binds to
actin monomers. Type II NPFs, such as Cortactin, contain an
acidic region that binds to Arp2/3 and weakly activates the
Arp2/3 complex, as well as having effects such as stabilizing
March 2022 | Volume 13 | Article 799309
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the filament branching structure (96). It was confirmed that the
Arp2/3 complex contained two different activation sites for NPFs
and functioned differently during activation (97), thus creating a
prerequisite for the synergistic activation of the Arp2/3 complex
by cortactin and WASP family proteins (98). During the
activation of the Arp2/3 complex by NPFs, the complex binds
to existing actin filaments (mother) and undergoes intra-subunit
and inter-subunit changes (99). The one conformation is
induced by clamp twisting within the subunit, which
transforms the original twisted conformation of Arp into a flat
conformation. The other conformation is created when the Arps
form a short-pitch conformation, which mimics the end of the
actin filament. As a result, the Arp2/3 complex initiates the
formation of new filaments (daughter) on the mother chain and
facilitates the formation of the actin branching network. Besides
the activation of the Arp2/3 complex by proteins like NPFs, there
are a variety of intracellular inhibitors that negatively regulate it.
For instance, the binding of cofilin, an actin filament severing
protein (discussed below), to the actin filament reduces the
affinity of Arp2/3 for F-actin, thereby contributing to the
detachment of Arp2/3 from the filament and debranching
(100). This reduction in affinity may be achieved through
direct competition of cofilin or conformational changes of the
filament. Additionally, Glia Maturation Factor (GMF), which
belongs to the actin depolymerizing factor homology (ADF-H)
family with cofilin (101), was found to bind to Arp2/3, inhibiting
its nucleation and inducing debranching (102, 103). Ydenberg
et al. subsequently proposed that GMF mediated debranching
via its two binding sites by binding the first actin subunit on the
Arp2/3 and the filament branch (104). The process involved is
similar to the severing mechanism of cofilin (104, 105), with
GMF in coordination with cofilin regulates the debranching and
severing of filaments. Coronins (discussed below) are also known
to have an inhibitory effect on the branching of Arp2/3. Studies
performed in different subgroups of coronins have confirmed
their function in binding to Arp2/3 and inhibiting its actin
nucleation activity (106–108), and they have synergistic effects
with GMF in this regard (109). Similarly, the acidic motif of the
newly discovered protein Arpin identified by Dang et al. can
competitively inhibit the VCA domain of Arp2/3, thereby
inhibiting the activity of the complex (110). Studies on the
structure of Arp2/3 further confirmed that binding to Coronin,
GMF and Arpin led to a shift of Arp2/3 into an open/inactive
conformation, thus providing an explanation for their inhibitory
effect (109). Moreover, the binding and hydrolysis of nucleotides
affects the activity of the Arp2/3 complex (111, 112), and it was
found that the hydrolysis of ATP played an important role in
debranching (113). Furthermore, the effect of phosphorylation
regulation on the Arp2/3 complex activity is of important
interest (114–116), thus the regulation of Arp2/3 is a mutually
coordinated and sophisticated process, which creates the
prerequisite for its regulation of the actin cytoskeleton.

The nucleation effect of the Arp2/3 complex on actin makes it
an important regulator of the cytoskeleton. Thus, the Arp2/3
complex plays a significant role in a variety of cellular activities.
Experiments on Dictyostelium (117) and mice (118) suggest that
Frontiers in Immunology | www.frontiersin.org 6
defects in the Arp2/3 complex may be lethal. For cell migration,
the Arp2/3 complex is localized in cell protrusions, including
lamellipodia and pseudopodia (119, 120), which are critical for
cell motility. Moreover, the Arp2/3 complex has been found to be
essential for cell adhesion (121) and it also plays a key role in
cellular endocytosis (122, 123), whereby disruption of Arp2/3
complex activators can lead to defects in endocytosis (124). In
addition, the Arp2/3 complex is involved in Golgi-associated
membrane transport processes (125, 126) as well as cellular
phagocytosis (127), which is of great significance in the
immune response. And recent studies have revealed that the
WASH and Arp2/3 complexes were associated with centrosomes
and that the actin nucleation mediated by them might function
in cell mitosis (128, 129).

2.4 Actin Filament Polymerases
2.4.1 Formins
Formin homology proteins (Formins) are a family of highly
conserved proteins that are widely found in eukaryotes and are
involved in the regulation of the cytoskeleton (130). Members of
the Formins family are morphologically diverse, with 15 different
formin proteins present in humans (131), but relatively few
formin proteins in yeast. Nevertheless, there are regions of
similarity between most of these proteins, including formin
homology 1 (FH1) and formin homology 2 (FH2) domains,
which are key regions determining the regulation of actin
polymerization by formin proteins. The FH1 domain is located
in the N-terminal to the FH2 domain and contains multiple
repeating units of polyproline that can act as a profilin ligand
(132, 133). Polyproline segments are of variable length with non-
proline residues inserted in between them, which are also
important in the role of the FH1 structural domain (132, 134).

Profilin is an actin monomer-binding protein and its binding
to the FH1 domain increases the profilin-actin affinity to the
FH2-associated barbed end and helps in the rapid elongation of
microfilaments (Figure 3) (135, 136). The crystal structure of the
FH2 domain is in the form of a tethered dimer (137, 138), which
is consistent with its ability to bind actin nuclei or filament
barbed ends (139). The FH2 domain assists in nucleation by
stabilizing actin oligomers (140) and can mediate the addition of
G-actin to the barbed end of a filament while preventing the
binding of capping proteins (141). In addition to the above two
structural domains, some formin protein sequences contain
some or all of the GBD, Diaphanous Inhibitory Domain (DID)
and Diaphanous Autoregulatory Domain (DAD). The role of
Formins in regulating the formation of unbranched actin
filaments affects activities such as formation of cellular
protrusions (7, 142, 143) and cytokinesis (144). In addition,
Formins can regulate microtubule dynamics and link them to
actin dynamics to coordinate cytoskeletal activities (145–147).

2.5 Severing Proteins
2.5.1 Cofilin
Cofilin, a highly conserved protein with a molecular weight of 19
kDa, was first identified in chick brains and can bind to actin
monomers on filaments in a 1:1 molar ratio (148, 149). As
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research progressed on cofilin, it was found to belong to the
actin-depolymerizing factor (ADF)/cofilin family, which is a
family of actin-binding proteins mainly containing three
isoforms (Cofilin 1, Cofilin 2 and ADF). The structure of
cofilin is relatively conserved consisting mainly of an ADF-H
domain (UniProtP23528 and UniProt Q9Y281) which was
found to interact with G-actin, filamentous actin or the Arp2/3
complex (150). And the tridimensional structure has two pairs of
a-helices at the periphery, with a hybrid b-sheet sandwiched in
between (151). It is currently believed that all eukaryotic cells
contain at least one ADF/cofilin protein (152). In mammals, two
cofilin isoforms are known. One is the NM-type (CFL1), which is
widespread in non-muscle tissues, and the other is the M-type
(CFL2), which is mainly expressed in muscle cells, but can also be
seen in other tissues like testis (153, 154). For humans, the genes
encoding CFL1 and CFL2 are localized on chromosomes 11 and
14, respectively (155).

As a member of the actin-binding protein family, the primary
role of cofilin is to modulate actin dynamics. The cofilin protein
contains a G/F site at the C-terminus and an F site at the N-
terminal end (156), giving it the ability to bind to actin
monomers (G-actin) or F-actin, in which it severs and
depolymerizes actin filaments. Cofilin was initially thought to
bind to some of the acidic residues at the N-terminal of actin by
electrostatic interaction (157). Subsequent studies supported this
by finding that cofilin binds to F-actin along the two initial
helices between neighboring subunits (158), and that the ADF-H
domain of cofilin binds between actin subdomains 1 and 3 to
insert into its hydrophobic cleft (159). In vivo studies have shown
that low concentrations of cofilin prefer to function in severing
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F-actin, while high concentrations tend to facilitate actin
nucleation (160). A similar study also found that filaments are
stabilized in the saturated cofilin state (160). However, this rule
does not always hold. For example, in the thymus, it has been
found that during cofilin saturation, cofilin was still able to
depolymerize filaments in the presence of actin interacting
protein 1 (Aip1), another important actin regulator (161).
Many factors regulate the activity of cofilin. Phosphorylation
or dephosphorylation of cofilin is a critical step in determining
its activity (162), and phosphorylation at Ser-3 inactivates cofilin
(163) . pH level also affects the polymerizat ion or
depolymerization activity of cofilin on actin (164). In humans,
depolymerization of actin mediated by cofilin increased when the
pH was elevated from 6.5 to 8.0 (165). A similar study also found
that cofilin favors binding to F-actin in a neutral or weakly acidic
environment, while the extent of binding is greatly reduced in a
weakly basic condition (166). Moreover, cofilin activity can also
be influenced by phosphoinositide, where PIP2 is capable of
inhibiting cofilin from binding to actin (167) and nucleotides,
which cofilin has a higher affinity for ADP-actin compared to
ATP-actin (168). It has also been proposed that the pH
regulation of cofilin might be achieved through binding to
phosphatidylinositol (169).

2.5.2 Coronin
Coronin is a 55 kDa protein that was first purified from growth-
phase Dictyostelium Discoideum cells by E.L.deHostos and his
co-workers. They named it “coronin” because of its interaction
with the crown-shaped projections on the dorsal cortex of the
cell. Through preliminary co-sedimentation experiments, they
FIGURE 3 | Formins’ role in regulating actin dynamics. The FH2 domain of formins close to the C-terminus can bind to the barbed end of filaments, while the FH1
domain near the N-terminus can bind to profilin-actin, thus increasing the concentration of actin monomers around filaments and positively promoting their polymerization.
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found coronin could colocalize with actin filaments (170).
Different types and subtypes of coronins have been discovered
and classified, however in this review we use the widely accepted
classification method to divide them into 3 types: type I includes
coronin 1A, coronin 1B, coronin 1C and the newly-found
coronin 6. Type II includes coronin 2A and coronin 2B, and
type III is coronin 7 in humans, or POD in nematode and
Drosophila melanogaster (106). Up to now, coronin research has
mainly focused on coronin 1A and less on the other types.
Coronins are highly conserved proteins and the basic structure of
the coronin family contains a 7-bladed b-propeller formed by 5
WD repeats on the N-terminal, a classical heptad coiled-coil
domain on the C-terminal and an irregular secondary domain in
the middle (171, 172). The N-terminal has phosphorylation sites,
which mediate protein interactions and the coiled-coil domain
regulates homo-oligomerization to help coronin 1A form a
tripolymer structure (173, 174). Unlike other coronins, coronin
7 has two classical WD domains, which means two b propellers,
but it has only one coiled-coil domain with an additional acidic
domain, whose structure is similar to the acidic domain in the
SCAR/WASP (172).

Encoded by the CORO gene, researches have shown that
coronins are expressed in all eukaryotes, but as for the tissue
specificity, coronin 1A is mainly expressed in hematopoietic
tissues and immune cells (175). Coronin 1B and coronin 1C are
ubiquitously expressed in different tissues and may be involved
with cell migration (106). Type II coronins can be found only in
vertebrates, they have different C-terminal structure from type I.
Coronin 2A is expressed in testis, ovary, uterus and brain, while
coronin 2B expression is mainly in the brain (176). Coronin 7 is
found in mammals and POD in Caenorhabditis elegans, however
being of similar genes, both localize and function within the
Golgi complex in all kinds of cells (176).

Almost all the coronins belong to the actin filament-
crosslinking and bundling protein family and they concentrate
in the actin-rich areas on the cell membrane (177). The
fundamental function of coronins is facilitating the actin
depolymerization via interacting with Arp2/3 and actin
filaments, and the binding site to actin is the KXRHXX-motif
located near the N-terminal and the WD domain (178).
Coronins, cofilins and WD repeat-containing protein 1
(WDR1) form an organized unit for the regulation of actin.
The binding of coronin with actin enhances the binding of cofilin
to actin as the filament twist is changed. Additionally, the
cooperation between coronin and slingshot-1L increases the
activity of cofilin (106, 179). In yeast, coronins bind Arp2/3
directly by a coiled-coil domain and suppress the nucleating
activity of Arp2/3 (107). This mechanism is properly regulated
by phosphorylation of protein kinase C (PKC) (173). However,
recent studies demonstrated that while a high concentration of
coronin restrains Arp2/3, a lower concentration of coronin could
promote Arp2/3 nucleation (180).

2.5.3 WD Repeat-Containing Protein 1 (WDR1)
Aip1, also known as WDR1, is a conserved protein that belongs
to the WD repeat domain-containing proteins, whose protein
structure is mainly composed of two connected seven-bladed
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b-propellers (181). WDR1 alone has little effect on actin
dynamics, but it assists cofilin in severing/depolymerizing of
actin filaments (182, 183), a process that often also involves a
third protein, coronin (discussed it above), which acts
synergistically to promote the severing of filaments (184, 185).
At the same time, studies in leukocytes have found that the actin-
promoting effect of WDR1 is also influenced by caspase-11, the
deletion of which leads to impaired motility of immune cells,
including T cells (186).
3 FUNCTIONS IN LYMPHOCYTES

3.1 T Lymphocytes
T cells are derived from the thymus. Mature T cells settle in
thymus-dependent areas of peripheral immune organs, where
they mediate adaptive cellular immune responses and also play
an important secondary role in thymus-dependent antigen-
induced humoral immune responses. The activity of actin
regulators in T cells affects the development, motility, and
functional effects of T cells.

3.1.1 Development
Bone marrow T cell progenitors locate to the thymus, where they
develop into mature T cells via stages of differentiation, they then
enter the peripheral lymphoid organs by the blood circulation. At
this time, the naive mature T cells that come in contact with
antigen will proliferate and differentiate into effector T cells,
regulatory T cells or memory T cells that all have different
functions (187). This is a very complex process in which
various actin regulators are involved.

Earlier studies found that Tb4 induces phenotypic changes in
the human T cell line Molt-4 and may be involved in early cell
differentiation (188). As an important member of NPFs, WASp
also has an important regulatory role on T cell development. It
has been shown that high expression of WASp inhibits the
growth of T-cell lymphoma, while the loss of WASp inhibits T
cell activation processes including decreasing T cell proliferation
induced by TCR stimulation and preventing cytokine
polarization and secretion (189). Specifically, CD8+ T cells
from WASp-deficient mice are hyperactive with increased
cytokine production, however these cells are also insufficient in
CD8+ memory T cells differentiation and have increased
apoptosis through upregulation of the Fas pathway. This
further implicates a role for WASp in the survival and
differentiation of CD8+ T cells (190). Additionally, double
knockout (DKO) mice compared to single knockout of WASp
or N-WASP mice, exhibit more pronounced abnormal thymic
development and impaired T cell development, which is due to
defects in cytoskeletal reorganization and migration (191). This
indicates that N-WASP exhibits a synergistic effect with WASp
during T cell development. WASH is required for the efficient
proliferation of T cells after responding to CD3/CD28 signaling,
which is related to its function in regulating the intracellular
transport of T cell surface molecules, including TCR (192).
Concurrently, the lack of coronin 1A leads to decreased naïve
T cells and developments of severe combined immunodeficiency
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(SCID) (193). This is because coronin participates in the
activation of calcium-calcineurin signaling that maintains the
survival of naïve T cells (194), which was found have a similar
effect on peripheral T cells (195). Also, abrupt reduction in the
number of peripheral abT cells and impaired late development
of thymocytes caused by coronin1A defects indicate its
significance in terminal T cell differentiation (196). For WDR1,
it has been previously shown that defective expression of the
WDR1 gene predisposes someone to autoinflammatory disease
and thrombocytopenia, which are mainly manifested by
abnormal neutrophil behavior (197, 198). A subsequent study
reported a reduced rate of follicular helper T (Tfh) cells in
patients with defective WDR1 gene expression and also
showed a decreased Ca2+ response in TCR proximal signaling,
suggesting that WDR1 may have an effect on T cell development
and TCR signaling (199).

3.1.2 Cell Migration
Migration is one of the bases for accurate targeting of T
lymphocytes to sites of infection (200). In response to
chemokine stimulation, T cells can polarize, extend
lamellipodium at the leading edge and produce a uropod at the
rear end. Integrin alpha 4 beta 1 and alpha L beta 2 induce
directional with T cell motility (201), which several actin
regulators play a role in.

The migratory capacity of T cells partly depends on the
production and location of actin and cofilin, which can be
illustrated by the experimental fact that cofilin mRNA is
distributed at the leading edge of migrating cells (202).
Meanwhile, studies in Jurkat T cells revealed that cofilin is
phosphorylated by the spatiotemporal regulation of LIM
domain kinase (LIMK) and SSH1L, and this physiological
process is crucial for SDF-1a-induced T cell migration (203).
One possible regulatory mechanism is that following G-protein-
coupled receptor stimulation, LIM-Kinase1 activity is inhibited
in T cells via the Ras-MEK pathway to promote the
dephosphorylation of cofilin (204). Activated cofilin may
function at the leading edge of the cell to sever the F-actin,
increasing the number of barbed ends to promote nucleation of
actin polymerization there (152, 205). When the activity of MEK
or cofilin is inhibited, lamellipodia extension is impaired,
inhibiting the cell migration rate (206). This mechanism may
play an important role in the localization of T cells during the
immune response (204).

Another study on Jurkat T cells found that cell spreading on
anti-CD3 sheet-like structures was inhibited by lack of Arp2
(207). Furthermore, preventing actin polymerization mediated
by WASp/Arp2/3 inhibits T cell chemotaxis (208). This is due to
the Arp2/3 complex being an important regulator of membrane
protrusion formation, including lamellipodia (209), which is the
main mode of T cell motility. Studies have found that in Arp3-
impaired CTL, the cell motility pattern changed from
lamellipodia-based to blebbing-like migration, a mode of
movement resulting from the detachment of the plasma
membrane from the actomyosin cortex (210), which decreases
the migration speed (211). The different motility characteristics
exhibited by T cells under different antigen affinities depends on
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the regulation of the Arp2/3 complex (212), which allows T cells
to decelerate when encountering suitable antigens and is
important to T cell bioactivity.

Unsurprisingly, N-WASP, the regulatory protein of the
Arp2/3 complex, is also involved in T cell motility. An earlier
study found that Cdc42 interacting protein 4 (CIP4), a protein
that binds to Cdc42 and WASP/N-WASP and is involved
in cytoskeletal regulation, is necessary for integrin-dependent
T-cell migration, implying the participation of N-WASP in
T cell motility (213). Specifically, in CD8+ T cells, N-WASP
is a downstream effector molecule of NKG2D, which is a
transmembrane receptor expressed mainly on CD8+ T cells
and NK cells. And N-WASP is involved in the inhibitory effect
of NKG2D on T cell chemotaxis under the regulation of activated
Cdc42 upon CD3/NKG2D activation, and this pathway may also
involve the downstream dephosphorylation of cofilin
(Figure 4) (214).

Formin-like-1 (FMNL1) and mDia1 are known to be the
predominantly expressed formin proteins in T cells (215).
FMNL1-mediated cytoskeletal dynamics allows T cells to
undergo shape changes for adapting to the environment,
helping them to complete transendothelial migration (TEM)
and translocation to sites of inflammation to exert immune
effects (216). RhoA-regulated mDia is expressed in activated T
cells and affects the functional exertion of Rac1 through the
regulation of actin equilibrium, however overexpressed mDia
negatively regulates the motility of T cells (46). Additionally, by
studying T cells from p140mDia1-encoding knockout mice,
Eisenmann et al. found that this protein is necessary for
proper T cell development and chemotactic movement (217).
Similarly, mDia1 deficiency inhibits T cell proliferation and
chemotaxis induced migration, thus impairing the relocation of
T cells to secondary lymphoid organs (218). Further studies
revealed that mDia1 regulates microtubule dynamics and helps
in T cell adhesion and translocation by inactivating glycogen
synthase kinase (GSK) 3b and protecting adenomatous polyposis
coli from phosphorylation (219).

The regulatory effects of Coronin and WDR1 on actin allow
them to also influence T cell motility. Coronin1A helps T cell
egress from the thymus and the coronin knock-out phenotype in
mice shows deficiency in T cell migration, whereby there is
abnormal accumulation of F-actin and failure of lamellipodia
formation (106, 220). Furthermore, the enhanced effect of
WDR1 on cofilin activity was shown to contribute to the
chemotaxis of Jurkat cells, and also WDR1 is essential for their
normal morphological maintenance and changes, which can be
achieved by promoting the remodeling of the actin
cytoskeleton (221).

3.1.3 Immune Synapse
T cells become activated when their T cell receptors (TCRs) bind
specifically to antigen presented by major histocompatibility
molecules (MHCs) on antigen-presenting cells (APCs). This
binding to antigens induces signaling by the TCRs that lead to
activation of signaling pathways involved in promoting T cell
functions. This activation process requires signal transduction
and amplification, which is supported by the stable platform
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created by the IS. The IS is a membrane structure formed on the
surface of T cells at the contact site with APCs. The center of the
IS is a cluster of TCRs with adhesion molecules surrounding
the periphery (222, 223). This structure is also known as a
SMAC, which includes the central supramolecular activation
cluster (cSMAC), the peripheral SMAC (pSMAC) and the distal
SMAC (dSMAC) (224, 225). IS formation is a dynamic process
that depends on the activity of the actin cytoskeleton (223, 226),
and therefore the contribution of actin regulators in this process
is critical. Since IS formation is closely related to TCR signaling,
which will be discussed below, we provide a brief overview of the
actin regulators involved.

During IS formation, constant actin depolymerization and
repolymerization contribute to the aggregation of related
molecules, including TCR, LFA-1, and CD45. A number of
experiments have shown that multiple actin regulators were
important in IS formation. First, it was demonstrated that IS
formation was halted with the inhibition of cofi l in
depolymerization activity (227). Second, the Arp2/3 complex
was found to be important in the actin polymerization that is
essential for IS formation. This was determined in patients with
combined immunodeficiency (CID) that have a homozygotic
mutation in the gene ARPC1B, which results in a defect in the
Frontiers in Immunology | www.frontiersin.org 10
development of the T cell IS (228–230). Additionally, ARPC3 is
an essential protein involved in the TCR-related vesicular
transport that enables TCR recycling between the intracellular
and plasma membranes to continuously supply TCRs for
activation and IS formation (231, 232). In this process, ARPC3
acts in concert with proteins such as IFT20 to regulate the
assembly of a functional IS (233). Furthermore, the Arp2/3
complex is degraded intracellularly by GRAIL via Lys-48
and Lys-63 ubiquitination to regulate IS formation and keep T
cells in a state of anergy (234), which is essential for immune
tolerance of T cells. Along with Arp2/3, WASp also takes part in
actin assembly and IS stabilization. It was found that
downregulation of WASp causes actin foci to disappear and
the symmetry of the IS to be destroyed (57). And WASp/N-
WASp can function with Nck to regulate the interaction and
movement between LAT and actin, which contributes to the
formation of the IS (58). Similarly, Formins promote the
formation of TCR microclusters through polymerizing F-actin
during the early stages of IS formation in T cells (217, 235), and
the aggregation of actin by Formins at the IS distal edge is needed
to form the actin arc at the IS, which affects activities such as
adhesion and signal transduction of T cells (236). A recent study
also found that PKCd-dependent phosphorylation of the formin
A B

FIGURE 4 | N-WASP is involved in signaling pathways of T cells. (A) In CD4+ T cells, N-WASP is activated by CaM and enters the nucleus to coordinate the Arp2/3
complex to participate in the expression of cytokines. (B) In CD8+ T cells, N-WASP receives signals from NKG2D and participates in downstream cofilin
dephosphorylation while also mediating the inhibition of cellular chemotaxis.
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protein, FMNL1b, negatively regulated F-actin polymerization at
the IS and thus facilitated microtubule-organizing centers
(MTOC) polarization (56). Furthermore, during IS formation
in T cells, centrosome polarization requires the formation of
stable and detyrosinated microtubules, which is a process
mediated by the FH2 domain of INF2 (55). Thus, although the
cytoskeletal components involved in IS formation is
predominantly actin, other components may also be involved
in this process and requires further research.

3.1.4 TCR Signaling
TCR signaling is initiated after T cells recognize a specific MHC-
peptide complex (pMHC) on the APC. This process consists of
interaction of receptors, followed by receptor activation and
intracellular signal transduction. Coreceptors on T cells (CD4
or CD8), bind to the non-peptide-like region of MHCs, inducing
recruitment and phosphorylation of tyrosines in the
immunoreceptor tyrosine-based activation motif (ITAM) of
the cytoplasmic segment of CD3 molecules. The process of
phosphorylation is mainly mediated by Lck, a protein tyrosine
kinase, which is an essential molecule for transmission of the
external activity of the TCR into an internal signal.
Phosphorylated ITAMs provide a binding site for ZAP-70,
which i s ac t iva ted and cont inues the cascade of
phosphorylation of downstream molecules and initiates several
signaling pathways, including the PKC pathway, small G-protein
pathway, and Ca2+ pathway, to regulate T cell activity (237–239).
The understanding of the TCR signaling pathway involves
millions of studies, and here we focus more on the role of
actin regulators in it.

The role of the Arp2/3 complex in TCR signaling has long
been of interest. Several studies have shown that the Arp2/3
complex maintains TCR downstream signaling (233, 240). A
more definitive study suggests that deletion of APCR2 in T cells
leads to reduced levels of cell surface TCRs, and that the Arp2/3
complex is also involved in the endosomal transport of TCRs,
thus affecting the proximal TCR signaling (241). Indeed, Arp2/3
complex-mediated actin dynamics is a critical step in multiple
pathways, and more often as an effector molecule of the distal
TCR signaling, linking it to alterations in the actin cytoskeleton
(Figure 5). Studies have indicated that after recognition of
pMHC by TCR/CD3, stimulation is delivered to downstream
tyrosine kinases like Fyn, LCK, and ZAP-70 (242), which then
phosphorylate downstream molecules like LAT, SLP-76, Fyb,
SLAP-130 (243), that ultimately activate the Arp2/3 complex.
Multiple activators of the Arp2/3 complex, including NPFs, play
significant roles in the signaling pathway. For instance, at the IS
of T cells, the GTPase-binding domain of WASp binds to Cdc42-
GTP, releasing the VAC domain and promoting the function of
the WASp-Arp2/3 complex (70, 244). Also, PIP2 produced by
TCR stimulation activates WASp to interact with the Arp2/3
complex (78, 245). However, the interaction between these two
proteins can be inhibited by the dephosphorylation of protein
tyrosine phosphatase PTP-PEST through proline, serine,
threonine phosphatase interacting protein1 (PSTPIP1)-
mediated binding to WASp (246). In CD4+ T lymphocytes, N-
WASP interacts with CaM (71) to activate the Arp2/3 complex in
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the nucleus, which mediates the Ca2+ induced expression of
cytokines (247). WAVE2 is another important activator of the
Arp2/3 complex. WAVE2 receives signals from the Rac-GTPase
as a complex, including Sra-1, Nap1, Abi-1/2, and WAVE2 (248,
249), and is recruited to the membrane (250) for activating the
Arp2/3 complex and promoting lamellipodial spreading.
Inhibition of WAVE2 expression can lead to impaired IS
formation in T cells (251, 252). The acidic region of HS1,
NTA, binds to the Arp2/3 complex and contributes to the
stabilization of the F-actin branches (253, 254). Tyrosine
phosphorylated HS1 was found to bind to the SH2 domain of
Vav, stabilizing Vav at the IS (255), which in turn transmits the
signal to the Arp2/3 complex.

Related to the above, Formins assist Arp2/3 in regulating the
cytoskeleton during T cell activation (256). The Formin mDia 1/
3 was shown to regulate the actin kinetics required for
recruitment of activated ZAP70 to the IS to promote the
phosphorylation of LAT. This suggests an essential role for
Formins in early TCR signaling and therefore is important for
positive selection of T cells. The downstream TCR signaling
involves the interaction of FMNL1 with AHNAK1, which locates
FMNL1 to the cell membrane and boosts calcium influx during
cell activation (257). Also worth noting is that Inverted Formin2
(INF2), one of the Formins with both actin polymerization and
depolymerization activities, is regulated in T cells by Cdc42 and
Rac1, which helps MAL-mediated transport of Lck to the plasma
membrane and participates in the signaling (258).

A recent study revealed the positive role of coronin in TCR
signaling using coronin 1A-deficient T cells. These cells have
elevated cAMP levels that activate PKA, leading to defective
CREB phosphorylation and suppression of T cell immune
responses by inhibiting CaMKK, a signaling molecule
downstream of the TCR (259). However, this kind of
functional disorder only causes autoimmunity suppression and
has no influence on the response to foreign antigen (194).

Another actin regulator, cofilin, is involved in multiple T-cell
signaling pathways, including TCR signaling (Figure 6). The
cofilin protein sequence contains a phosphatidylinositol binding
si te which inhibits cofi l in activity when bound to
phosphatidylinositol (e.g. PIP2) on the plasma membrane,
however this effect is independent of cofilin phosphorylation
(167, 260). When Phospholipase C (PLC) is activated by TCR
signaling as well as amplified signals from CD28 (261, 262), it
triggers the decomposition of PIP2, allowing an increase in the
amount of active cofilin (262), which may be an early event in T
cell activation (263). Furthermore, co-stimulatory signals (e.g.
CD40 and CD40L) are also required for T cell activation in
addition to the stimulation of TCRs by pMHCs. In the absence of
co-stimulatory signals, T cells are in a state of anergy. This is an
important mechanism by which the body maintains
immunosuppression, and it may also trigger certain
pathological responses. It was confirmed that in resting human
peripheral blood T lymphocytes (PB-T), dephosphorylation of
cofilin occurs after co-stimulatory signals are received by co-
receptors (e.g., CD2), rather than activation of TCR/CD3
receptors alone (264, 265). GTPase Ras is a key factor in this
process, and dephosphorylation of cofilin requires the synergistic
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action of both Ras-MEK and Ras-PI3K pathways (266). Under
the action of these two pathways, the protein serine/threonine
phosphatases of type 1 (PP1) and type 2A (PP2A) bind to cofilin
and mediate its dephosphorylation activation (267). It is worth
noting that in studies on Jurkat T lymphocyte cell lines, Ras was
unable to activate PI3K, reflecting the inconsistency in activation
of cofilin by T lymphocytes of different origins (265, 268). Since
cofilin contains nuclear localization sequences KKRKK (269),
while actin does not, it can mediate actin nuclear ectopic
processes upon dephosphorylation (263). This is necessary for
the transcriptional activity of RNA polymerase II (270, 271).
Additionally, in co-stimulated T cells, dephosphorylated cofilin
can regulate the nuclear translocation of NF-kB and promote the
production of anti-inflammatory factors, which is one of the
mechanisms by which T helper 2 cells (Th2) exert anti-
inflammatory effects (272). When cofilin is oxidized and
inactivated, it affects costimulatory signaling and leads to T-cell
anergy. Cofilin contains four cysteine residues, Cys39, Cys80,
Cys140, and Cys148, all of which are potential sites for oxidation.
Oxidants such as reactive oxygen species (ROS) may cause the
formation of disulfide bonds between Cys39 and Cys80, resulting
in the loss of cofilin’s depolymerization activity to F-actin
although it can still bind to filaments (273). Moreover,
oxidized cofilin tends to undergo mitochondrial translocation,
leading to programmed T cell death (274). In contrast, the
sensitivity of cofilin to PIP2 is decreased under reducing
conditions, resulting in enhanced activity of cofilin (275).

3.1.5 T Cell Cytotoxicity
Upon activation, naïve T cells proliferate and differentiate into
different functional subpopulations in response to the local
microenvironment and other factors. Some of these cells have
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killing activity and can differentiate into CTLs, predominantly
CD8+ CTLs, but also CD4+ CTLs have been reported to exist in
vivo (276). CTLs are able to recognize virally infected and
tumorigenic cells and secrete perforin and granzyme to kill
these target cells or mediate apoptosis through the death
ligands pathway (277–279). Studies have revealed that the
function of the Arp2/3 complex is critical for the formation of
CTL synaptic protrusions and granule release (280), as well as the
CTL’s cytolytic function (281). The importance of Arp2/3 in
cytotoxicity is likely due to the actin cytoskeleton maintaining
the IS of CTLs. In addition, Arp2/3 is involved in the cycling of
TCR, CD8, and GLUT1, which enables the TCR signaling needed
for inducing the cytotoxic effects of CTLs on target cells. Also, by
binding to Arp2/3, WASp can promote the formation of
protrusions and cause deformation of target cells, which was
confirmed to enhance perforin and granzyme-mediated killing
(280). Furthermore, Formins can also regulate TCR-mediated
toxicity by affecting the centrosome polarity of T cells, which is
vital for directed release of granules (215).

3.2 B Lymphocytes
B cells are important antibody-producing immune cells in
humans, the homeostasis of B cells is significant to a well-
balanced immunity. Stimulated by antigens, the activation of
the BCR initiates the immunological response in B cells. The
BCR signaling pathway is regulated by different molecules and
their interaction maintains normal B cell function. In addition to
BCRs, B cells also have Toll-like receptors (TLRs) that are
involved in innate immunity and function to link specific
immunity with non-specific immunity. As a component of B
cell signal transduction, TLR signaling also contributes to
regulation of B cell activity.
FIGURE 5 | The Arp2/3 complex is involved in TCR signaling. Upon receiving signals from MHC molecules, TCR/CD3 can transmit stimuli to the Arp2/3 complex via
tyrosine kinases such as Fyn, LCK, and ZAP-70. In this process, WASp family proteins play an important mediating role as direct activators of the Arp2/3 complex.
The activated Arp2/3 complex has the ability to promote branched filament polymerization, which together with other T cell signaling-induced activation of actin
regulators (e.g., cofilin and profilin) modulates the actin cytoskeleton, which is important for the biological activities of T cells, especially for IS formation.
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3.2.1 BCR/TLR Signaling
In BCR signaling, the unbranched filament formed by the Formin
DIAPH1 assists Arp2/3 in the generation of actin foci, which is an
important step in the antigen extraction by B cells (282). It was also
found that the C-terminus of FHOS, another formin protein widely
present in the human spleen, interacts with CD21, which is
involved in the regulation of B cell signaling together with the
subsequent actin kinetics (283). Upon B cell binding to APCs, the
Arp2/3-mediated branched actin network promotes the
aggregation of BCR-containing microclusters into a
supramolecular activation cluster in the center of the IS,
enhancing the BCR signaling (284). The experimental result that
the inhibition of the Arp2/3 complex leads to reduced BCRmotility
also suggests a regulatory role of this complex on B cell signaling
(285). N-WASP plays both similar and different roles compared
withWASp. On the one hand, inWASp-deficient B cells, N-WASP
plays a compensatory role to help BCR clustering and B cell
spreading. Also, N-WASP can play a role in BCR microcluster
aggregation into central clusters and promote B cell contraction.
On the other hand, N-WASP is involved in the up- and down-
regulation of BCR signaling. During upregulation, N-WASP and
WASp synergistically promote microfilament formation, while N-
WASP functions differently from WASP in removing F-actin
during cell contraction and signal downregulation. A further
study revealed that there is a mutual negative regulatory
relationship between WASp and N-WASP. In the BCR signaling
pathway, Btk activates WASp but inhibits N-WASP, whereas
SHIP-1 can inhibit Btk and activate N-WASP (Figure 7) (286).

Ca2+ is an important second messenger in BCR signaling, as
BCR-induced Ca2+ release can act on cofilin via the PCLg and
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CRAC pathways, and thus regulate B cell adhesion and
lamellipodia formation (287). The Ca2+ mobilization decreases
significantly in coronin1A deficient B cells after BCR stimulation,
but the lack of coronin 1A makes no difference for B cell subset
development and immune function (288).

Upon signal stimulation, cofilin is dephosphorylated by BCR
via active Rap-GTP, severing actin filaments, and thereby
increasing the mobility of the BCR and promoting B-cell
spreading (289). Meanwhile, the Rap-cofilin pathway promotes
the polarization of MTOC toward the APC contacting site, which
is an important step in the process of B cell IS formation (290). In
addition, cofilin is activated by TLR signaling stimulation,
reducing the restriction of the BCR by the actin cytoskeleton
and facilitating the signal transduction of the BCR
(291) (Figure 8).

Recent studies have revealed that WDR1, together with
LIMK, an enzyme that phosphorylates cofilin and negatively
regulates it, constitute the WDR1-LIMK-cofilin axis, an
important mechanism for regulating cSMAC formation and
BCR signaling in B cells. This process involves WDR1 and
LIMK working together to maintain cofilin at an equivalent
activity (neither too high nor too low), thus achieving an optimal
level of actin retrograde flow (292).

3.2.2 Others
Many other B cell activities are modified by actin regulators, such
as anti-infection, cell development and antibody secretion.

For cell development, the latest studies revealed that the
interaction between WASp and other signaling molecules
facilitates B cell development and movement. Mst1 and WASp
FIGURE 6 | Cofilin involves in T cell signaling. Several signaling pathways in T cells contain cofilin, including: (A) PLC-PIP2 pathway belonging to the TCR signaling,
(B) protein phosphorylation belonging to co-stimulation signaling, and (C) protein oxidation. Activated cofilin can mediate actin entry into the nucleus and play a
regulatory role in gene transcription. PP1/PP2A: protein serine/threonine phosphatases of type 1 and type 2A, ROS, reactive oxygen species.
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are significant for central and peripheral development of B cells
and can adjust mutual localization and function (293).
Deficiency of DOCK2 reduces the activation of WASp and
accelerates its degradation, causing dysfunction of actin
accumulation and affecting the early activation process of B
cells (294). Similar to T cells, the reduction of marginal zone B
cells in N-WASP conditional knockout mice indicates the
promotional effect of this protein on peripheral B cell
development. Further studies showed that conditional double
knockout WASp and N-WASP exhibited more severe B cell
developmental impairment and dysfunction than WASp KO,
indicating the positive role of N-WASP in B cell development
(72). More severe abnormalities were found in B-cells of WHR1-
deficient patients than in T-cells. On the one hand, the number
Frontiers in Immunology | www.frontiersin.org 14
of B-cell precursors is reduced, and more peripheral blood B cells
are in an immature stage; on the other hand, this defect leads to
abnormal BCR/TLR signaling, generates elongated B-cell
synapse, and affects B cell survival (199). Besides intrinsic
accommodation of B cell growth, environmental factors such
as the extracellular matrix components may influence the
motility of B cells (295). The actin dynamics regulated by the
Arp2/3 complex gives B cells this ability to exhibit adaptive
mobility in different environments (296).

For the response to antigen stimulation, it has been
demonstrated that in secondary lymphoid organs, cofilin
mediates B cell responses to two common antigens, namely
soluble and membrane-associated antigens, in the non-
phosphorylated form (297). Differences in the distribution and
FIGURE 7 | Regulation of N-WASP and WASP in B cells. In B cells, N-WASP is inhibited by Btk, which in turn is negatively regulated by SHIP-1. The regulation of
WASP depends on Btk for activation.
FIGURE 8 | Cofilin in B cells. (A) Cofilin receives signals from the BCR. (B) Cofilin mediates the depolymerization of microfilaments on the membrane surface upon
receiving TLR signaling, which increases BCR motility and facilitates the BCR signaling.
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kinetic characteristics of cofilin under the two antigen inductions
explain the different reactivity of B cells to these two antigens
(297). N-WASP in B cells is closely linked to autoimmune
responses (298). It was found that specific knockdown of N-
WASP in B cells resulted in elevated levels of autoantibodies, and
mouse B cells lacking N-WASP exhibited higher levels and
longer duration of activation. This suggests that N-WASP is a
key inhibitor of B cell activation, and this inhibition is essential to
terminate the immune response and prevent autoimmunity
(286). Relatedly, simultaneous knockdown of WASp and N-
WASP in B cells results in more severe proliferation defects in B
cells and reduced levels of IgG autoantibodies compared to
specific knockdown of the WASp gene, suggesting that N-
WASP expression in B cells is required for the development of
autoimmunity, which signifies N-WASP as a new therapeutic
target to control autoimmunity in WAS patients (299).
Analogously to that in T cells, the Arp2/3 complex is
important to the formation and activity of the IS in B cells. It
was demonstrated that this complex is involved in the formation
of dynamic actin structures at the IS of B cells (282). Also, upon B
lymphocyte activation, the HS1-dependent Arp2/3 complex is
recruited at the IS through Syk-mediated tyrosine
phosphorylation (300), which results in a reduction of Arp2/3
complex at the centrosome, leading to its nuclear separation and
polarization to the IS (301), a process that maintains the
immunomodulatory role of lymphocytes.

Additional benefits WASp provides for lymphocytes includes
protection from DNA damage. WASp acts as a novel element to
link irradiation-induced DNA damage signaling with the Golgi
dispersal response (GDR), which has the ability of ensuring
genome stability and contributes to cell survival under DNA
damage. The loss of WASp triggers accumulated DNA damage
and causes the failure of GDR, resulting in the dysfunction of
human T and B lymphocytes (302).

3.3 NK Cells
As a vital member of lymphocytes, natural killer cells (NK cell)
are not only involved in fighting tumors and infections, but also
participate in hypersensitivity and autoimmune disease. Its
natural killing activity is independent of antigen stimulation
and is not restricted by MHC.

3.3.1 NK Cell Cytotoxicity
NK cells can kill target cells by forming IS and releasing lytic
granules (303). The activity of NK cells is regulated by
cytoskeletal proteins (304, 305), of which the Arp2/3 complex
promotes the aggregation of NK receptors in the lytic synapse,
allowing for stable binding between NK cells and target cells.
This has been demonstrated in studies showing that the lack of
Arp2/3 causes defective cell adhesion to target cells, which
inhibits lytic synapse actin assembly, thus affecting the lysis
activity of NK cells (306). Additionally, examination at the
nanoscale level found that the Arp2/3 complex also plays an
active role in lytic granule secretion (307).

Tb4 enhances the cytotoxicity of NK cells by increasing the
expression of intercellular adhesion molecule-1 (ICAM-1) and
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LFA-1, as well as cytolytic granule exocytosis (308).
Furthermore, the expression of Tb4 is upregulated by IL-18
and in turn, Tb4 enhances IFN-g secretion mediated by IL-18 in
NK cells, which positively influences the immunomodulatory
role of NK cells (309).

With respect to the WASp family, WASp is localized in the IS
with F-actin and regulates cytotoxicity functions in NK cells
(310, 311). This correlates with the interaction of DOCK8, which
regulates the polarization of WASp and mediates the cytotoxicity
of NK cells (312). The Y141 tyrosine of WASH can be
phosphorylated by the Src family kinase Lck, thus exerting its
role in promoting the movement and release of granules and
assisting the cytotoxic effects of NK cells (313). Formins also help
in NK cell activity. It has been demonstrated that the effect of
hDia1 on NK cell toxic effects is actin-independent, instead it
mediates the formation of microtubule networks through
enrichment at the lytic synapse to facilitate the transport and
secretion of lytic granules (306). In addition, the function of
hDia1 in the formation of filopodial protrusions makes it a vital
factor involved in the migration and adhesion of NK cells (306).
What is more, cofilin is phosphorylated in response to LIMK
stimulation and regulates the remodeling of the actin
cytoskeleton in NK cells, thus affecting its cytotoxicity (314).

Finally, a recent mass spectrometry study of NK cell protein
expression in severe aplastic anemia (SAA) patients found that
the Arp2/3 complex is downregulated in NK cells (315),
suggesting a role in the disease-protective function of NK cells
in SAA.

3.3.2 Others
As for cell movement, the knockdown of N-WASP partially
rescues the inhibition of NK cell migration towards CXCL12
gradient, suggesting its involvement in the positive regulation of
NK cell motility (316). Furthermore, the results of in vitro
experiments suggest that cofilin in NK-92 cells is stimulated by
leptin under physiological conditions, which may promote cell
migration and mediate the positive effects of leptin on NK cell
morphology in a healthy environment (317).

It has been reported that WASp deficiency affects the
activation of NK cells and DCs, as DCs in WAS KO mice have
weaker induction of NK cells, thus influencing the
immune response.

Up to now, it is believed that coronin has little function in NK
cells, although further research is still needed (318).
4 RELATED DISEASES

4.1 Cancer
Since actin filaments are important to cell motility, migration,
adhesion, cell growth and cell division, aberrant functions of
actin regulators could lead to abnormal cellular functions and
cytokinesis, thus contributing to the development and migration
of tumor cells (319). Moreover, aberrant actin regulators can also
influence the cytotoxic functions of T cells and NK cells,
resulting in tumorigenesis and progression.
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Tb4 is reported to have tumor-promoting functions that
enhance the motility of cancerous cells. Myocardin-related
transcription factors (MRTF), which are co-activators of serum
response factor (SRF), are linked to epithelial-mesenchymal
transition (EMT) and tumor metastasis. Studies have found
Tb4 can bind to actin competitively with MRTF, mediating the
activation of the latter by TGFb and regulating the cytoskeleton
and the expression of tumor-associated proteins, thus enhancing
the motility of tumor cells and leading to tumor progression and
metastasis (320). Additionally, in glioma cells, Tb4 inhibition
reduces the migratory capacity and aggressiveness of tumor cells
and is a potential target for the treatment of glioblastoma (321).

Many recent studies have focused on the relationship between
WASp and cancer. WASp is important for tumor suppression
and killing and considered a new possible therapeutic target in
cancer. In T cells, constitutive activation of WASp improves
cytotoxic clearing of tumor cells (322). Interestingly, studies have
shown that WASp plays opposite roles in malignant and benign
lymphocytes. In benign T and B cells, WASp is a tumor-
suppressor protein, however it acts as a tumor activator in
malignant lymphocytes, since the lack of WASp leads to an
imbalance of CDC42/MAPK and NF-kB/AP-1 signaling
pathways, which is important for the development of cancer
(323). But a recent study reported that WASp and WIP are
tumor suppressors in T cell lymphoma, because high expression
of WASp prevents lymphoma growth (189). Further studies are
needed to figure out the role of WASp in malignant lymphocytes.
In WASp deficient mice, the antitumor functions of NK cells and
DCs are weakened (324). WASp deficient patients have increased
granzyme B and degranulation, along with enhanced production
of IFN-g. Additionally, the expression levels of DNAM-1, LAG-
3, KLRG1 increase while CD56 expression decreases, indicating a
lack of NK cell phenotype. This correlates with defective F-actin
accumulation and disruption of lytic synapse formation. All
these changes in NK cells lead to a weaker anti-tumor response
(322, 325). In addition, inhibiting Cdc42, which activates
NKG2D, WASp and N-WASp to regulate NK cell migration,
may impact immunoreaction and evasion in tumors (316).

The Arp2/3 complex also shows strong relevance in cancer
development. The contribution of the Arp2/3 complex in
podosome formation (326, 327) makes it an important factor
in enhancing the mobility of cancer cells. N-WASP can promote
cancer progression by activating Arp2/3 and affecting the tumor
killing function of NK cells. For example, it has been
demonstrated that N-WASP exerts actin-regulatory activity in
colorectal cancer metastasis (328), while in breast cancer cells, N-
WASP enables rapid actin reconstitution, accumulating large
amounts of F-actin at NK cell synapses, thus resisting NK cell
attack and inducing immune escape (329). Furthermore, a
clinical study on esophageal carcinoma showed that
overexpressed WASH maintained the stem cell phenotype of
cancer cells by promoting IL-8 production, thus promoting the
progression of the carcinoma. Additionally, in vivo experiments
found that the inhibition of WASH expression slowed the
progression of tumors, which suggests WASH be a potential
target to intervene in human esophageal carcinoma (330).
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A study performed on an oral squamous cell carcinoma
(SCC) cell line revealed that PI3K signaling-dependent formin,
FHOD1, was specifically upregulated during EMT in tumor cells,
which promoted morphological changes and enhanced the
invasiveness of cancer cells (331). Similarly, an in vivo study
found that mDia1 promoted the TEM capacity of leukemia cells
and played an active role in the progression of leukemia, and
conditional inhibition of mDia1 expression might be a latent way
to treat leukemia (332). Studies in Molt-3 and Jurkat cells
indicate that human formin-2 (FMN2) expression is inhibited
by upregulated microRNA-144 (miR-144), affecting normal
cellular activities and providing an explanation for the tumor
suppression mechanism of miR-144 (333). Additionally, FMNL1
is expressed in a variety of malignant tissues, while an antigenic
peptide (FMNL1-PP2) derived from FMNL1 was experimentally
shown to induce specific T cells to exert killing effects on tumors,
including lymphomas (334).

Cofilin is also closely associated with tumor development.
The regulation of cofilin phosphorylation by Myeloid cell
leukemia 1 (MCL-1) is associated with tumor cell activity in B-
cell lymphoma 2, and the inhibition of this effect of MCL-1 has
become important for tumor therapy (335). Moreover, in
malignant T lymphoma cells, it was found that blocking the
dephosphorylation of cofilin led to apoptosis, which might have a
promising role in arresting tumor progression (336). Cofilin’s
regulatory role on the cytoskeleton makes it an important
molecule in regulating the migration of tumor cells (337). It
has been demonstrated that chitinase 3-like 1 (Chi3l1)
dysregulation, present in many solid tumors, inhibits the
accumulation of phosphorylated cofilin, hence promoting
tumor cell metastasis, however, activation of RIG-like helicase
can rescue this process (338). Specifically, in breast cancer,
various molecules, such as LMO2, regulate the actin
cytoskeleton by interacting with cofilin and altering the
dynamics of cell adhesion and lamellipodial, thereby
promoting the metastasis of cancer cells and increasing their
invasiveness (339–341). Additionally, in the tumor
microenvironment, granulocytes or macrophages can mediate
oxidative stress (342, 343), which may lead to a loss of functional
activity of cofilin, and in turn affect the function of T cells. In
tumor treatment, heat therapy can inhibit tumor cell migration
by phosphorylating cofilin through high temperature, but it
should be noted that the inhibitory effect of Hsp70
overexpression on this process can reduce the efficacy (344).

Analys i s of the proteome of Pancrea t i c ducta l
adenocarcinoma (PDAC) tissues showed that protein level of
WDR1 increased with the clinical progression of PDAC. Further
studies revealed that WDR1 is associated with tumor cell growth
and metastasis and is involved in the deubiquitination of b-
Catenin in PDAC cells by interacting with USP7, thereby
regulating Wnt/b-Catenin signaling in PDAC cells (345).

Overall, comprehensive understanding of the role of various
actin regulators in tumorigenesis and metastasis can provide new
ideas for precise therapy. Moreover, the critical role of actin
regu la tor s in immune ce l l s can modu la t e tumor
microenvironment and affect the outcome of immunotherapy.
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Therefore, further studies are required in this field to bring more
benefit to patients with cancer.

4.2 HIV
Acquired immunodeficiency syndrome (AIDS) is a severe
infectious disease caused by Human Immunodeficiency Virus
(HIV) infection. Although researchers around the world have
made great efforts, no effective drugs have been developed to cure
AIDS, and there is also no effective vaccine that can be used for
prevention. Several actin regulators are reported to be related to
HIV infection and may provide latent therapeutic targets
for AIDS.

The role of profilin in resisting HIV infection is controversial.
In ADP-Heat Shock Protein (ADP-HSP) immunized macaques,
profilin can up-regulate the expression of apolipoprotein B
mRNA-editing enzyme-catalytic polypeptide-like 3G
(APOBEC3G), and increase the level of IgG against CD4+ T
cells, which provides a new direction of therapy in HIV infection
(346). However, another study has shown that through
downregulating drebrin, another actin-binding protein,
profilins accumulate and suppress the polymerization of actin
in CD4+ T cells, which increases the entry of HIV (347).

HIV can cause the over-activation of cofilin (348), leading to a
weakened T cell cycle and inhibiting T cell activation (349, 350).
In vitro studies, however, revealed that the use of anti-human
a4b7 integrin antibodies partially restored the motility of CD4+

T cells (348). Cofilin and the cytoskeleton have an important role
in HIV infection (351). First, HIV can activate cofilin through
CXCR4-mediated Gai-dependent signaling pathways,
promoting the depolymerization of cortical actin and
facilitating its viral nuclear localization in resting T cells (352).
Also, chemokines such as CCL19 and CCL21 can produce a
similar reaction to promote the nuclear migration of HIV in
memory T cells, which is one of the possible mechanisms for the
establishment of HIV latency (353, 354). Furthermore, the
migration of infected T cells can be restricted by HIV through
the binding of Nef to the cellular kinase Pak2, which
phosphorylates cofilin and inhibits actin dynamics (355).

In vitro and in vivo studies both showed that intracellular Tb4
expression in T cells and macrophages was reduced after HIV-1
infection, indicating a regulatory effect of Tb4 in T cell
immunity (356).

N-WASP is one of the ways in which HIV-1 infects T cells.
The Nef protein of HIV-1 inhibits both the activation of N-
WASP and its recruitment in the T cell contact region, which
also interferes with the role of its upstream regulatory molecules,
Rac1 and Cdc42, in regulating actin remodeling, thus inhibiting
the proper TCR signaling pathway (357).

Arp2/3 plays a critical role in HIV infection. Earlier studies
have found that during pathogen infection the Arp2/3 complex
of host cells can be activated by the vaccinia virus-encoded A36R
protein, contributing to virus transmission (358). Also,
baculovirus activates the Arp2/3 complex similarly, facilitating
viral proliferation (359). The action of HIV on the Arp2/3
complex is an important component in the development of
AIDs. Through the Rac1-IRSP53-WAVE2-Arp2/3 signaling
pathway, HIV can invade host cells (360) and promote the
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assembly and release of virus-like particles (VLPs) (361). Lack
of the Arp2/3 complex inhibits HIV infection of CD4 T cells,
implying it could be a potent target for the treatment of AIDs
(362, 363).

Furthermore, Dia1 and Dia2 also play an important role in
early HIV-1 infection by helping to form a stable microtubule
network and promoting viral uncoating (364). In HIV-1 infected
DCs, Dia2 facilitates HIV-1 infection of T cells by regulating
actin assembly to assist filopodia formation, while Slit2N was
found to inhibit this effect (365, 366).

Determining the relationship between HIV infection and
actin regulators will be helpful in developing more effective
drugs in the prevention and treatment of AIDS in the future.

4.3 Others
Because of the vital role of the cytoskeleton in lymphocytes, actin
regulators are also specifically related to other diseases including
autoimmune diseases and infectious diseases.

High expression of Tb4 was detected in patients with
pulmonary tuberculosis, which is related to inflammation and
angiogenesis mediated by HIF-1a and VEGF and may serve as a
potential biomarker for diagnosis (367). Moreover, an analogue
of Tb4 was found to have a restorative effect on T-lymphocyte
deficiency in uremic patients and used to rescue the immune
function in uremic patients (368).

WAS directly influences the essential role of the functional
activity of the Arp2/3 complex mediated by WASp in the human
body (62). CID, a disease caused by a homozygous mutation in
the gene encoding ARPC1B, is similar to WAS (230). And
defects in ARPC4 in the epidermis may trigger Psoriasis-like
skin complication epidermis (369), while pachygyria may be
caused by cortical neuronal migration disorders due to
overactivity of the Arp2/3 complex (370). Also, the decrease in
cell migration caused by the inhibition of the Arp2/3 complex by
factors such as prostaglandin E2 may be responsible for
Hirschsprung disease (371, 372). Recent studies have also
identified the significance of this complex in bone and neural
tissues, suggesting that defects in Arp2/3 may be associated with
the development of intervertebral disc defects (373) as well as
Down syndrome and Alzheimer disease (374). In innate immune
cells, defective WASp interrupts the autophagy-inflammasome
axis (375). And further studies reveal that depending on the
interaction with Arp2/3, WASp plays an essential role in the
autophagy process, especially during the autophagosome
formation and the delivery of autophagosomes to lysosomes
(376), which contributes to the development of auto-
inflammatory diseases. Additionally, the dysfunction of
endogenous inhibitory proteins of Arp2/3 also leads to the
development of several diseases. For example, the over-
expression of coronin 1A causes the over activation of CD4+ T
cells and CD8+ T cells in aplastic anemia and hemophagocytic
syndrome (377).

Formins perform different roles in the development of several
diseases. For example, the promotion of CD4+ T cell migration
by FMNL1 may be one of the pathogenic mechanisms of equine
recurrent uveitis (ERU) (378), suggesting its role in autoimmune
diseases. In addition, it is noteworthy that in the chemical-
March 2022 | Volume 13 | Article 799309

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Sun et al. Actin Regulators in Lymphocytes
induced asthma mouse model, the expression of cofilin in B cells
differs from that in normal individuals (379), suggesting a link
between cofilin and the progression of B cell-associated diseases.

Another point of interest is that mutations in the WDR1 gene
have been found to cause lazy leukocyte syndrome, a disease
characterized by impaired neutrophils, recurrent infections, and
stomatitis (380–382). In combination with other findings
(198, 383), this mutation impairs the regulation of actin by
WDR1, leading to increased levels of F-actin, which induces an
IL-18-mediated inflammatory response downstream. Thus, WDR1
is extremely important for neutrophil function and its deficiency
can lead to auto-inflammation and immunodeficiency (179).
5 CONCLUSIONS

Here, we discussed a selection of the most representative actin
regulators whose functions in universal cells have been studied
extensively, therefore we focused on their roles in lymphocytes.
Many of the identified actin regulators to date have important
roles in the development and functional activity of lymphocytes.
The majority of these roles are performed through cytoskeletal
modulation by actin, leading to changes in cell structure or
polarity that affect lymphocyte development and immune
activity. It is also possible that actin regulators act as effector
molecules involved in cellular signaling pathways, thereby
regulating cellular activities such as gene expression, where
actin may not be necessary. It is worth mentioning that these
actin regulators do not exist independently. Actin regulators with
similar/opposite functions coordinate/antagonize each other
intracellularly to form a complete cytoskeletal regulatory
network. Meanwhile, these actin regulators are not in complete
parallel in terms of their functions, and multiple regulatory
effects on lymphocytes need to be realized through interactions
between upstream and downstream actin regulators. Therefore,
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damage or deletion of different actin regulators causes cellular
developmental disorders and malfunctions to different degrees,
leading to the development of various diseases. Particularly, in
immune system diseases, abnormalities of these proteins often
lead to immune overload or immunosuppression by affecting the
normal signaling of intrinsic immune cells.

Unfortunately, not all of the actin regulators are fully
discussed here since little is known about the functional role of
some of the recently discovered actin regulators in lymphocytes.
In particular, proteins with more specific functions, such as
WASH, may have more scope for invest igation in
lymphocytes. In addition, we noticed that several actin
regulators are closely related to AIDS and tumors, and
previous studies have suggested the potential value of targeting
these proteins for treatment, so a combine study of several
related actin regulators could be followed as an entry point to
find the most likely therapeutic modality.
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125. Matas OB, Martıńez-Menárguez JA, Egea G. Association of Cdc42/N-
WASP/Arp2/3 Signaling Pathway With Golgi Membranes. Traffic (2004) 5
(11):838–46. doi: 10.1111/j.1600-0854.2004.00225.x

126. Chen JL, Lacomis L, Erdjument-Bromage H, Tempst P, Stamnes M. Cytosol-
Derived Proteins are Sufficient for Arp2/3 Recruitment and ARF/coatomer-
Dependent Actin Polymerization on Golgi Membranes. FEBS Lett (2004)
566(1-3):281–6. doi: 10.1016/j.febslet.2004.04.061

127. May RC, Caron E, Hall A, Machesky LM. Involvement of the Arp2/3
Complex in Phagocytosis Mediated by FcgammaR or CR3. Nat Cell Biol
(2000) 2(4):246–8. doi: 10.1038/35008673
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