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Abstract

Rab small G-proteins control membrane trafficking events required for a multitude of processes 

including secretion, lipid metabolism, antigen presentation, and growth factor signaling. Rabs 

recruit effectors that mediate diverse functions including vesicle tethering and fusion. However, 

many mechanistic questions about Rab-regulated vesicle tethering are unresolved. Using 

chemically defined reaction systems we discovered that Vps21, a Saccharomyces cerevisiae 

ortholog of mammalian endosomal Rab5, functions in trans with itself and with at least two other 

endosomal Rabs to directly mediate GTP-dependent tethering. Vps21-mediated tethering was 

stringently and reversibly regulated by an upstream activator, Vps9, and an inhibitor, Gyp1, which 

were sufficient to drive dynamic cycles of tethering and de-tethering. These experiments reveal an 

unexpected mode of tethering by endocytic Rabs. In our working model, the intrinsic tethering 

capacity Vps21 operates in concert with conventional effectors and SNAREs to drive efficient 

docking and fusion.

Vesicle and organelle tethering are reversible recognition events that precede docking and 

bilayer fusion. Tethering also mediates transient contacts that allow materials such as lipids 

to be passed between organelles 1. The most broadly deployed regulators of tethering are 

small G-proteins of the Rab and Arf families2,3. These molecular switches, inactive when 

GDP-bound, become activated upon GTP binding. Rabs are activated by guanosine 
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nucleotide exchange factors (GEFs) that catalyze GDP expulsion to allow GTP binding, and 

are inactivated by GTPase accelerating proteins (GAPs) that trigger the hydrolysis of GTP to 

GDP. Active GTP-bound Rabs recruit effector proteins that execute diverse functions 

including cytoskeletal transport, activation of lipid kinases, vesicle tethering, and SNARE-

mediated fusion.

Abundant evidence indicates that many Rabs and Rab effectors promote membrane 

tethering. However, tethering activity has generally been inferred from in vivo experiments 

or from assays using cell extracts or organelles. In these complex reaction systems, hundreds 

or thousands of molecular species are present, with some directly mediating tethering while 

others act as upstream regulators that promote tethering but do not directly mediate it. For 

example, mammalian Rab5 regulates the homotypic tethering and fusion of endosomes4–9. 

Rab5 promotes phosphatidylinositol-3-kinase activity that in turn generates binding sites for 

other molecules that mediate tethering, including the Rab5 effector EEA110–12. EEA1 

binding to 3-phosphoinositides is essential for its tethering activity in vivo. However, 

mutations in EEA1 that abrogated its high-affinity interactions with Rab5 did not interfere 

with EEA1 membrane association or endosome tethering. Instead, these mutations acted 

downstream of tethering to block homotypic fusion13. Thus, while both Rab5 and EEA1 are 

unambiguously involved in endosome tethering, it remains uncertain whether Rab5 

promotes tethering mainly by serving as a mechanical anchor for EEA1 (i.e., Rab5 is part of 

the core tethering machinery), or whether the major role of Rab5 is to send instructive 

signals to other core tethering factors. There are similar uncertainties for the yeast Rab5 

ortholog Vps21 and its effectors, and for the vast majority of other Rab-effector systems as 

well.

A central challenge in biochemistry is to reconstitute key biological processes using purified 

components, so as to define minimal reaction systems and explore their modes of action 

(e.g., refs. 14,15,16,17). To date, only a handful of proteins have rigorously been shown to 

mediate tethering in chemically defined systems. These include GMAP-210, an effector of 

Arf1 at the Golgi18, and HOPS, an effector of Ypt7 at the yeast vacuole19–21. For the vast 

majority of effectors currently known to promote tethering, it remains uncertain whether 

their modes of action are mechanical or regulatory. Thus, the development of quantitative 

approaches to dissect the activities of putative tethering factors, especially factors that 

interact with Rabs, is a major goal for the field. While developing a general set of methods 

for this purpose, we discovered that Vps21 and other endosomal Rab proteins in 

Saccharomyces cerevisiae not only bind classical effectors22–27 but undergo GTP-regulated 

Rab-Rab interactions that directly drive tethering in vitro, in the complete absence of 

effectors. These findings reveal an unanticipated intrinsic activity of endosomal Rabs in S. 

cerevisiae, and imply the presence of an additional layer of membrane-membrane 

recognition events in endosomal membrane traffic.

Results

Vps21-GTP tethers in the absence of Rab effectors

To directly and quantitatively evaluate the tethering capabilities and mechanisms of Rabs 

and effectors, we developed liposome-based in vitro systems. Native Rab proteins generally 
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consist of a compact globular N-terminal GTP-binding domain, and a C-terminal 

intrinsically disordered hypervariable domain of ~30 residues. Rabs associate with 

membranes through two geranylgeranyl lipids which are covalently attached to the extreme 

C-terminus of the hypervariable domain. In our experiments, this lipid anchor was replaced 

by a C-terminal polyhistidine tag, which binds avidly to a synthetic lipid, Ni2+-NTA-DOGS 

((Ni2+-1,2-diolyeoyl-sn-glycero-3-[(N(5-amino-1-carboxypentyl) iminodiacetic 

acid)succinyl]). Liposomes (~100 nm diameter) doped with Ni2+-NTA-DOGS were 

prepared by extrusion, and the liposomes were then decorated with C-terminally His10-

tagged Rabs (Fig. 1a; see also ref. 28). Liposome tethering was measured by quasielastic 

light scattering (QLS), which reports tethering in real time as an increase in effective particle 

diameter. The response of the QLS system was validated using mixtures of extruded 

liposomes of different diameters (see Supplementary Methods).

Unexpectedly, we observed robust GTP-dependent increases in effective particle diameter 

when liposomes were decorated with the Saccharomyces cerevisiae endosomal Rab Vps21, 

in the absence of any additional effector proteins (Fig. 1b). This particle size increase was 

nearly eliminated when Vps21 was preloaded with GDP rather than GTP, or when 

liposomes were decorated with the vacuolar-lysosomal Rab Ypt7. Because the particle size 

increases reported by QLS might have been due to either liposome tethering or membrane 

fusion, we examined aliquots from the liposome preparations by negative stain transmission 

electron microscopy (TEM; Fig. 1c). TEM revealed massive clusters of Vps21- GTP-

decorated liposomes, but no there was no evident size increase of individual liposomes 

within the clusters. Similarly, light microscopic observations of suspensions of fluorescently 

labeled liposomes in aqueous buffer (Fig. 1d) revealed thousands of visible clusters in the 

presence of Vps21-GTP. Importantly, after extended incubations, the diffuse fluorescent 

background of individual, fast-diffusing Vps21-GTP liposomes was markedly depleted, 

indicating that by 40 min of incubation most of the liposomes in the starting population had 

become tethered within large clusters. These observations indicate that the Vps21-GTP 

liposome clusters seen by TEM -formed in aqueous suspension, prior to deposition on the 

grid and negative staining. In sharp contrast to the tethering seen with Vps21-GTP, 

liposomes decorated with Vps21-GDP, or liposomes decorated with Ypt7 bound to either 

GDP or GTP (Figs 1c, d) did not form large clusters when examined by light or electron 

microscopy. Thus, three independent lines of evidence (QLS, TEM, and fluorescence 

microscopy) indicate that Vps21-GTP drives efficient Rab-selective and GTP-dependent 

liposome tethering in vitro.

Tethering occurs at physiological Rab surface densities

To further characterize Vps21-mediated tethering, we titrated Rabs and lipids (Figs. 2a, 2b 

and Supplementary Fig. 1). The Ni2+ chelator lipid NTA-DOGS is anionic. The 

nitrilotriacetic acid (NTA) moiety has a net charge of −3, and binds Ni2+ with 1:1 

stoichiometry29. Ni2+-NTA-DOGS-doped liposomes, like endocytic organelles, therefore 

have a net negative charge. Over a range of Ni2+-NTA-DOGS concentrations, strong 

tethering signals were observed at His10-Vps21 surface densities of 1500–7000 · μm−2. In a 

comparable in vitro reconstitution of liposome tethering by another small G protein, Arf1, 

and its effector GMAP, tethering was observed at Arf1 densities of 8000–14000 · μm−2 and 
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GMAP densities of 700–7000 · μm−2 (ref. 18). Notably, we found that tethering was sharply 

responsive to the Vps21-GTP surface density (Supplementary Fig. 1a; Hill coefficient ≥3.5, 

95% confidence limit). A simple interpretation of this dosage hypersensitivity is that 

tethering occurs through a cooperative mechanism that entails the concerted action of 

several Vps21-GTP complexes. Tethering was dramatically reduced when liposomes were 

decorated with inactive Vps21-GDP (Figs 2a, 2b and S1b). At very high ratios of Vps21-

His10 to Ni2+-NTA-DOGS tethering was inhibited, probably through competitive inhibition 

by unbound Vps21-His10 (Supplementary Fig. 1b). With the vacuolar Rab Ypt7 

(Supplementary Fig. 1c), tethering was never observed at any concentration of Ni2+-NTA-

DOGS or Ypt7. This result is consistent with the demonstrated requirement for the HOPS 

effector complex in Ypt7-mediated tethering19–21 and underscores the selectivity of Vps21-

mediated tethering.

We next sought to determine whether Vps21-mediated tethering occurs within a 

physiologically relevant span of surface densities. To provide a criterion for the onset of 

tethering, we defined the critical surface density for tethering as the density of surface-

bound Rab at which the effective particle diameter, measured by QLS, increases to twice the 

effective diameter of bare, untethered control liposomes. Nominally, at the critical surface 

density each liposome is on average tethered to one other liposome. The critical surface 

density for tethering by Vps21-GTP was ≤1300 μm−2 (Figs. 2a and 2b, insets). This density 

corresponds to ~40 Vps21 molecules on the surface of a 100 nm diameter endosome, or ~10 

molecules on a 50 nm endosome. Note that these are upper-bound estimates which assume 

that every Vps21 molecule in the assay system is both active and bound to a liposome. 

Although the Vps21 surface density on endosomes in vivo is unknown, estimates are 

available for the surface densities of two other Rabs. The density of Ypt7 on the S. 

cerevisiae vacuole is ~500 μm−2, and the density of Rab3a on mammalian synaptic vesicles 

is ~1,950 μm−2 (Supplementary Methods; refs. 30–32). GTP-regulated tethering by Vps21 

therefore occurs within the physiologically relevant range of Rab surface densities. Below 

this range detectable tethering does not occur, while above this range regulation by GTP 

binding is attenuated and tethering occurs constitutively.

To further characterize the interactions that drive Vps21-mediated tethering, we performed 

QLS-based tethering assays across a range of salt concentrations (Fig. 2c, d). At sub-

physiological ionic strengths, tethering was potently inhibited. As the buffer ionic strength 

increased, the efficiency of tethering increased and then leveled off. Under all ionic 

conditions tested, GTP selectivity was observed, but the highest selectivity was at 

physiological ionic strength (150–200 mM NaCl). Inefficient tethering at low ionic strength 

could result from reduced shielding of the electrostatic repulsion between the negatively-

charged liposomes, or from decreased hydrophobic forces at protein interaction surfaces.

Rab-Rab interactions in trans drive efficient tethering

In principle, Vps21-mediated tethering might occur through either a symmetric or an 

asymmetric mechanism (Fig. 3a). In the symmetric mechanism, Vps21 anchored to opposite 

membranes would dimerize or oligomerize in trans to drive tethering. This mechanism 

depends on protein-protein contacts. In the asymmetric mechanism, a single Vps21 molecule 
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anchored to one vesicle would undergo GTP-triggered direct binding to the lipids of the 

opposite vesicle. It is also possible that both classes of mechanisms could contribute to 

Vps21-mediated tethering.

To assess these hypotheses, we employed a bead-liposome assay that allows the components 

on two tethering surfaces to be varied independently (Fig. 3b). A similar system was 

previously used to probe the binding of nucleoporin proteins to phospholipid bilayers33. 

Large (~100 μm) glutathione-agarose beads were decorated with glutathione-S-transferase 

(GST)-Rab fusion proteins. The beads were mixed with a suspension of small (~100 nm) 

fluorescent liposomes with Rab-His10 proteins. Tethering of the liposomes to the beads was 

evident by epifluorescence microscopy as a fluorescent halo at the bead’s surface (Fig. 3c). 

Using this assay we found that efficient tethering requires GTP-bound Vps21 anchored to 

both partner surfaces. Tethering did not occur when Vps21-His10 was absent (Fig. 3d) or 

when Vps21-His10 attachment to liposomes was prevented by omission of Ni2+-NTA-

DOGS (Fig. 3e). Similarly, tethered liposomes fell off of the beads when GST-Vps21 was 

dissociated from the beads by soluble glutathione (Fig. 3f). Tethering was also abrogated 

when Ypt7 replaced Vps21 on either the beads or the liposomes (Supplementary Fig. 2a). 

The inability of bead-bound GST-Vps21 to tether either bare liposomes or liposomes 

bearing Ypt7 is evidence against asymmetric tethering mechanisms in which GTP-binding 

triggers a Vps21 interaction solely by interacting with the trans bilayer. Moreover, 

substitution of GDP for GTP on GST-Vps21 (beads), on Vps21-His10 (liposomes), or both 

substantially attenuated tethering (Supplementary Fig. 2b). Thus for optimal tethering, Rabs 

on both partner surfaces must be activated. This result mirrors the symmetrical requirement 

for activated Rab5-GTP in homotypic docking and fusion of mammalian endosomes9. In 

sum, these results support models in which symmetrical Vps21-Vps21 contacts in trans are 

required for tethering. We note, however, that we have so far been unable to detect Vps21 

dimerization or oligomerization in solution-based assays (e.g., Supplementary Fig. 3). 

Together, these results suggest that restraining Vps21 on a two-dimensional membrane 

surface may increase avidity to drive tethering. It is also possible, however, that affinity 

components derived from both protein-membrane and protein-protein interactions are 

required for efficient tethering (see Discussion).

The Vps21 C-terminal linker is not required for tethering

Native Vps21, like most other Rabs, consists of a compact N-terminal GTP-binding domain 

that attaches to membranes through a disordered ~30-residue C-terminal linker bearing a 

doubly geranylgeranylated membrane anchor at its extreme C-terminus. To ascertain 

whether the Vps21 C-terminal linker contributes to tethering, we prepared a set of Vps21-

His10 mutants with truncated C-terminal linkers (Fig. 4a), and evaluated the capacity of 

these mutants to promote liposome tethering in the QLS assay (Fig. 4b). Each of the mutants 

mediated GTP-dependent tethering with efficiency equivalent to or greater than that of full-

length Vps21. Thus, the C-terminal linker domain is not directly involved in the tethering 

reaction.
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Vps21 interacts with other endosomal Rabs to drive tethering

Taken together, our biochemical studies suggest that efficient Vps21-mediated tethering 

involves a protein-protein interaction: GTP-stimulated Vps21–Vps21 association in trans. 

Unbiased yeast two-hybrid (Y2H) screens provided additional corroborating evidence that 

Vps21 interacts with itself and also with other endosomal Rabs.

In a separate project, we sought to identify new Rab-interacting proteins by performing 

systematic Y2H screens. In all of our Y2H experiments, we used low-copy rather than high-

copy vectors, and the read-out growth assays were always performed in the presence of 3-

aminotriazole, conditions that almost eliminate false positives34,35. Using the eleven S. 

cerevisiae Rabs as baits, we interrogated ordered prey arrays containing over 5000 S. 

cerevisiae open reading frames. More than 65,000 crosses yielded ~340 candidate 

interactions. Among these interactions were numerous expected Rab interactions with 

known Rab effectors (Ref. 36 and unpublished results), as well as expected interactions with 

Rab-specific chaperones including Rab GDI (GDP dissociation inhibitor), Rab escort 

protein, and Yif and Yip proteins (Supplementary Table 1). Unexpectedly, however, the 

screen repeatedly identified homotypic and heterotypic Rab-Rab interactions among 

endosomal Rabs. In our initial screens the Rab5 orthologs Vps21, Ypt52, Ypt53, and Ypt10, 

the Rab6 ortholog Ypt6, and the Rab 7 ortholog Ypt7 were detected in heterotypic and 

homotypic Rab-Rab interactions (Supplementary Table 1). Moreover, physical interactions 

among Vps21, Ypt52, and Ypt53 were independently reported in high-throughput proteomic 

surveys37, and mammalian Rab5 isoforms were independently reported to undergo GTP-

dependent dimerization38.

In focused Y2H assays using independently constructed prey vectors, most of the 

interactions detected in the high-throughput screens were reproduced and extended (Table 

S2), with the Vps21 self-interaction yielding an especially robust signal (Fig. 5; 

Supplementary Tables 2 and 3). Importantly, Vps21 interactions with itself and with other 

Rabs were restricted to wild type Vps21 and the dominant-active mutant Vps21Q66L. 

Moreover, these Y2H interactions were similar in signal strength and nucleotide selectivity 

to Vps21 interactions with its three known effectors: Vps3, Vps8, and Vac122,23,27,39. 

Neither Rab-Rab nor Rab-effector interactions were observed when either bait or prey was 

the GDP-biased mutant Vps21S21L. As expected, the Vps21S21L mutant robustly interacted 

with the Vps21 nucleotide exchange factor Vps9 (ref. 40) but not with Vps21 effector 

proteins. These Y2H data provide evidence for GTP-dependent interactions among multiple 

yeast endosomal Rab proteins and buttress our biochemical results showing that Vps21-

mediated tethering is driven by homotypic interactions between activated, membrane-

anchored Vps21 molecules.

To ascertain whether heterotypic interactions between Vps21 and other Rabs can drive 

tethering, as suggested by the Y2H results, we employed the bead-liposome assay (Fig. 6). 

Beads decorated with various GST-Rab fusions were mixed with fluorescent liposomes 

bearing Vps21-His10. In these assays (Fig. 6a), tethering was mediated by Vps21-GTP with 

Ypt53 or Ypt10, two other Rabs of the endosomal Rab5 group41. In each case, substitution 

of GDP for GTP abrogated tethering (Fig. 6b). Several other Rabs including another Rab5 
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paralog, Ypt52, did not mediate heterotypic tethering with Vps21 (Figs. 6a). We note that 

since Vps21-GTP liposomes can interact with one another, there may be competition 

between Vps21 on the liposomes and the Rabs displayed on the beads, reducing the apparent 

heterotypic tethering signal between Vps21 and any Rabs that Vps21 binds with lower 

affinity than the self-interaction. This type of competition, if it did occur, would make the 

bead-liposome assay more stringent, and could prevent detection of weaker Rab-Rab tethers. 

Taken together, the Y2H experiments and tethering assays reveal a network of GTP-

stimulated homotypic and heterotypic interactions among endosomal Rabs. A subset of 

these pairs is able to mediate GTP-dependent tethering in vitro.

Regulation of tethering by Vps21GEF and GAP

Regulation and reversibility are hallmarks of Rab-controlled tethering reactions. Upstream 

regulators of Vps21 include Vps9, a GEF40, and Gyp1, a GAP42,43. We therefore evaluated 

whether Vps9 and Gyp1TBC (the Gyp1 catalytic core) can control Vps21-mediated tethering. 

Using solution-phase assays, we first verified the catalytic activities of our Vps9 and 

Gyp1TBC preparations (Supplementary Fig. 4). We then asked whether Vps9 could stimulate 

tethering by promoting nucleotide exchange. Liposomes bearing Vps21-GDP, monitored by 

QLS, tethered when both GTP and Vps9 were added to the reactions (Fig. 7a). Next, we 

examined the reversibility of tethering. When added to pre-tethered liposomes bearing 

Vps21-GTP, the GAP Gyp1TBC efficiently reversed tethering, again with dose-dependent 

kinetics at concentrations as low as 10 nM (Fig. 7b). The catalytically inactive mutant43 

Gyp1TBC-R343K had no effect on tethering even when added at 10 μM. GTP hydrolysis is 

therefore essential for the Gyp1TBC-mediated disassembly of Vps21-GTP-mediated tethers 

(Fig. 7b).

Finally, in sequential-addition experiments, we were able to reconstitute a complete cycle of 

regulated tethering and de-tethering (Fig. 7c–e). Liposomes decorated with Vps21-GDP 

were monitored by QLS (Fig. 7c). Addition of GTP alone had no effect, but subsequent 

Vps9 addition initiated an immediate and steady increase in tethering. Addition of Gyp1TBC 

rapidly reversed Vps9-stimulated tethering. QLS-derived particle size distributions (Fig. 7d), 

and TEM analysis of aliquots taken from the same reactions (Fig. 7e) verified that Vps9 and 

Gyp1TBC can drive complete cycles of tethering and de-tethering. Thus, Vps21-mediated 

tethering in the absence of effectors is Rab-selective, GTP-regulated, completely reversible, 

and strictly controlled by upstream regulators.

Discussion

Small G-proteins orchestrate a multitude of biological processes, generally by acting 

through specialized effectors. Nevertheless, some small G-proteins have intrinsic 

capabilities that complement or enhance the activities of their effectors. In vesicle formation, 

for example, activated Arf1 and Sar1 recruit the COPI and COPII coat complexes. However, 

the N-terminal domains of these small G-proteins also interact directly with membranes to 

generate positive membrane curvature44,45. Here, we have shown that similar to Arf1 and 

Sar1, Vps21 and some other yeast endosomal Rab proteins have intrinsic as well as effector-

mediated capabilities: they can dimerize or oligomerize in trans to tether membranes in a 
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stringently GTP-dependent, tightly regulated, and fully reversible reaction. In our working 

model this intrinsic tethering mechanism would cooperate with classical Rab-effector 

mechanisms to promote membrane tethering, docking, and fusion (Fig. 8).

There are previous reports of Rab-Rab interactions. Rab5a, Rab5b, and Rab5c, the closest 

mammalian orthologs of Vps21, were detected in homotypic and heterotypic dimers by 

Y2H, and Rab5b was shown to dimerize in vitro and in vivo in an apparently GTP-

dependent manner38. Moreover, in structural studies the GDP-bound forms of Rab9 and 

Rab11a were reported to form crystallographic dimers46–48. To date, all Rabs reported to 

dimerize operate within endocytic trafficking pathways. These interactions are consistent 

with our results for yeast endocytic Rabs, raising the possibility that dimerization of 

endocytic Rabs is a more general theme. The potential for complex regulation of tethering 

through Rab-Rab interactions is underscored by our identification of Rab pairs that exhibit 

heterotypic interactions in Y2H experiments, and by our demonstration that a subset of these 

Rab pairs mediates heterotypic tethering in the liposome-bead assay. Similarly Arf1, another 

small G-protein, was reported to dimerize during vesicle formation49. However, Arf1 did 

not mediate membrane tethering except in the presence of an effector18. Dimerization of 

Arf1 therefore appears to be restricted to cis rather than trans interactions.

Our biochemical and biophysical results demonstrate that Vps21 and some other endosomal 

Rabs have an intrinsic ability to tether membranes in vitro. Nevertheless, important 

questions about the detailed mechanism of this tethering activity and its biological 

consequences remain to be answered. While our results strongly indicate that Vps21-Vps21 

interactions are involved in tethering, we have so far been unable to detect Vps21 

dimerization or oligomerization in solution phase assays using techniques including size 

exclusion chromatography and multiangle light scattering. These findings raise the 

possibility that Vps21 dimerization is augmented by as yet uncharacterized interactions 

between Vps21-GTP and the membrane. A requirement for both protein-protein interactions 

and protein-membrane interactions in GTP-triggered tethering would be reminiscent of the 

requirement for interactions between synaptotagmin and SNARE proteins, as well as 

between synaptotagmin and lipids, in Ca2+-triggered fusion50.

The relative in vivo contributions to yeast endosome tethering by intrinsic Vps21 activity 

and by more conventional Vps21-effector mechanisms are not yet characterized, and remain 

to be dissected in vivo. Such experiments will require the isolation of Vps21 mutants that 

interact with the normal complement of Rab chaperones, upstream regulators, and effectors, 

but which lack intrinsic tethering capacity. We are currently performing genetic screens to 

identify and characterize mutant alleles with these properties.

If Rabs recruit specialized effectors, some of which are tethers, what is the function of Rab-

Rab tethering? We suggest two possibilities. First, it is quite clear that there is some 

redundancy among Rabs and effectors. For example, the yeast protein Vps8 is the only 

effector of Vps21 currently known to promote tethering in vivo. Vps8 is also needed for 

biosynthetic trafficking of carboxypeptidase Y (CPY) to the vacuole. Importantly, however, 

functional defects caused by Vps8 deletion were efficiently suppressed by Vps21 

overproduction24. Conversely, Vps8 overexpression in the absence of Vps21 does not 
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appear to mediate tethering26. These results support working models in whichVps8 and Vps 

21 normally act in concert, while in the absence of Vps8, an elevated level of secondary 

Vps21-mediated tethering is sufficient to support endolysosomal traffic. This secondary 

tethering activity could be mediated by Vps21-Vps21 interactions, by Vps21 interactions 

with another effector, or by some combination of these activities.

A second possible function for Rab-Rab tethering is suggested by the fact that Rab-Rab 

tethers almost certainly operate at shorter range than classical effector-based tethers. Known 

and presumed tethers often assume extended structures that are presumed to allow vesicle 

capture and tethering over substantial distances (tens of nm). In contrast, Rab-Rab tethering 

must occur over shorter distances. Most Rabs attach to the membrane through a ~35 residue 

C-terminal disordered linker, doubly prenylated at its end. Our results show that the Vps21 

linker is not needed for tethering (Fig. 4), but it probably influences the distance between 

tethered membranes. Because disordered polypeptides act as Brownian springs, it is likely 

that Rabs interact in trans between membranes separated by ≤10 nm (Fig. 8; Supplementary 

Methods). Similarly, kinetically stable trans-SNARE complexes assemble only once docked 

membranes approach to within ~8 nm51,52, raising the possibility of a “handoff” mechanism 

whereby effector-mediated tethers promote Rab-Rab tethering, which in turn stably hold the 

membranes close enough promote the initiation of SNARE zippering and fusion (Fig. 8). In 

the cases of Rab5 and Vps21, SNARE pairing is regulated by Vps45, an SM-family protein 

recruited to the fusion site by Rab5 effector Rabenosyn-5 or its yeast ortholog 

Vac122,23,53,54. Finally, we speculate that Rab-Rab tethering might have emerged early in 

eukaryotic evolution, preceding more complex systems in which effectors brought to bear 

additional capabilities: coordination of multiple small G-proteins2,55, tethering over longer 

distances56, coupling of Rab activation to vesicle coat dynamics57, and trans-SNARE 

complex assembly and membrane fusion21,52,58.

ONLINE METHODS

Proteins

See Supplementary Methods for detailed descriptions of protein expression construct, 

expression, and purification.

Liposomes

Egg PC and Ni2+-NTA-DOGS dissolved in chloroform (Avanti Polar Lipids) were mixed, 

dried under an argon stream, and placed under vacuum overnight. For assays requiring 

fluorescent liposomes, 0.4 mol% Texas Red DPPE (Invitrogen) was incorporated into the 

lipid mixture. Lipid films were hydrated in liposome reaction buffer (20 mM HEPES · 

NaOH, pH 7.5, 150 mM NaCl, 1 mM MgCl2, and 2 mM 2-mercaptoethanol) to 2.5 mg ml−1 

before extrusion through a 0.1 μm polycarbonate filter (Avanti Polar Lipids). To change the 

ionic strength of the liposome environment, liposomes were prepared in liposome reaction 

buffer at the indicated NaCl concentrations.
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QLS tethering assay

In general, samples were prepared by incubating 100 μl of liposomes with 20 μl of 

nucleotide-loaded Rab-His10 at RT for 1 hour, then diluted to 1 ml for QLS measurement. 

See Supplementary Methods for detailed information on QLS. Nucleotide-loaded Rab-His10 

protein was prepared by incubating 4–5 mg ml−1 of Rab-His10 with a 30-fold molar excess 

of guanine nucleotide and 5 mM EDTA for 1 hour at 25–27°C in 20 mM HEPES · NaOH, 

pH 7.5, 150 mM NaCl, and 1 mM dithiothreitol. Nucleotide exchange was terminated with 

10 mM MgCl2 on ice for 15 min and free nucleotide was removed by size exclusion using a 

Micro Bio-Spin column (Bio-Rad) pre-equilibrated with liposome reaction buffer at the 

indicated NaCl concentration.

Rab membrane density was altered by incubating liposomes at varying Rab to Ni2+-NTA-

DOGS molar ratios (Supplementary Table 4). Except as indicated, liposomes contained 4.5 

mol% Ni2+-NTA-DOGS and were incubated with 20 μl of Rab-His10 at 0.067 Rab to Ni2+-

NTA-DOGS molar ratio, ≤3750 Vps21-His10 per μm2. For GEF experiments, Vps9 was 

added to 200 μl of liposomes pre-incubated with GDP-bound Vps21-His10 and diluted to 

640 μl for QLS measurement. 10 μl GTP was added to initiate tethering. For GAP 

experiments, 200 μl of liposomes pre-incubated with GTP-loaded Vps21-His10 was diluted 

to 550 μl for QLS measurement. 100 μl of Gyp1TBC or Gyp1TBC-R343K was added to initiate 

disassembly of liposome clusters. For the reconstitution of a full tethering cycle, 400 μl of 

liposomes were pre-incubated with GDP-bound Vps21-His10. The mixture was diluted to 

640 μl for QLS measurements, and GTP, Vps9, and Gyp1TBC were subsequently added, in 

order, to final volumes of 650 μl, 700 μl, and 850 μl. The concentrations of GTP, Vps9 and 

Gyp1TBC were maintained at 20 μM, 5 μM, and 10 μM, respectively, throughout the 

sequential-addition experiment.

Fluorescent tethering assay and bead-liposome tethering assay

GST-Rab coupled glutathione–Sepharose 4B beads (GE Healthcare) were prepared as 

described27,36 except that an equal volume of E. coli lysate expressing untagged Gyp1TBC 

was mixed with the Rab-expressing cell lysate to drive Rab conversion into the GDP-bound 

state. Nucleotide loading of Rabs was performed by incubating GST-Rab beads in loading 

buffer (50 mM HEPES · NaOH (pH 7.8), 100 mM NaCl, 5 mM 2-mercaptoethanol, 5 mM 

EDTA, and 500 μM guanine nucleotide) for 1 hour at room temperature. An equal volume 

of quenching buffer (50 mM HEPES · NaOH, pH 7.8, 100 mM NaCl, 5 mM 2-

mercaptoethanol, and 10 mM MgCl2) was then added to each reaction and incubated for an 

additional 15 min. Nucleotide-loaded GST-Rab beads were then washed twice with reaction 

buffer (20 mM HEPES · NaOH, pH 7.4, 125 mM NaCl, 5 mM 2-mercaptoethanol, and 5 

mM MgCl2). Fluorescent liposome tethering reactions or bead-liposome tethering reactions 

were prepared on ice by mixing 50 μl reaction buffer and 40 μl of fluorescent liposome 

suspension in the absence or presence of 50 μl of packed, nucleotide-loaded GST-Rab beads. 

6 μg of nucleotide-loaded Rab-His10 was then added to initiate tethering. The upper-bound 

density of Vps21-His10 on liposomes used for the bead assay was ≤4700 Vps21-His10 per 

μm2. Reactions were brought to room temperature, incubated for 20, 40, or 60 min, and 

imaged.
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Micrographs were acquired using a microscope (IX71; Olympus) equipped with an electron-

multiplying charge-coupled device (iXon; Andor). Epifluorescence illumination was by 

green and blue light-emitting diodes (>350-mW output) coupled to the microscope’s back 

aperture by a multimode optical fiber and driven by custom electronics. Objective lenses 

were UPlanApo 0.40 NA 10 × or PlanApoN 1.45 NA 60 ×. The microscope and camera 

were driven by iQ software (version 6.0.3.62; Andor), and micrographs were processed 

using ImageJ (version 1.36b; National Institutes of Health) and Photoshop (version 8.0; 

Adobe). For display, images were sharpened by applying unsharp masking.

Electron microscopy

For negative stain electron microscopy samples were stained with 0.75% (m/v) uranyl 

formate. Images were collected using a 100 kV transmission electron microscope (Morgagni 

M268, FEI) equipped with at Gatan bottom mount 4k × 2k charge coupled device (CCD) 

camera. Images were recorded at either 4400 × or 8900 × magnification at the specimen 

level.

Yeast two-hybrid

Genome-wide two-hybrid analysis was performed as previously reported13 in collaboration 

with the University of Washington Yeast Resource Center. Parent strains and plasmids were 

obtained from the Yeast Resource Center. Two-hybrid constructs were cloned individually 

into haploid tester strains using gap-repair and homologous recombination. Prey domains 

were cloned into the plasmid pOAD and transformed into the yeast strain PJ69-4a. Bait 

domains were cloned into pOBD2 and transformed into PJ69-4α. Clonal isolates were 

obtained and verified by PCR. Sequencing was done using dideoxy chain termination.

Focused interaction tests were performed by mating bait and prey haploid strains in 96-well 

plates which were then pinned to YPD plates supplemented with adenine using a 48-spoke 

inoculating manifold. The mating plates were grown at 30° C overnight before selecting 

diploids by replica plating onto medium supplemented with adenine but lacking tryptophan 

and leucine. Diploid colonies were grown at 30° C for two days, then replica plated to 

medium supplemented with adenine and 1.5 mM 3-amino-1,2,4-triazole (3-AT) but lacking 

tryptophan, leucine, and histidine. Plates were scored for growth after 5 days at 30° C.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
GTP-bound Vps21 tethers liposomes. (a) Experimental configuration. Full details are 

presented in the Methods and Supplementary Methods sections. (b) Liposome particle size 

distributions were measured by QLS after a 60 min incubation in the presence of the 

indicated Rab-His10 proteins, preloaded with GDP or GTP. Bars indicate mean and s.e.m. 

for 3 independent experiments. (c) TEM images of negatively stained samples taken from 

the experiment shown in panel b. (d) Liposomes were prepared as for parts a–c, except that 

Texas Red-labeled phosphatidylethanolamine lipid was incorporated. Fluorescent liposomes 

with GDP- or GTP-loaded His10-Vps21 were incubated for 20 or 40 min, and then a drop of 

the suspension was placed between two class coverslips and imaged by epifluorescence 
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microscopy (10× objective, 200 ms exposure). Brightness and contrast adjustments were 

identical for the three panels shown. Traces below the images show pixel intensities along 

the indicated line segments (dashed lines). Individual liposomes in the starting population 

are too small, and diffuse too rapidly, to be individually resolved under these conditions, and 

appear as diffuse fluorescence. Note that as tethering proceeds, the clusters grow in size and 

the fluorescent background markedly decreases, indicating that most of the individual 

liposomes in the population have entered into the tethered clusters. Images of liposomes 

decorated with GDP- His10-Vps21 are shown at 20 min incubation, and were 

indistinguishable from 40 min incubation.
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Fig. 2. 
Vps21 surface density and tethering activity. (a and b) Liposome tethering, measured by 

QLS, was examined as a function of Vps21 membrane surface density. Vps21 was loaded 

with (a) GTP or with (b) GDP. Insets show the onset of tethering at low Vps21 surface 

densities. Additional surface density data for Vps21 and Ypt7 are shown in Supplementary 

Fig. S1. (c and d) To test the effect of ionic strength, liposomes were decorated with Vps21-

GDP or -GTP at two different surface densities, and tethering was monitored by QLS in 

buffers containing the indicated salt concentrations. As in (a) and (b), the indicated Vps21 

surface densities are upper-bound estimates. Bars indicate mean and s.e.m. from 3 

independent experiments.

Lo et al. Page 17

Nat Struct Mol Biol. Author manuscript; available in PMC 2012 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Vps21 interactions in trans are required for efficient tethering. (a) Schematic diagram 

showing two possible mechanisms of Rab-mediated tethering. (b) Schematic diagram of the 

bead-liposome tethering assay. (c) GTP-loaded GST-Vps21 beads were photographed after 

incubation for 20 or 60 min in the presence of fluorescent liposomes containing 6 mol% 

Ni2+-NTA-DOGS and GTP-loaded Vps21-His10. Images are representative of nine 

independent experiments. Scale bars = 15 μm (a) and 75 μm (b–d). (d) As in panel a inset, 

but without GTP-loaded Vps21-His10. (e) As in panel a inset, but liposomes were prepared 

without Ni2+-NTA-DOGS. (f), As in panel a, except that after a 20 min incubation, 10 mM 

reduced glutathione was added (left panel), or buffer without glutathione was added (right 

panel). Samples were then incubated for 4 min more, and photographed.
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Fig. 4. 
The Vps21 C-terminal linker is not required for tethering. (a)Vps21-His10 fusion proteins 

lacking the last 10, 20, or 30 residues of the Vps21 C-terminal linker were prepared. The 

purified proteins (5 μg) were analyzed by SDS-PAGE. (b) Liposomes bearing these proteins 

were assayed by QLS for the ability to drive tethering over the indicated range of surface 

densities. Each construct was loaded with either GTP (filled symbols) or GDP (open 

symbols). Liposomes contained 4.5 mol % Ni2+-NTA-DOGS. Bars indicate mean and s.e.m. 

from 4 independent experiments.
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Fig. 5. 
Vps21-GTP interacts with known effectors and with itself in Y2H assays. A positive 

interaction in the Y2H assay is indicated by yeast colony growth on medium lacking Trp, 

Leu and His, and supplemented with 1.5 mM 3-aminotriazole. The Vps21 effectors Vac1 

(a.k.a. Pep7), Vps3, and Vps8 are positive controls for interaction selectivity with Vps21-

GTP, while Vps9 is a control for interaction selectivity with Vps21-GDP.
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Fig. 6. 
Vps21 interacts with Ypt53 and Ypt10 to drive GTP-dependent heterotypic tethering.

(a) Heterotypic Rab-Rab tethering was assayed as in Fig. 2a–f, except that beads were 

decorated with various GTP-loaded GST-Rab fusion proteins, as indicated. The bottom 

panels in each set show representative fields of beads under epifluorescence illumination. 

The top panels show fluorescence intensity profile plots of representative beads. (b) Assays 

were performed as in panel a, except that the Rabs were preloaded with either GTP or GDP, 

as indicated. Ypt6, which does not interact with Vps21, served as a negative control. Scale 

bars = 75 μm.
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Fig. 7. 
Regulation and reversibility of Vps21-mediated liposome tethering. (a) GEF-stimulated 

tethering. Tethering by GDP-loaded Vps21-decorated liposomes was measured by QLS 

following the addition of 0.2 mM GTP and varying concentrations of Vps9. Bars span mean 

+ s.e.m.; data points from three independent experiments were binned into 10 min intervals. 

(b) GAP-mediated reversal of tethering. GTP-loaded Vps21-decorated liposome tethering 

was measured by QLS following the addition of Gyp1TBC or (*) Gyp1TBC-R343K. Bars span 

mean + s.e.m.; data from three independent experiments were binned into 2 min intervals. 

(c) Regulated cycle of tethering and de-tethering. Vps21-mediated liposome tethering, 

measured by QLS, was examined during sequential addition of 0.2 mM GTP, 5 μM Vps9, 

and 10 μM Gyp1TBC. The data shown are representative of three independent experiments. 

(d) Histograms of Vps21-decorated liposome size distributions, derived from QLS, at the 

time points indicated in panel c. (e) TEM images of negatively stained samples withdrawn at 

the indicated time points from the experiment analyzed in panels c and d.
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Fig. 8. 
Model for Rab-Rab driven tethering in endosome docking and fusion. In this working 

model, three representative Rab functions are shown: classical effector-mediated tethering, 

Rab-Rab tethering, and coordination of trans-SNARE complex assembly by a Rab-mediated 

recruitment of a SNARE-binding regulator. Together, these mechanisms could in principle 

coordinate an ordered tethering, docking and fusion sequence.
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