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Epigenetic reprogramming at estrogen-receptor
binding sites alters 3D chromatin landscape
in endocrine-resistant breast cancer
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Endocrine therapy resistance frequently develops in estrogen receptor positive (ER+) breast

cancer, but the underlying molecular mechanisms are largely unknown. Here, we show that

3-dimensional (3D) chromatin interactions both within and between topologically associating

domains (TADs) frequently change in ER+ endocrine-resistant breast cancer cells and that

the differential interactions are enriched for resistance-associated genetic variants at CTCF-

bound anchors. Ectopic chromatin interactions are preferentially enriched at active enhancers

and promoters and ER binding sites, and are associated with altered expression of ER-

regulated genes, consistent with dynamic remodelling of ER pathways accompanying the

development of endocrine resistance. We observe that loss of 3D chromatin interactions

often occurs coincidently with hypermethylation and loss of ER binding. Alterations in active

A and inactive B chromosomal compartments are also associated with decreased ER binding

and atypical interactions and gene expression. Together, our results suggest that 3D epi-

genome remodelling is a key mechanism underlying endocrine resistance in ER+ breast

cancer.

https://doi.org/10.1038/s41467-019-14098-x OPEN

1 Epigenetics Research Laboratory, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia. 2 St. Vincent’s
Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia. 3 Cancer Theme, The Kinghorn Cancer Centre, Sydney, NSW 2010,
Australia. 4 Department of Translational Molecular Medicine, John Wayne Cancer Institute, Santa Monica, CA, USA. 5 Breast Cancer Molecular
Pharmacology Group, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Wales CF10 3NB, UK. *email: s.clark@garvan.org.au

NATURE COMMUNICATIONS |          (2020) 11:320 | https://doi.org/10.1038/s41467-019-14098-x | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-2902-9371
http://orcid.org/0000-0002-2902-9371
http://orcid.org/0000-0002-2902-9371
http://orcid.org/0000-0002-2902-9371
http://orcid.org/0000-0002-2902-9371
http://orcid.org/0000-0001-7490-0114
http://orcid.org/0000-0001-7490-0114
http://orcid.org/0000-0001-7490-0114
http://orcid.org/0000-0001-7490-0114
http://orcid.org/0000-0001-7490-0114
http://orcid.org/0000-0003-1915-3683
http://orcid.org/0000-0003-1915-3683
http://orcid.org/0000-0003-1915-3683
http://orcid.org/0000-0003-1915-3683
http://orcid.org/0000-0003-1915-3683
http://orcid.org/0000-0001-5925-5030
http://orcid.org/0000-0001-5925-5030
http://orcid.org/0000-0001-5925-5030
http://orcid.org/0000-0001-5925-5030
http://orcid.org/0000-0001-5925-5030
mailto:s.clark@garvan.org.au
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Inappropriate reprogramming of the estrogen receptor (ER)
signalling network in mammary epithelial cells initiates neo-
plastic transformation and drives ER-positive (ER+) breast

cancer1. ER+ breast cancer patients will receive long-term
endocrine therapies, including tamoxifen and fulvestrant, to
inhibit the ER-signalling pathways on which their tumours are
dependent2. Tamoxifen is one of the selective estrogen receptor
modulators (SERM) and acts as an antiestrogen in the mammary
tissue whereas fulvestrant is a selective estrogen receptor
degrader (SERD) and acts by binding to the estrogen receptor
and destabilising it3. Endocrine treatment significantly reduces
the relapse rate by almost 50%; however, around 33% of patients
treated with endocrine therapy develop endocrine resistance and
relapse within 15 years of first receiving treatment4. The mole-
cular factors that define endocrine response in ER+ breast
cancer patients remain poorly understood. Recent research
suggests that global reprogramming of estrogen-responsive
regions of the genome can modulate endocrine sensitivity and
contribute to the onset of ER+ breast cancer and the acquisition
of endocrine resistance5–7. We also reported that differential
DNA methylation at estrogen-responsive enhancers is associated
with endocrine response in breast cancer6, raising the possibility
that dynamic three-dimensional (3D) chromatin remodelling of
ER-mediated enhancer−promoter interactions could potentially
underlie the development of endocrine resistance in breast
cancer. However, these and related studies6,8 did not directly
interrogate the role of 3D genome architecture in association
with such alterations.

Chromosome conformation capture (Hi-C) interaction maps
provide information on multiple levels of 3D chromatin structure
and three main layers of genome organisation have been descri-
bed to date9,10. First, at the level of single genes, the genome is
organised into local enhancer–promoter interactions. Second, the
genome is segmented into topologically associated domains
(TADs) that are ~1Mb in size and encompass multiple genes and
regulatory elements10,11. TADs are conserved and largely invar-
iant between different cell types, while the chromatin interactions
within TADs are more tissue specific12–14. Finally, at the higher
level, chromatin interactions and TADs are organised into
functionally distinct compartments, comprising large regions that
are either A-type (active) or B-type (inactive)9.

Here, we characterise the 3D chromatin organisation in
endocrine-sensitive and endocrine-resistant ER+ breast cancer
cell lines. We show that 3D epigenome remodelling is a key
mechanism associated with endocrine resistance that consists of
aberrant DNA methylation and differential ER-bound enhancer
−promoter interactions.

Results
Differential interactions associate with altered expression. To
initially address if 3D epigenetic remodelling is associated with
endocrine resistance, independent of the class of endocrine
therapy, we performed in situ Hi-C experiments in parental
endocrine-sensitive ER+ MCF7 cells, tamoxifen-resistant
(TAMR)15 cells and fulvestrant-resistant (FASR)16 cells (Sup-
plementary Table 1). Multidimensional scaling analysis of Hi-C
contact maps revealed high dissimilarity between MCF7, TAMR
and FASR genomes (Fig. 1a). As a control to ensure that the
differences in the chromatin contacts were associated with
endocrine resistance, and not due to long-term culture, we per-
formed Hi-C on MCF7 cells, grown without exposure to endo-
crine therapy, at three time points; start (T0), culture mid-point
(3 months: T3) and late culture (6 months; T6). MDS analyses of
Hi-C contact maps at multiple resolutions (5Mb, 1Mb and
100Kb) show that all the MCF7 cells, including the public Hi-C

MCF7 data17 cluster away from the resistant derivatives TAMR
and FASR (Supplementary Fig. 1a), irrespective of the time in
culture.

Next to identify the differential chromatin interactions between
the parental MCF7 cells and endocrine-resistant cells we used the
diffHiC method18, and found 981 significantly different interac-
tions between MCF7 and tamoxifen-resistant TAMR cells
(diffHiC, FDR < 0.05, Supplementary Data 1) and 2596 signifi-
cantly differential interactions between MCF7 and fulvestrant-
resistant FASR cells (diffHiC, FDR < 0.05, Supplementary Data 2)
at 20 kb resolution. Differential interactions were more often lost
with the development of fulvestrant resistance (62% are MCF7-
specific), while there were similar numbers of differential
interactions lost and gained in the tamoxifen-resistant cells
(46% are TAMR-specific) (Fig. 1b). The majority of differential
interactions detected in TAMR cells were not present in FASR
cells (Fig. 1b), potentially consistent with the different mode of
action between tamoxifen and fulvestrant and the different
pathways to development of endocrine resistance in these two
models15,16.

Since 3D chromatin interactions bring distal regulatory
elements, such as enhancers into close proximity of their target
genes, we explored whether differential interactions gained and
lost in endocrine resistance include direct enhancer−promoter
interactions. We integrated the differential chromatin interac-
tion data with chromatin state information based on five ChIP-
seq marks (H3K27ac, H3K4me1, H3K4me3, H2AZac and
H3K27me3) using chromHMM19. Interestingly, all differential
interactions were significantly enriched for enhancer and
promoters, as well as CTCF sites, regardless of the TAMR or
FASR treatment regime (Fig. 1c). However, gained chromatin
interactions in TAMR and FASR cells showed higher enrich-
ment of active enhancer marks (H3K4me1 and H3K27ac),
compared to lost interactions (Supplementary Fig. 1b). Similarly
there was increased enrichment of the active promoter mark
H3K4me3 at gained interactions in TAMR and FASR cells
relative to MCF7 cells (Supplementary Fig. 1b).

Differential interactions are frequently associated with altered
expression of the genes they connect20,21. Therefore, to address
whether differential interactions present in endocrine-resistant
cells are associated with deregulation of gene expression, we
identified genes located at anchors of differential interactions and
compared their expression between MCF7 cells and TAMR and
FASR cells (Supplementary Data 3). We found that differentially
expressed genes were enriched for pathways known to be
associated with endocrine resistance (e.g. estrogen response)
and cancer (e.g. EMT, angiogenesis) (Supplementary Fig. 1c).
Differential interactions in FASR cells overlapped promoters of
2069 genes and loss of interactions in these cells was associated
with decreased expression of 213 genes (Fig. 1d). Gain of
interactions was associated with increased expression of 170
genes (Fig. 1e). In TAMR cells, 500 genes were located at
differential chromatin interactions. Loss of interactions resulted
in significant decrease in gene expression, with 50 genes
downregulated (Supplementary Fig. 1d), while gained interactions
were associated with increased expression of 21 genes (Supple-
mentary Fig. 1e). Overall, in both TAMR and FASR cells, lost and
gained interactions were enriched for differentially expressed
genes (FDR < 0.05) (chi-square test P < 0.001) with most of the
genes located at anchors of lost interactions being downregulated,
and genes located at ectopic/gained interactions being upregu-
lated. Interestingly, genes present at differential chromatin
interactions in TAMR cells were often enriched for similar Gene
Ontology terms as genes present at differential interactions in
FASR cells. This included transcription, cell−cell adhesion and
G2/M transition (Supplementary Fig. 1f). Additionally, some of
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the enriched GO terms were specific to either TAMR or FASR.
Specifically, genes at TAMR differential interactions were related
to Erbb2 signalling pathways, response to estradiol and Wnt
receptor signalling, and FASR-specific differential interactions
were enriched for terms related to apoptosis, MAPK cascade, cell
division and migration (Supplementary Fig. 1f).

Figure 1f shows a representative example of differential
interaction that is lost in both TAMR and FASR cells as
compared to MCF7 cells. In MCF7 cells, the active promoter of
the GREB1 gene is connected via strong long-range interactions
with a putative distal active enhancer and the GREB1 gene is
strongly expressed. In TAMRs and FASRs these distal enhancers
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become poised or are lost and only local interactions are present
at the GREB1 gene locus, and the GREB1 gene is inactive (Fig. 1f
and Supplementary Fig. 2a). Notably, expression of GREB1 is a
predictive biomarker for breast cancer endocrine resistance22,23

and low expression of GREB1 is associated with reduced relapse-
free survival in 742 patients with ER+ breast cancer treated with
endocrine therapy24 (logrank P= 0.0056) (Fig. 1g). Figure 1h
shows an example of a PCNT gene locus, where multiple local
interactions between the PCNT promoter and intragenic
enhancers are gained in FASR cells as compared to MCF7 cells.
This is associated with an increase in PCNT expression in FASR
(Fig. 1h and Supplementary Fig. 2b). High expression of PCNT is
also significantly associated with reduced relapse-free survival in
ER+ breast cancer patients treated with endocrine therapy24

(logrank P= 0.025) (Fig. 1i). Further examples demonstrating the
association between differential interactions, change in chromatin
states and gene expression in FASRs are presented in Supple-
mentary Fig. 2c, d. Examples of enhancer−promoter interactions
in TAMR cells that are lost (Supplementary Fig. 2e, f) or gained
(Supplementary Fig. 2g, h), and are associated with change in
chromatin and deregulation of gene expression are also shown.
Together the data show that new enhancer and promoter
interactions occur in both tamoxifen- and fulvestrant-resistant
cells that are associated with differential expression of genes they
connect.

SNVs at CTCF sites associate with loss of interactions. By
integrating single-nucleotide variation (SNV) data obtained from
whole genome sequencing (WGS) with differential interactions
identified in TAMR and FASR cells, we investigated whether
SNVs uniquely present in endocrine-resistant cells could directly
alter individual differential 3D interactions. Using MuTect2, we
defined putative endocrine resistance-associated SNVs as variants
present only in TAMR/FASR cells and absent in parental MCF7
cells (see Methods and Supplementary Table 2). We then gath-
ered the coordinates of SNVs associated with endocrine resistance
(14,652 in TAMR and 15,381 in FASR) and annotated their
location in relation to genes. Both in TAMR and FASR cells,
~60% of resistance-associated SNVs mapped to intergenic
regions, ~35% to introns and ~1% to coding exons (182 in TAMR
and 139 in FASR) (Supplementary Fig. 3a). By estimating the
somatic mutation rate of SNVs in each 100 kb bin of the genome,
we found that anchors of gained differential interactions in
TAMR and FASR cells have elevated levels of SNVs as compared
to matched, randomised regions (see Methods and ref. 25)

(Supplementary Fig. 3b). Anchors of differential interactions that
were lost in TAMR and FASR cells were depleted for SNVs as
compared to random regions (Supplementary Fig. 3b). Similarly,
we observed that SNVs were highly enriched at differential
interactions that were lost in TAMR and FASR cells, but depleted
at gained interactions (Fig. 2a), suggesting that SNVs are involved
in loss of differential chromatin interactions in ER+ endocrine-
resistant cells. To establish the putative mechanism of SNVs role
in differential interactions, we first investigated the distribution of
endocrine-resistance-associated SNVs across the epigenome. We
determined that the SNVs in TAMR cells are enriched at DNase
hypersensitive sites (DHS) (ENCODE), while FASR SNVs did not
show genome-wide enrichment (Supplementary Fig. 3c). To
capture SNVs in regulatory elements, we assessed the enrichment
of SNVs at a total of 85 transcription factors binding sites using
ReMap database26. We observed that resistance-associated SNVs
were strongly enriched at HSF1, NCOA1/2/3, ESR1, CTCF and
FOXA1 binding sites in both TAMR and FASR cells (Fig. 2b).
Additionally, SNVs in TAMR cells were highly enriched at AR
and RAD21 biding, while SNVs in FASR cells were enriched at
GATA3 (Fig. 2b).

Previous studies have shown that genetic mutations at CTCF
binding sites can alter the long-range chromatin loops and TAD
boundaries anchored by these sites27–30. Therefore, we next
overlapped resistance-specific SNVs present at anchors of
differential interactions with CTCF ChIP-seq peaks lost in
TAMRs or FASRs and identified 28 resistance-associated SNVs
located at lost CTCF binding sites and associated with differential
interactions in TAMRs and 46 resistance-associated SNVs in
FASRs. In both TAMR and FASR cells, more resistance-
associated SNVs were located at anchors of interactions that
were lost in resistant cells, as compared to interactions that were
gained (Fig. 2c). All of identified SNVs were located within the
CTCF ChIP-seq peak that is lost, but only three (one in TAMRs
and two in FASRs) were directly located within the CTCF motif
(Fig. 2d), suggesting that genetic perturbation close to CTCF sites
also leads to a decrease in interactions. Figure 2e shows an
example of putative resistance-associated SNVs on chromosome
17, located at the anchors of differential chromatin interactions
present in MCF7 cells that are lost in FASR cells (Fig. 2e). One of
these SNVs (rs201722399) is located within the CTCF motif that
is strongly bound by CTCF in MCF7 cells, but loses its binding in
FASR cells (highlighted in orange and in the zoomed-in view).
Additionally, three other resistance-associated SNVs are present
that are located at CTCF binding sites (highlighted in yellow).

Fig. 1 Differential enhancer−promoter interactions and gene deregulation. a Multidimensional scaling plot (MDS) of the top 1000 interactions for each
individual Hi-C replicate (MCF7, TAMR and FASR) at 20 kb resolution. b Pie chart showing overlapping anchor regions between differential interactions
identified in TAMR vs. MCF7 diffHiC and FASR vs. MCF7 diffHiC analysis. c Differential interactions (DIs) enrichment for chromatin states based on
ChromHMM segmentation and transcription factor binding at lost and gained differential interactions in TAMR and FASR cells as compared to MCF7
cells. Asterisks represent the significance of fold-change enrichment at observed vs. random regions (permutation test, SD, n= 2). ***P value < 0.001,
**P value < 0.005, *P value < 0.05. d Volcano plot (−log10FDR vs. log2 fold change) of all genes present at anchors of lost differential interactions between
FASR and MCF7 cells. Source data are provided as a Source Data file. e Volcano plot (−log10FDR vs. log2 fold change) of all genes present at anchors of
gained differential interactions between FASR and MCF7 cells. Source data are provided as a Source Data file. f Representative example demonstrating the
association between enhancer−promoter interactions lost in TAMR and FASR cells as compared to MCF7 cells and decreased expression of GREB1 gene.
Numerous interactions between active enhancers and active promoter of GREB1 gene are present in MCF7 cells. In TAMR and FASR cells this region is
occupied by poised enhancers and the long-range interaction present in MCF7 cells is lost. CTCF ChIP-seq track is shown. g Kaplan−Meier curves
displaying relapse-free survival for 742 patients with ER+ tumours receiving endocrine treatment based on GREB1 gene expression. Patients with tumours
with high expression of GREB1 are shown in red and those with low expression are shown in black. P value as indicated, log rank test. h Representative
example demonstrating the association between enhancer−promoter interactions gained in FASR cells as compared to MCF7 cells and overexpression of
PCNT gene. Long-range interactions between distant enhancer and promoter of PCNT gene are present in FASR cells and absent in MCF7 cells. CTCF ChIP-
seq track is shown. i Kaplan−Meier curves displaying relapse-free survival for 742 patients with ER+ tumours receiving endocrine treatment based on
PCNT gene expression. Patients with tumours with high expression of PCNT are shown in red and those with low expression are shown in black. P value as
indicated, log rank test.
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Further examples of SNVs located at anchors of differential
interactions on chromosome 4 and 5 that are within CTCF
binding sites in TAMR and FASR cells are shown in
Supplementary Fig. 3d, e. Together these data support a direct
link between genetic alterations at CTCF motifs and loss of CTCF
binding and loss of interactions.

To demonstrate the potential role of endocrine-associated
SNVs at differential interactions on gene regulation, we defined
candidate target genes based on detected interactions between
SNVs and gene promoters. This resulted in 33 candidate target
genes at 74 resistance-associated SNVs located at lost CTCF
binding sites and associated with differential interactions in both

a b

dGained DIs

Lost DIs

TAMR
SNVs at 

lost 
CTCF

FASR
SNVs at 

lost 
CTCF

*

*

*

c

0.0

TAM
R

FASR
FASR

TAM
R

0.5

1.0

1.5

2.0

2.5 Lost DIs Gained DIs

Canonical CTCF Motif

G to T substitution (chr4:12679431) TAMR vs. MCF7

G to A substitution (chr5:16438189) FASR vs. MCF7

D
I f

ol
d-

ch
an

ge
 e

nr
ic

hm
en

t f
or

re
si

st
an

ce
-a

ss
oc

ia
te

d 
S

N
V

s

CCDC144B TRIM16L PRPSAP2 GRAP GRAPL EPN2 MAPK7 SLC47A1SLC47A2ULK2 AKAP10 SPECC1 CCDC144CP

[0–1.61]

[0–1.61]

[0–1.61]

CTCF(Zf) CTCF(Zf) CTCF(Zf) CTCF(Zf) CTCF(Zf) CTCF(Zf) CTCF(Zf) CTCF(Zf) CTCF(Zf) CTCF(Zf) CTCF(Zf) CTCF(Zf) CTCF(Zf) CTCF(Zf) CTCF(Zf) CTCF(Zf)

MCF7 CTCF 1
MCF7 CTCF 2

FASR CTCF
CTCF Motif

18,600 kb 19,200 kb 19,600 kb 20,000 kb 20,400 kb

Chromosome 17

MCF7 Hi-C Rep1
10 kb

MCF7 Hi-C Rep2
10 kb

FASR Hi-C Rep1
10 kb

FASR Hi-C Rep2
10 kb

e

30.43%
(14)

69.56%
(32)

32.14%
(9)

67.86%
(19)

HSF1

NCOA1

NCOA2
ESR1

CTCF

FOXA1

NCOA3
AR

RAD21

GATA3

0

1

2

3

4 TAMR

FASR

* *

*

** *
*

*
*

*

*
*

*39

17
1

23 27

77

22
3

95 41

81

34
2

17
4

10
2

13
2

19
8

50 67

21

69

74 10
1

16
7 67

11
3

*
*

*

*

Reverse:

18
1

A to G substitution (chr17:186948656)

A to G substitution (chr17:186948656) FASR vs. MCF7

SNVs (MuTect2)
FASR vs. MCF7

MCF7 CTCF 1
MCF7 CTCF 2

FASR CTCF

CTCF Motif

*

[0–1.61]

[0–1.61]

[0–1.61]

CTCF(Zf)

18,695 kb

*

SNVs (MuTect2)
FASR vs. MCF7

S
N

V
 fo

ld
-c

ha
ng

e 
en

ric
hm

en
t

fo
r 

T
F

 b
in

di
ng

 s
ite

s

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-14098-x ARTICLE

NATURE COMMUNICATIONS |          (2020) 11:320 | https://doi.org/10.1038/s41467-019-14098-x | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


TAMRs and FASRs, including 29 protein-coding genes (Supple-
mentary Data 4). Importantly, out of these, 9 genes were
differentially expressed in TAMR cells and 15 were differentially
expressed in FASR cells (Supplementary Fig. 3f) (t test with
Benjamini−Hochberg FDR). Most candidate target genes inter-
acted with only one SNV, but three genes interacted with more
than two SNVs, including ZNF622 on chromosome 5, which
interacts with three SNVs in FASR cells (Supplementary Fig. 3e).
Our analyses provides a list of putative target genes for future
functional validations and illustrates the power of using Hi-C to
link genetic variants to potential target genes.

Differential interactions occur at altered ER binding sites. We
next asked if anchors of differential interactions are enriched for
binding motifs of other known transcription factors by using in
silico motif analysis with Homer (see Methods). We found that in
tamoxifen resistance, interactions lost in TAMR cells mainly
occurred at regions of ERE, SOX2, FOXA1 and HOX cluster
(HOXB13 and HOXD13) binding motifs, while interactions
gained in TAMR were present at ZNF143, OCT4, FOXA1 and
RUNX2 binding motifs (Fig. 3a). This is in agreement with the
current model in which tamoxifen resistance results in aberrant
ER signalling throughout the genome31. Additionally, ZNF143
has been recently suggested as a cofactor in regulation of chro-
matin looping32. In fulvestrant resistance, interactions lost in
FASR were mainly present at SOX6, NRF2 and ATF3 binding
motifs, while gained interactions were enriched for OTX2 and
SMAD4 binding motifs (Supplementary Fig. 4a). Interestingly,
differential interactions in both models of endocrine resistance
occur commonly at c-Myc binding motifs (Fig. 3a and Supple-
mentary Fig. 4a), confirming an important role for c-Myc acti-
vation in the overall development of endocrine resistance, as
previously suggested in early breast carcinogenesis model33,34 and
patient outcome studies35. To further validate the in silico pre-
dictions, we assessed the enrichment of transcription factor (TF)
binding in MCF7 cells26 at anchors of differential interactions.
We observed large number of significantly enriched TF at dif-
ferential interactions (P value < 0.001 and FC > 2, permutation
test) (Supplementary Data 5). ESR1, MYC, CTCF, NR2F1,
FOXA1 and PgR were most commonly observed. Out of 22
transcription factor motifs identified in in silico analyses, public
ChIP-seq data were available for seven TF. Out of these six (i.e.
MYC, NRF2, ARTN2, FOXA1, ESR1, PgR) showed significant
observed/expected enrichment for binding at anchors of differ-
ential interactions, validating our in silico predictions. Interest-
ingly, ZNF143 binding was not enriched at anchors of differential
interactions, despite strong prediction for its motif at both gained
and lost interactions in TAMRs. This is consistent with its role as
a cofactor instead of pioneer factor at chromatin loops32.

Estrogen receptor is the defining and driving transcription
factor in the majority of breast cancers and its target genes dictate
endocrine sensitivity status of ER+ breast cancer cells36. Long-

term culture of MCF7 cells with fulvestrant is associated with a
complete suppression of estrogen receptor signalling31, which is
maintained after development of resistance (ESR1 logFC=−4.31,
FDR < 0.001, Fig. 3b), suggesting that it is not directly participat-
ing in the development and maintenance of fulvestrant resistance.
However, in tamoxifen resistance, ESR1 expression is decreased
but still present (logFC=−2.09, FDR < 0.001) (Fig. 3b) after the
cells become resistant, consistent with previous work that showed
many changes in ER-regulated signalling and ER binding in
TAMR cells5,7,37. To test whether remodelling of ER binding is
also associated with the formation of differential interactions that
are altered in endocrine resistance, we utilised ER ChIP-seq data
from MCF7 and TAMR cells37. We compared ER binding sites
between MCF7 and TAMR cells and determined a subset of ER
binding sites that were gained in TAMR, lost in TAMR or
common in both MCF7 and TAMR (see Methods). We identified
14,002 common ER binding sites between the two cell types, with
15,447 ER binding sites unique to MCF7 cells (i.e. lost in TAMRs)
and 5395 ER binding sites unique to TAMR cells (i.e. gained in
TAMRs) (Fig. 3c). Differential interactions gained in TAMR were
highly enriched for gained ER binding, and depleted for lost ER
binding sites and interactions lost in TAMR were enriched for
lost ER binding events (Fig. 3d and Supplementary Fig. 4b). Both
lost and gained differential interactions showed a significant
enrichment at common ER binding sites between MCF7 and
TAMR cells (Fig. 3d). We next examined the proportion of
differential interactions that are present at altered and common
ER binding sites and observed that 234 of interactions gained in
TAMR were located at gained ER binding sites and 307 of
interactions lost in TAMR were located at lost ER binding sites
(Fig. 3e). Interestingly, ER-bound differential interactions gained
in TAMR cells were strongly enriched for several Gene Ontology
terms relating to epidermal growth factor receptor signalling
pathway (Fig. 3f). Epidermal growth factor receptor/ErbB2 gene
expression is significantly increased in TAMR cells as compared
to MCF7 (logFC= 5.6, P value < 0.0001). This is in agreement
with previous studies showing ER-mediated repression of ErbB2
is a hallmark of tamoxifen sensitivity in breast cancer38.

Methylation associates with ER loss and enhancer interactions.
Previously we have shown that DNA hypermethylation in
endocrine-resistant cells is associated with loss of ER binding at
enhancer regions6. To confirm this result genome-wide, we
characterised the DNA methylation patterns in MCF7, TAMR
and FASR cells using whole genome bisulphite sequencing
(WGBS). As shown previously6, we observed marked DNA
hypermethylation in TAMR cells as compared to parental MCF7
cells with 90% of differentially methylated regions (DMRs)
showing an increase in methylation, whereas in FASR cells only
20% of the DMRs were hypermethylated. We next asked whether
these endocrine-resistance-specific changes in DNA methylation
are associated with differential ER binding and differential

Fig. 2 SNVs associate with loss of CTCF binding and loss of interactions. a Differential interactions (DIs) enrichment for SNVs identified by MuTect2 in
TAMR and FASR genomes as compared to MCF7 genome. Asterisks represent the significance of fold-change enrichment at observed vs. random regions
(permutation test). *P value < 0.005. The numbers of DIs located within each specific region are presented in the respective column. b Endocrine-
resistance-associated SNVs fold-change enrichment for transcription factor binding sites from ReMap v.2 2018. The numbers of SNVs located within each
specific binding site are presented in the respective column (*P value < 0.005). c Proportion of resistance-associated SNVs associated with loss of CTCF
binding at anchors of gained or lost differential interactions in endocrine-resistant cell lines as compared to MCF7 cells. d Three different resistance-
associated SNVs affecting the CTCF binding motif at anchors of differential interactions in TAMR and FASR cells. Arrow points to a nucleotide substitution
in the CTCF motif obtained from Homer. e MCF7 (top) and FASR (bottom) Hi-C interactions map at 10 kb resolution on chromosome 17 showing a
differential interaction, which is lost in FASR cells and associated with an SNV (rs201722399) located within a CTCF binding motif (marked with black
arrow) that is lost in FASR cells (highlighted in orange and in the zoomed-in view). Additional three resistance-associated SNVs are located within this
region that overlap a CTCF binding site (highlighted in yellow).
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interactions at these altered ER-bound regions. In TAMR cells
hypomethylated DMRs are strongly enriched at ER binding sites
gained in TAMR cells (Fig. 4a). Conversely regions that gain
methylation in TAMR cells are enriched at ER binding sites that
are lost in TAMR cells as compared to MCF7 (Fig. 4a). To further
confirm this relationship between aberrant ER binding and DNA

methylation, we plotted an average methylation profile around
gained and lost ER binding sites in TAMR and MCF7 cells
(Fig. 4b). We observed a genome-wide decrease in methylation in
TAMR cells at ER sites that were gained, while loss of ER binding
was associated with increased methylation (Fig. 4b, left panel).
The opposite association was observed around gained and lost ER
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binding and methylation in MCF7 cells (Fig. 4b, right panel). We
then investigated if the association between DNA methylation
and ER binding is maintained in clinical samples. Using ER
ChIP-seq binding in primary breast cancers from patients with
different clinical outcomes (nine “Responders” vs. nine “Non-
responders” and three “Metastatic tumours”), we identified ER
binding sites, which were lost in non-responders (n= 14,553) and
gained in non-responders (n= 1662). We then examined the
DNA methylation profiles from primary (i.e. endocrine-sensitive)
and metastatic (i.e. endocrine-resistant) breast tumours around
lost and gained ER binding sites that were located at the
ERE motif. We observed a significant gain of methylation in
metastatic samples at ER binding sites lost in non-responders
(Mann−Whitney P value= 0.0106) and an overall loss of
methylation at gained ER binding sites (not significant) (Sup-
plementary Fig. 4c).

Next, we interrogated our Hi-C data to determine whether
altered ER binding found at regions of DNA hypermethylation
leads to altered chromatin interactions in endocrine-resistant
cells. Figure 4c, d and Supplementary Fig. 4g show representative
examples of ER-bound differential enhancer−promoter interac-
tions between TAMR and MCF7 cells, associated with altered ER-
enhancer DNA methylation. For example, the enhancer region of
the NCOR2 gene, which gains methylation in TAMR cells, shows
concomitant loss of ER binding and altered chromatin interac-
tions at this region (Fig. 4c). Hypermethylation at the ER-
enhancer regions where chromatin interactions are lost in the
TAMRs relative to MCF7 cells can be observed in a zoomed-in
view of each of the identified DMRs. A gain of methylation is also
observed at some of these loci in ER+ endocrine-resistant clinical
tumour samples (n= 4) as compared to matched primary
tumours from the same patients (n= 4) (Fig. 4c and Supple-
mentary Fig. 4d). Similarly, the ESR1 (Fig. 4d and Supplementary
Fig. 4e) and MSI2 (Supplementary Fig. 4f−h) gene loci exemplify
a hypermethylated DMR, which is associated with loss of local
interactions and located at an ER-bound enhancer region in
TAMRs and ER+ endocrine-resistant clinical tumour samples as
compared to their matched primary tumours. However, there is
large variability in DNA methylation observed between patient
samples at each of the CpG sites within the shown DMRs. In
some cases where there is hypermethylation in the primary
tumour, intrinsic or de novo methylation at these sites may be
suggested, which impacts the susceptibility to acquire endocrine
resistance6,36. These data support that DNA hypermethylation
we observe in endocrine-resistant cells, including clinical samples,
is associated with loss of ER binding and differential chromatin
interactions.

Loss of TAD boundaries associates with loss of CTCF insula-
tion. We next investigated if a higher level of chromatin 3D
architecture was also altered in endocrine resistance. We identi-
fied 2633 TADs with a median size of 720 kb in MCF7 cells. In
endocrine-resistant cells, we identified 2641 TADs with a median
size of 760 kb in TAMR cells and 2234 TADs with a median size
of 800 kb in FASR cells (Supplementary Fig. 5a). Interestingly, the
development of endocrine resistance led to significant increase in
TAD size in FASR cells (Student’s t test P < 0.0001), but not in
TAMR cells (Supplementary Fig. 5a). To quantify this genome-
wide, we analysed the correlation between directionality index
scores per 40 kb bins between TAMR, FASR and parental MCF7
cells. We observed a high overall correlation (Pearson’s R > 0.9,
P value < 0.001) between MCF7 and both TAMR and FASR cells;
however, FASR cells showed more variance in directionality index
scores compared to MCF7, suggesting larger changes in domain
organisation (Supplementary Fig. 5b, c).

We also investigated TAD boundary strength across the three
cell types. Around 10% (between 10.5 and 12.8%) of identified
significant intra-chromosomal interactions (at 40 kb resolution)
crossed TAD boundaries, which is significantly below that
expected at random for all three cell types (ANOVA P value <
0.0001) (Supplementary Fig. 5d). The frequency of TAD
boundary crossing was similar between MCF7 and TAMR cells
and increased in FASR cells compared to random (not
significant). Approximately 16% of TAD boundaries changed in
tamoxifen resistance, with 828 TAD boundaries lost and 844
gained in TAMR cells (Supplementary Fig. 5e). In fulvestrant
resistance, around 17% of TAD boundaries changed, with 1536
MCF7 boundaries lost in FASR cells and 738 ectopic FASR
boundaries gained (Supplementary Fig. 5f). Interestingly, while
we found that there was a ~34.2% overlap of new TAD
boundaries created in both TAMR and FASR cells (Fig. 5a),
there was ~77.8% overlap in the TAD boundaries that were lost in
both TAMR and FASR cells as compared to MCF7 (Fig. 5b).

Generally we found that all stable and altered TAD boundaries
displayed known characteristics of TAD organisation, with
significant enrichment for CTCF binding, active promoter and
enhancer histone marks (H3K4me3, H2AZac and H3K27ac) and
no significant enrichment of polycomb-repressed histone mark
(H3K27me3) (Supplementary Fig. 5g). However, TAD bound-
aries that were commonly lost in both endocrine-resistant cell
types showed reduced enrichment for CTCF binding, while CTCF
occupancy in MCF7 cells was enriched at these regions (Fig. 5c).
Moreover, commonly gained TAD boundaries showed signifi-
cantly higher enrichment for CTCF binding in TAMR and FASR
cells, while in MCF7 cells CTCF binding was significantly
depleted at these regions (Fig. 5c). This suggests that redistribu-
tion of CTCF may contribute to alterations in TAD boundaries in
endocrine-resistant cell lines. An example is presented on
chromosome 3 (Fig. 5d and Supplementary Fig. 5h), where in
MCF7 cells this region is organised into three TADs and CTCF
binding is significantly enriched at TAD boundaries compared to
within the domains. The TAD boundary is lost in both TAMR
and FASR cells and is associated with loss of CTCF binding at the
region where two TADs are merged. This change can be observed
in all replicates of the Hi-C data (Supplementary Fig. 5h). An
example of a TAD boundary, which is gained only in FASRs,
can be observed at a region on chromosome 4 (Fig. 5e and
Supplementary Fig. 5i). This region is segmented into three
distinctive TADs in MCF7 cells; however, in FASR cells this
region is segmented into five sub-TADs. ChIP-seq binding shows
large clusters of CTCF binding sites positioned at regions where
TAD boundaries are present and increased CTCF binding is
associated with the ectopic TAD boundaries. Altogether, while we
observed minimal changes in TAD architecture to be associated
with development of endocrine resistance, those that changed
were focussed at regions of altered CTCF binding.

Compartment structure reflects expression and ER binding.
Hi-C data can also be analysed to segregate the genome into
either A-type or B-type compartments, which are associated with
open and closed chromatin respectively and differential gene
expression9,12,39. We first asked if the development of endocrine
resistance affects genome segmentation. Each genome was sepa-
rated into 25 kb consecutive bins, with each bin marked as type A
(active) or type B (inactive) compartments and we compared the
compartment status of each bin between the MCF7 and TAMR
and FASR cells. Overall, we observed a high correlation (Pearson
R > 0.8, P < 0.001) of compartment eigenvector values (see
Methods) between MCF7 and TAMR and MCF7 and FASR cells
(Supplementary Fig. 6a). Next, we tested the relative levels of
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histone modifications across the A and B compartments for five
different histone modifications/variants, including H3K27ac,
H3K4me1, H3K4me3, H2AZac and H3K27me3 in MCF7, TAMR
and FASR cells. We observed that the two compartment cate-
gories partition the active from inactive chromatin with A-type
compartments showing high enrichment for “active” histone

modifications H3K4me3, H3K4me1 and H3K27ac and B-type
compartments showing enrichment for “repressive” histone mark
H3K27me3 in all three cell types (Fig. 6a and Supplementary
Fig. 6b). Additionally, TADs identified in each of the cell types
were mainly located within the compartment regions (68.21% in
MCF7, 68% in TAMR and 60.65% in FASR) with most of the
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compartment boundaries overlapping a TAD boundary (58.9% in
MCF7, 57.8% in TAMR and 62.4% in FASR). The majority of
compartments remained stable between MCF7, TAMR and FASR
cells, with an average of 48.6% of the genome consisting of
consecutive, “stable” A-compartments and 49.1% consisting of
constitutive, “stable” B-compartments between MCF7 and TAMR
cells (48.2% and 47.1% in FASR cells, respectively) (Fig. 6b).
Upon tamoxifen resistance (MCF7 vs. TAMR cells), a total of
~1% of compartments switched its compartmentalisation from
A-type to B-type and ~1.3% showed alteration from B-type to A-
type (Fig. 6b). Upon fulvestrant resistance (MCF7 vs. FASR cells),
a total of ~3% of compartments switched compartmentalisation
from A-type to B-type and ~1.7% showed alteration from B-type
to A-type (Fig. 6b). Most of the observed compartment switching
was specific to the type of resistance acquired, with only four
compartments identified that switched from A to B and four that
switched from B to A in both FASR and TAMR cells.

Compartmentalisation of the genome has been previously
reported to be associated with gene expression12,17. To better
understand the link between compartment switching associated
with endocrine resistance and gene expression changes, we
investigated the respective log2 fold change RNA-seq expression
levels of the genes that were located either at “stable”
compartments (“A to A” and “B to B”) or the compartments
that switch their status (“A to B” and “B to A”) between MCF7
and TAMR cells or between MCF7 and FASR cells (Fig. 6c). The
genes located in compartments that switch from A-type to B-type
with endocrine resistance showed significantly lower expression
levels than genes located at regions that remained in the same
compartment type (“stable”) in both TAMR and FASR cells
(Fig. 6c). In contrast, the genes located in regions that switched
from B-type to A-type compartments in endocrine-resistant cells
showed a pronounced gain in gene expression (Wilcoxon rank-
sum test; P= 1.74E-05 [MCF7/TAMR] and P= 6.01E-11,
[MCF7/FASR]) compared to genes located in “stable” compart-
ments. Figure 6d shows an example of a compartment change
from A-type to B-type, which occurs in both TAMR and FASR
cells, and is associated with significant loss of gene expression in
TAMR and FASR cells (Fig. 6d). Interestingly, decreased
expression of ATRNL1 (logrank P= 0.0037) and GFRA1 (logrank
P= 0.081) is associated with reduced overall survival in a cohort
of ER+ breast cancer patients treated with endocrine therapy
(Supplementary Fig. 6c, d)24. Further examples of compartment
switching in either FASR or TAMR cells are presented in
Supplementary Fig. 6e, f. Together these results demonstrate a
significant correlation between gene expression and differential
compartmentalisation upon endocrine resistance that is mostly
specific to the type of resistance acquired.

We next plotted the average compartment eigenvector values
around ER binding sites that changed in TAMR cells, as

compared to MCF7 cells. Again we observed a strong cell-type-
specific change in compartment organisation at gained and lost
ER binding, suggesting that ER remodelling in endocrine
resistance may be involved in switching between A and B
compartments (Fig. 6e). To quantify this result genome-wide, we
analysed the enrichment of different ER binding events at
different compartment switching categories. Lost ER binding sites
were highly enriched at compartments that switched from A-type
to B-type. Similarly, gained ER binding sites were enriched at
compartments that changed from B-type to A-type (Fig. 6f).
Figure 6g exemplifies a region that switches from A-type in MCF7
cells to B-type in TAMR cells and this change coincides with loss
of ER binding in TAMR cells at the PTPRM gene locus. This
change in compartment structure is associated with increased
expression of PTPRM in TAMR cells (Fig. 6h). High expression of
PTPRM is also significantly associated with reduced relapse-free
survival in ER+ breast cancer patients treated with endocrine
therapy24 (logrank P= 0.025) (Fig. 6h). An example of a B to A
compartment switch that is associated with gain in ER binding in
resistant cells is illustrated in Supplementary Fig. 6g. Together our
results show a significant association between ER binding,
compartment structure and gene expression and highlights the
potential role of large-scale compartment changes in altered
expression of ER-regulated genes with endocrine resistance.

Discussion
Previous studies have shown that chromatin interactions differ
between normal mammary epithelial and breast cancer cells17

and ER binding is involved in long-range enhancer−promoter
interactions40. Here we specifically ask how ER+ endocrine
resistance affects the 3D chromatin organisation in breast cancer
cells and what is the relationship with alterations in the genome
and epigenome. Using in situ Hi-C we generated high-resolution
3D genome maps in two well-studied endocrine-resistant cell
lines, FASR and TAMR, in comparison to the parental endocrine-
sensitive cell line MCF7. Our multi-level analyses of 3D genome
structure reveal alterations in long-range chromatin interactions
(Fig. 7a), topologically associated domains (Fig. 7b) and finally A
and B compartment profiles (Fig. 7c). We show that alterations to
3D genome architecture in the endocrine-resistant cells are
enriched for active enhancers, active promoters and ER binding
and, moreover, are frequently associated with epigenetic and
genetic alterations, including hypermethylation or mutation of
CTCF sites. These results provide evidence that 3D chromatin
structure in ER+ breast cancer cells undergoes significant
remodelling during development of endocrine resistance,
regardless of the mode of endocrine treatment.

Maintenance of ER signalling is critical for the success of
endocrine treatments and development of resistance is associated

Fig. 5 Loss of TAD boundaries associates with decreased CTCF insulation. a Overlap between TAD boundaries that were gained in TAMR and FASR cells
as compared to MCF7 cells. b Overlap between TAD boundaries that were lost in TAMR and FASR cells as compared to MCF7 cells. c CTCF binding
enrichment at stable and altered TAD boundaries, compared to random, distance-matched regions in three cell types. Asterisks represent the significance
of fold-change enrichment at observed vs. random regions (permutation test **P value < 0.001; *P value < 0.05). The numbers of CTCF binding sites
located within each specific region are presented in the respective column. d Representative example of a lost TAD boundary in endocrine-resistant cells.
Hi-C interaction heatmaps visualised in JuiceBox for chromosome 3 for MCF7, TAMR and FASR cells aligned with CTCF ChIP-seq showing segmentation
into TADs. Arrow marks a TAD boundary present in MCF7 cells and marked by high CTCF binding, which is lost in TAMR and FASR cells. Loss of TAD
boundary is associated with loss of CTCF insulation at this region in TAMR and FASR cells. Per replicate data are shown in Supplementary Fig. 5h. Stable
CTCF binding at TAD boundaries is marked by arrow as control loci. e Representative example of a gained TAD boundary in endocrine-resistant cells. Hi-C
interaction heatmaps visualised in JuiceBox for chromosome 4 for MCF7 and FASR cells aligned with CTCF ChIP-seq showing segmentation into TADs.
Arrow marks a region where three large domains in MCF7 cells are split into multiple sub-TADs in FASR cells. Ectopic TAD boundaries are associated with
increased CTCF insulation at these regions in FASR cells. Per replicate data are shown in Supplementary Fig. 5i. Stable CTCF binding at TAD boundaries is
marked by arrow as control loci.
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with loss of ER expression36 or ER mutations41. Upon develop-
ment of tamoxifen resistance in MCF7 cells (TAMR cells), we
observed a significant loss of ESR1 mRNA expression and
reprogramming of ER binding sites across the genome. In
fulvestrant-resistant cells (FASR), ESR1 gene becomes silenced,
with almost complete loss of expression. In our previous work, we
found that hypermethylation at ER-responsive enhancers is an
important mechanism of endocrine resistance6. Here, we suggest

that differential ER-bound enhancer−promoter interactions
contribute to an underlying mechanism of endocrine resistance,
where aberrant DNA methylation dynamically alters the ER-
regulated enhancer−promoter interactions thus resulting in
suppression of ER signalling pathways. Notably, ER-bound
enhancer regions that gain methylation in TAMR cells are also
frequently hypermethylated in endocrine-resistant tumour sam-
ples. High-resolution chromatin interactions maps allowed us to
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show that this ER reprogramming in endocrine resistance is
associated with rewiring of ER-bound interactions between active
enhancers and promoters. Acquisition of novel ER-bound
enhancer−promoter interactions is associated with aberrant
expression of their target genes, with many of these target genes
being involved in ER-signalling and coupled with patient’s out-
come. This observation expands on the previously suggested
model in which ER is “pushed” to different sites in the genome
during the development of endocrine resistance, which results in
overall reprogramming of the ER binding landscape and aberrant
gene activation1. Importantly, by investigating the underlying

genetic sequence in endocrine-resistant cells, we provide sub-
stantial evidence for the involvement of SNVs in the alteration of
chromatin interactions and gene expression and provide a link
between non-coding genetic variants and their target genes.

Topologically associating domains (TADs) are known to be
common between multiple cell types; however, they can undergo
significant alterations in cancer cells20,21,42–44. Comparison of
TADs between MCF7 and endocrine-resistant cells revealed a
minimal number of altered domains in the TAMR and FASR
genomes (Fig. 7b). The two studied endocrine-resistant cell lines
commonly lost TAD boundaries, while gain of new TAD

Fig. 6 Compartment structure reflects expression and ER binding. a Average histone modification profiles over A and B compartments in MCF7 cells
showing clear separation in active (A-type) and in-active (B-type) chromatin. b Pie chart showing the compartment changes in TAMR (left) and FASR
(right) genomes as compared to MCF7 cells. “A” and “B” denote the open and closed compartments, respectively. “A to A” represents compartments that
are open in both cell types, “B to B” represents compartments that are closed in both cell types, “A to B” denotes compartments that are open in MCF7
cells, but become closed in TAMR or FASR cells and “B to A” denotes compartments that are closed in MCF7 cells, but become open in TAMR or FASR
cells. c Distribution of MCF7 vs. TAMR (left) and MCF7 vs. FASR (right) log2 fold change in gene expression for genes that change compartment status
(“A to B” and “B to A”) or remain within the same compartment type (“stable”) (*P < 0.05). P value: Wilcox rank-sum test, SD. Source data are provided as
a Source Data file. d An example of a region on chromosome 10 showing the compartment profiles at 25 kb resolution of parental MCF7 and endocrine-
resistant TAMR and FASR cells, and MCF7 and FASR RNA-seq, showing a change in expression of genes located at regions that switch from A-type
compartment status to B-type compartment status. e Histogram plot of average PC1 values around lost (left panel) and gained (right panel) ER binding
sites (ERBS) in MCF7 and TAMR cells. f Different compartment switching regions between MCF7 and TAMR cells enrichment for common and unique ER
binding compared to random, distance-matched regions. Asterisks represent the significance of fold-change enrichment at observed vs. random regions
(permutation test) **P value < 0.001. *P value < 0.05. The numbers of ER binding sites located within each specific region are presented in the respective
column. g An example of a region on chromosome 18 encompassing the PTPRM gene showing the compartment switching from “B-type” in parental MCF7
cells to “A-type” in endocrine-resistant TAMR cells that is associated with gain of ER binding in TAMR cells as compared to MCF7 cells. h PTPRM gene
expression is lost in TAMR cells as compared to MCF7 cells (Student’s t test P= 0.0021, SD, n= 3). Kaplan−Meier curves displaying relapse-free survival
for 335 patients with ER+ tumours receiving endocrine treatment based on PTPRM gene expression. Patients with tumours with high expression of PTPRM
are shown in red and those with low expression are shown in black. P value as indicated, log rank test. Source data are provided as a Source Data file.
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boundaries was more specific to each cell line, suggesting a
common mechanism related to TAD boundary insulation is
potentially altered in both resistant cell lines. Specifically, we
found that TAD boundaries that are lost in endocrine-resistant
cells were associated with a decreased CTCF insulation, demon-
strated by loss of peaks at these TAD boundaries in resistant cells,
while gain of TAD boundaries was enriched for ectopic CTCF
binding (Fig. 7b).

Previous studies demonstrated that the genome is segmented
into A and B compartments, containing active and repressed
regions, respectively9,45. Currently, it is unclear how stable the
arrangement of A/B compartments is across different cell types
and in cancer. During stem cell differentiation, around 36% of the
genome switched compartments and ~12% of compartments
switched between epithelial (MCF10A) and breast cancer (MCF7)
cells12,17. We found A/B compartments switching in endocrine-
resistant cells was associated with differential expression of genes
located within these regions and differential ER binding (Fig. 7c).
Although in total only about 2–3% of all segments switched
between A-type and B-type in TAMR and FASR genomes as
compared to MCF7, these regions contained many important
differentially expressed genes, including novel genes that have not
been associated with endocrine resistance thus far. This finding
provides further support for long-range coordinate regulation of
gene expression previously shown in prostate46,47 and breast
cancers48. Finally, regions in the MCF7 genome, which switched
from A-type to B-type compartment profile, showed a significant
loss of ER binding sites, which provides strong support for the
role of ER reprogramming in the control of chromatin interac-
tions and gene expression.

Our work provides genome-wide evidence for the role of 3D
genome structure and accompanying epigenetic, genetic and gene
expression changes occurring in breast cancer endocrine resis-
tance. However, further validation will be required to establish the
direct link between 3D chromatin alterations observed in
endocrine-resistant cell lines and specific changes that can be
used as therapeutics targets or biomarkers in patients. Future
experiments using genome editing to disrupt, delete or introduce
TAD boundary elements or anchors of chromatin interactions
will establish how identified 3D genome alterations influence the
regulation of the corresponding genes in the context of
endocrine-resistant breast cancer. Collectively, our results suggest
a key epigenetic mechanism of endocrine resistance that is
independent of the mode of therapy and offers a resource for
further studies to explore future therapeutic applications.

Methods
Cell culture. MCF7 breast cancer cells and the corresponding endocrine-resistant
sub-cell lines were kindly given to our laboratory by Dr. Julia Gee (Cardiff Uni-
versity, UK). The MCF7 cells were maintained in RPMI-1640-based medium
containing 5% (v/v) fetal calf serum (FCS). Tamoxifen-resistant MCF7 cells
(TAMR) were previously generated by the long-term culture of MCF7 cells in
phenol red-free RPMI medium containing 5% charcoal-stripped FCS and 4-OH-
tamoxifen (1 × 10−7 M; TAM). FASR MCF7 cells were generated by the long-term
culture of MCF7 cells in phenol red-free RPMI medium containing 5% charcoal-
stripped FCS and fulvestrant (1 × 10−7 M; FAS). Endocrine resistance was char-
acterised following >6 months of endocrine challenge exposure15,16. As a control,
MCF7 cells (ATCC HTB-22) were also cultured across a 6-month time course in
RPMI-1640-based medium containing 5% (v/v) FCS. All cell lines were authenti-
cated by short-tandem repeat profiling (Cell Bank, Australia) and cultured for
<6 months after authentication.

Hi-C experiments. Hi-C experiments were performed based on the in situ protocol
by Rao et al.49 with minor modifications. Single cells (5–10 × 106 total) were col-
lected and fixed with a final concentration of 1% formaldehyde for 10 min at room
temperature with shaking. Reactions were quenched with glycine (0.125M) and
incubated for 5 min at room temperature, followed by 10 min incubation on ice.
Cells were centrifuged for 10 min at 800 × g at 4 °C, then washed in ice-cold
phosphate buffered saline followed by an additional centrifugation. Nuclei were

extracted by incubation in 1 mL ice-cold lysis Buffer (10 mM Tris, pH 8.0, 10 mM
NaCl and 0.2% NP-40 Igepal), supplemented with protease inhibitor cocktail for
2 h on ice with occasional mixing. Cells were then dounce homogenised by 30 slow
strokes with pestle B. Nuclei were collected by centrifugation at 4 °C for 10 min and
2500 × g, then washed twice in ice-cold 1× NEB 3.1 buffer. Nuclei were re-
suspended in 1× NEB 3.1 buffer with 10% SDS and incubated at 37 °C for exactly
60 min with shaking before adding 20% Triton X-100, re-suspending and incu-
bating for another 60 min at 37 °C. Chromatin was digested overnight with 750U
NcolII restriction enzyme at 37 °C. DNA ends were repaired and marked with
biotin-14-dATP (final concentration 28.4 µM) using Klenow Large Fragment DNA
polymerase at 37 °C for 45 min. DNA was then centrifuged at 600 × g for 6 min at
4 °C and supernatant was removed, leaving ~50 µL reaction volume including
pellet. Ligation was performed in a final volume of 1000 µL, using 2000U of T4
Ligase, supplemented with 100 µL T4 DNA Ligase Buffer, 100 µL of 100% Triton
X-100, 10 mg/mL BSA and nuclease-free water. Ligations were performed at 16 °C
for 4 h prior to Proteinase K treatment overnight at 68 °C. DNA was purified twice
with phenol chloroform isoamyl alcohol. After the second extraction, DNA was
precipitated with 3M sodium acetate and 100% ethanol overnight at −20 °C. DNA
was collected by centrifugation at 18,000 × g for 20 min at 4 °C and washed twice
with 80% ethanol. DNA was finally re-suspended in a final volume of 50 µL
nuclease-free water.

Hi-C library preparation and sequencing. Hi-C libraries were prepared using
NEBNext Nano II DNA Library Preparation kit for Illumina and customised
protocol. Hi-C DNA was sonicated using a Covaris instrument to an average
molecular weight of 300–500 bp. Fragmented DNA was repaired and blunt ends
were dA-tailed using the NEBNext DNA Library Prep Master Mix Set for Illumina
according to the manufacturers’ instructions. A size selection was performed using
AMPureXP Beads. Biotin-tagged DNA was bound to MyOne Streptavidin C1
beads using 2× Binding Buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA, 2M NaCl)
for 20 min at room temperature with rotation. Biotin-tagged DNA coupled with
MyOne Streptavidin C1 beads was isolated using a magnetic particle concentrator.
Beads were washed twice with 200 µL 1× Binding Buffer and once with 200 µL 1×
Tween Wash Buffer (5 mM Tris-HCl pH 8.0, 0.5 mM EDTA, 1M NaCl, 0.05%
Tween). Beads were re-suspended in a final volume of 65 µL of water and adapters
were ligated to DNA ends using the NEBNext Ultra II DNA Library Prep kit. PCR
enrichment was performed using DNA bound to the MyOne Streptavidin C1 beads
and NEBNext Multiplex Oligos for Illumina (Set 1 or 2) using the NEBNext Ultra
II DNA Library Prep kit with eight cycles for library amplification. PCR products
were purified using 1× volume of AMPure XP beads and eluted in 50 µL nuclease-
free water. Hi-C libraries were then quantified using the KAPA Library Quantifi-
cation Kit for Illumina and qualified using the Bioanalyzer 2100 (Agilent Tech-
nologies). Optimal concentrations to get the right cluster density were determined
empirically. Resulting libraries were run on the HiSeq 2500 (Illumina) platform
configured for 100 bp paired-end reads according to the manufacturer’s
instructions.

Hi-C data processing. We prepared three replicates of NcoI-digested in situ Hi-C
libraries from parental, endocrine-sensitive ER+ MCF7 cells, tamoxifen-resistant
TAMR cells and fulvestrant-resistant FASR cells. Raw Hi-C sequence data were
mapped and processed using the HiC-Pro pipeline (version 2.9.0)50. Data were
mapped to hg38/GRCh38. Statistics on the number of read pairs, uniquely mapped
di-tags, valid interactions and interactions in cis per replicate are presented in
Supplementary Table 1. Valid pairs files at 10 kb, 20 kb, 40 kb, 150 kb and 1Mb
resolution from HiC-Pro were transformed to JuiceBox-ready files using hic-
pro2juicebox script from HiC-Pro. Multidimensional-scaling plots were con-
structed using plotMDS function applied to diffHiC processed filtered and
normalised counts for each bin pair for each library. The distance between each
pair of libraries is computed as the “leading log fold change”, defined as the root-
mean-square average of the top 1000 most variable bin pairs at 5 Mb, 1 Mb and
100 kb resolution. Interaction data were normalised using KR Observed/Expected;
KR-normalised scores were visualised in WashU Epigenome Browser51 or JuiceBox
(version 1.6.2)49,52.

Detecting differential interactions (DIs). Differential interactions between par-
ental MCF7 and endocrine-resistant TAMR and FASR cells were identified with
Bioconductor diffHiC (v.1.6) R package18. Paired-end reads were aligned to hg38/
GRCh38 with Bowtie2 (v.2.3.2), low-abundance reads were filtered out and the
resulting data were normalised for direct, trended or CNV-driven biases. The
statistical framework of the edgeR package was used on the final InteractionSet
consisting of 145,109 regions to model the biological variability and to test for
significance of identified differential genomic interactions. Differential interactions
(DIs) were identified at 20 kb resolution with FDR cutoff of 5%. Differential
interactions identified in TAMR/MCF7 diffHiC are presented in Supplementary
Data 1 and FASR/MCF7 diffHiC in Supplementary Data 2.

Detecting TAD boundaries. Topologically associated domains were identified
using a “domain-caller” pipeline developed by Bing Ren10 in MATLAB (v.
R2015b). The algorithm is based on the imbalance between the upstream and
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downstream contacts of a region that is created by TAD. This imbalance is an
indicator of whether a region is in the topological domain, at the boundary, or far
away from a TAD and it can be quantified in a statistic called directionality index
(DI). Domain-caller algorithm uses hidden Markov model (HMM) to determine
the underlying bias state for each locus (upstream, downstream, none) and then
these HMM calls are used to infer TADs as continuous stretches of downstream
bias states followed by upstream bias states. For each cell type, a combined list of
TADs was generated at 40 kb resolution and TAD boundaries were obtained by
creating 10 kb flanks around start or end of each TAD. Similarly oriented
boundaries within 40 kb from each other that were present in both cell lines were
considered to be constitutive domain boundaries and remaining boundaries were
considered to be cell-type-specific domain boundaries. The 40 kb window was
chosen to mimic the uncertainty of the domain boundary position due to the 20 kb
resolution of the domain calling as described previously20,53.

Detection of chromosomal A/B compartments. To identify chromosomal
compartments from Hi-C data, we performed eigenvalue decomposition of the Hi-
C correlation matrix using the PCA analysis in Homer package (version 4.8)54. The
resolution was set to 25 kb and the window size to 100 kb. Compartments were
defined as regions of continuous positive or negative PC1 values using the find-
HiCCompartments.pl tool in Homer. To detect which compartment is the open
“A-type” and which is the closed “B-type,” the genome-wide gene density was
calculated to assign the “A-type” and “B-type” compartmentalisation. To identify
genomic regions that switch between two compartment types, we used correlation
difference tool (getHiCcorrDiff.pl) with findHiCCompartments.pl tool in Homer.

ChIP-seq experiments and analysis. ChIP-seq experiments for MCF7, TAMR
and FASR cell lines were performed as previously described55. Antibodies used
were H3K4me3 (Active Motif #39159), H3K4me1 (Active Motif, #39297),
H3K27ac (Active Motif, #39133), H2AZac (Abcam, #ab18262), H3K27me3 (Mil-
lipore, #07-449) and CTCF (Millipore #07-729). ER ChIP-seq data for cell lines
MCF7 and TAMR and clinical samples of ER+ breast cancer tumours were
obtained from GEO (GSE32222)37. All ChIP-seq raw datasets were mapped and
processed through the NGSane framework (v.0.5.2.0)56. Reads were mapped to
genome build hg38/GRCh38 with bowtie v.1.1.0 and mismatched (>3 mismatched
bases), multiple mapping and duplicate reads were excluded from downstream
analysis. Chromatin modification peaks (H3K4me1, H3K4me3, H3K27ac,
H2AZAC and H3K27me3) and transcription factor peaks (CTCF, ER) were
identified using the Macs2 software (2.1.0) under the default parameters (band
width= 300, model fold= [5, 50], qvalue cutoff= 5.00e-02). Consensus peaks
were identified by intersecting Masc2 peaks obtained from each replicate using
bedtools intersect (v.2.25.0). ChromHMM19 (v.1.12) was applied to the chromatin
modification-aligned reads to simultaneously partition the genome of each cell line
into ten chromatin states. Binary files were created using BinarizeBam. In all, 8–15
models were created with LearnModel using default parameters. We chose the ten-
state model as it displayed the most informative states while maintaining a man-
ageable number of pairwise state transitions for interpretability. Pairwise combi-
nations were counted per 200 bp bin (default bin size for ChromHMM) along the
genome. DiffBind 2.4.8R package was used to perform differential binding analysis
of ER ChIP-seq peaks between MCF7 and TAMR cell lines as well as between
clinical samples from Responders (n= 9) and Non-responders (n= 9 and n= 3
Metastatic samples) (GSE32222)37. ChIP-seq binding profiles were generated using
NGSane 0.5.256 or deepTools57 and normalised to library size. Sequencing, map-
ping and peak calling information is provided in Supplementary Data 6.

Whole genome sequencing experiments. DNA was extracted from MCF7,
TAMR and FASR cells and libraries prepared using the Nextera TruSeq Illumina
kit. Genomic DNA was sheared, end repaired, ligated with barcoded Illumina
sequencing adapters, amplified and size selected. Resulting Illumina sequencing
libraries were then qPCR quantified, pooled and sequenced with 150 bp paired-end
reads using Illumina HiSeq X Ten sequencers. Mean coverage across all samples
was 34.59-fold (range 26.77–38.56).

Single nucleotide variant analysis. Sequenced reads were aligned to human
reference genome hg38 using bwa-mem v.0.7.958 and the GATK pipeline v.3.5 was
used to identify duplicate reads, perform local re-alignment at indels, base quality
score recalibration. Mapping statistics were calculated using QualiMap v.2.1.359.
The somatic mutations (single nucleotide variants) were called between parental
MCF7 and endocrine-resistant TAMR or FASR pairs with MuTect2 as previously
described60 using default parameters. In MuTect2 analysis all variant sites present
in the dbSNP v.146 resource and COSMIC v79 coding and non-coding variants are
used to aid filtering of known germline variants, leaving somatic and unspecified
variants. MuTect2 pipeline does not automatically filter-out dbSNP variants and
only uses the dbSNP overlap to require more evidence through a more strict LOD
threshold (–dbsnp_normal_lod 5.5). VCF files generated by MuTect2 were further
filtered using vcflib (https://github.com/vcflib/vcflib). SNVs that were marked with
“PASS” in the MuTect2 output file were included in further analysis of somatic
endocrine-resistance-associated variation. SNVs that have been previously identi-
fied in dbSNP v.146 were included if they fulfilled all the requirements of MuTect2

to be called somatic60, including that they were not previously reported as germline
(dbSNP SAO flag “germline”). Information on identified single-nucleotide variants
in each of the resistant cell line is provided in Supplementary Table 2.

Whole genome bisulphite sequencing experiments and analysis. Library pre-
paration and indexing were carried out as described in the CEGX TruMethyl WG
user guide v2 with minor improvements as described in Nair et al.61. Sequencing
reads from WGBS data were aligned to the human genome using version 1.2 of an
internally developed pipeline Meth10X (https://github.com/luuloi/Meth10X61).
The pipeline backbone is built based on workflow control Bpipe62 version 0.9.9.2
which mainly helps to make automation, parallelism, restarting jobs and integra-
tion with cluster resource managers easier following the pipeline structure of
P3BSseq63. Meth10X takes raw bisulphite reads in fastq files as inputs and produces
an html report of all necessary metrics of bisulphite quality control and a tsv file of
DNA methylation of 28 million CpG as rows and samples as columns. Briefly,
adaptor sequences were removed using Trim Galore v. 0.2.8 in paired-end mode
following prep kit guide. Bwa-meth version 0.20 (https://github.com/brentp/bwa-
meth) was then used to align reads to hg38 using bwa version 0.7.13 (https://
github.com/lh3/bwa). The generated bam files are merged and marked duplication
by Picard tools 2.3.0 (http://broadinstitute.github.io/picard). The merged bam files
are checked with Qualimap 2.2.164 for quality as well as all metrics of WGBS.
MethylDackel (https://github.com/dpryan79/MethylDackel) and Biscuit (https://
github.com/zwdzwd/biscuit) are used to call DNA methylation and SNP. Samtools
version 1.265 is used to manipulate bam files.

Clinical sample acquisition. All specimens were obtained from SJHC pathology
and were de-identified FFPE tissue blocks. The studies were approved by John
Wayne Cancer Institute IRB and an external IRB, WIRB USA. Specimens were
coded and blinded to the individuals running the assays.

RNA-seq experiments and analysis. RNA was isolated from MCF7, TAMR and
FASR cells at ~80% confluence using Trizol. The poly(A)-selected RNA libraries
were prepared using Illumina TruSeq RNA Sample Preparation kit, spiked-in with
ERCC controls and paired-end sequencing was performed using HiSeq2500
instrument. 100 bp paired-end reads for MCF7, TAMR and FASR cell lines in
biological triplicate were processed using Trim Galore (version 0.11.2) for adapter
trimming (parameter settings:–fastqc–paired–retain_unpaired–length 16) and
STAR (version 2.4.0j) for mapping reads to the hg38/GRCh38 human genome
build with GENCODE v21 used as a reference transcriptome (parameter
settings:–quantMode TranscriptomeSAM–outFilterMatchNmin 101). Differential
gene expression (DEG) analysis was performed using edgeR 3.18.166,67 and TMM
normalisation was applied to normalise for RNA composition68. Genes with logFC
> 4 and FDR < 0.05. RNA-seq tracks were generated using bedtools v.2.2269 gen-
omeCoverageBed to create normalised.bedGraph files and bedGraphToBigWig
(USCS utils) to create.bigwig files.

Motif analysis. To assess the enrichment of transcription factor binding motifs in
the anchors of differential interactions, we used “findMotifsGenome.pl” function of
the HOMER package (v.4.7) at FDR < 10%. Enrichment was obtained by com-
paring to matched, randomised regions.

Statistical tests. Enrichment observed/expected analyses were performed using
Genome Association Tester (GAT v.1.3.570) with n= 1000 permutations. Fold-
change enrichment was estimated by comparing to a set of randomly generated
matched background regions. Z scores were calculated for each genomic annota-
tion using R package genomation v.1.8.071. Correlation analyses were performed
using R utility cor.test. DeepTools 2.1.057 was used to plot average profiles for
ChIP-seq binding. The Mann–Whitney–Wilcoxon tests and chi-square test were
used for two-group non-parametric comparisons.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All datasets used in this study are summarised in Supplementary Table 3. Raw and
processed Hi-C, ChIP-seq, WGBS, WGS, RNA-seq and ChIP-seq data that support the
findings of this study have been deposited in the NCBI Gene Expression Omnibus (GEO)
with the primary accession codes GSE118716 and GSE130916. All other relevant data
supporting the key findings of this study are available within the article and its
Supplementary Information files or from the corresponding author upon reasonable
request. The source data underlying Figs. 1d, e, 3b, 6c, h and Supplementary Figs. 1d, e, 2,
3f, 4c−e, h, 5a, g are provided as a Source Data file. A reporting summary for this Article
is available as a Supplementary Information file.

Code availability
All software used is published and/or in the public domain. All pipelines and R scripts
used in the study are available at https://github.com/JoannaAch/MS_2019.
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