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ABSTRACT Microbial communities are composed of populations with vastly differ-
ent abundances and levels of metabolic and replicative activity, ranging from ac-
tively metabolizing and dividing to dormant or nonviable. The 16S rRNA/rDNA ratio
is an emerging tool for evaluating cell-level metabolic activity independent of abun-
dance. In this study, we used five long-term enriched model anaerobic digestion
(AD) communities to investigate community composition, diversity, structure, and in
particular activity based on the rRNA/rDNA ratio. We cross-validated the 16S
amplicon-based results using two alternative operational taxonomic unit (OTU) for-
mation methods (conventional 97% sequence similarity and 100% sequence similar
zero-radius OTUs by UNOISE3) and compared these to metagenome-derived popula-
tion genomes and metatranscriptomes. Significant positive correlations were ob-
served between microbial total activity and abundance with both the amplicon- and
omic-based methods. All three methods revealed disproportionately high transcrip-
tion/abundance ratios for some rare taxa but lower ratios for most abundant taxa
for all the communities, which was further corroborated by the high replication rate
(iRep) of most low-abundance population genomes.

IMPORTANCE Variation in microbial activity levels is increasingly being recognized
as both an important dimension in community function and a complicating factor in
sequencing-based survey methods. This study extends previous reports that rare
taxa may contribute disproportionately to community activity in some natural envi-
ronments, showing that this may also hold in artificially maintained model commu-
nities with well-described inputs, outputs, and biochemical functions. These results
demonstrate that assessment of activity levels using the rRNA/rDNA ratio is robust
across taxonomic unit formation methods and is independently corroborated by om-
ics methods. The results also provide insight into the comparative advantages and
disadvantages of different taxonomic unit formation methods in amplicon sequenc-
ing studies, showing that UNOISE3 provides comparable microbial diversity, struc-
ture, and activity information as the 97% sequence similarity method but potentially
loses some phylogenetic diversity and creates more “phantom taxa” (which are pres-
ent in the RNA pool but not the corresponding DNA pool).

KEYWORDS anaerobic digestion, ZOTU, cellulose, population genome, rRNA/rDNA
ratio, xylan

Bioconversion of carbon and other nutrients in wastewater via anaerobic digestion
(AD) is achieved by a community of microbes (1). The composition, diversity,

structure, and metabolic activity of these microbial communities all affect how well
anaerobic digesters perform (2). Many previous studies have investigated the compo-
sition, diversity, and structure of AD microbial communities by evaluating the 16S rRNA
gene (rDNA) (3–5), while others have assessed potential metabolic capabilities by
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examining microbial metagenomes (6–8). However, DNA-based microbial community
surveys can provide information only on the total community and are unable to
discriminate between microbes with different levels of metabolic activity. While signif-
icant differences have been demonstrated between the total and active microbial
communities in full-scale anaerobic digesters based on 16S rDNA/rRNA amplicon data
(9), the activity levels of participating microbes have not been examined in detail.
Microbes can be growing (undergoing cell division), active (performing metabolic
functions but not dividing), dormant (neither dividing nor metabolizing), or recently
deceased, and thus, they participate in ecological functions to different degrees (10).

As the number of 16S rRNA transcripts in a cell is positively correlated with its
metabolic activity and/or growth rate (11–13), the metabolic state of a population of
cells could be inferred by quantitative rRNA sequencing (14). The ratio between
transcribed and genomic 16S rRNA sequences (rRNA/rDNA ratio) is a means of normal-
izing rRNA transcription against cell count, and it has been used to compare metabolic
activity between populations (15, 16). The rRNA/rDNA ratio has been used to study the
active microbial communities in aquatic (17–20), ice sheet (21), air (22, 23), soil (24–27),
and activated-sludge (28, 29) environments, but it has not yet been widely applied in
anaerobic digesters (30). Furthermore, as microbial ribosomal amplification is highly
variable across both taxonomy and ecological strategy, the rRNA/rDNA ratio may not
always be sufficient to discriminate between microbes in different metabolic states (10),
and it may be particularly prone to error in populations with a mixture of amplification
levels (31).

In previous studies, the rRNA/rDNA ratio has been calculated at the level of
operational taxonomic units (OTUs), conventionally represented as clusters of 16S rRNA
gene sequences with at least 97% sequence similarity. However, a growing number of
recent studies suggest that the 97% sequence similarity threshold does not necessarily
capture phylogenetically and ecologically homogeneous microbial populations (32, 33),
and it may underestimate species richness by grouping dissimilar taxa. This has led to
the proposal of studying taxonomic units at a single-nucleotide resolution, and they are
called “zero-radius OTUs” (ZOTUs), exact sequence variants (ESVs), amplicon sequence
variants (ASVs), features, or sub-OTUs (34–36). Because the formation of such units is
exquisitely sensitive to sequencing error, 100% sequence similarity-based methods rely
on denoising and error correction algorithmic approaches to infer accurate ESVs from
potentially noisy sequencing data (35–37). A number of packages (e.g., DADA2, Deblur,
and UNOISE3), each with its own strengths as compared previously (38), are available
to generate ESVs. These methods are best conceptualized as alternative methods of
forming taxonomic units rather than differing from conventional OTU formation merely
by the choice of the sequence similarity threshold. For example, UNOISE3 is an
algorithm that depends on the frequency of occurrence of a read, but not the
sequencing quality scores, and two parameters with preset values to infer correct
biological sequences from the erroneous ones (35). It is not currently known how well
different taxonomic unit formation methods accurately capture the composition, di-
versity, and structure of AD communities, nor how well rRNA/rDNA ratios based on
100% sequence similar taxonomic units reflect their true metabolic activity.

We have previously established five microbial AD communities capable of digesting
cellulose or xylan to CH4 at mesophilic (35°C) or thermophilic (55°C) conditions (39) and
reconstructed 107 population genomes and their transcriptional activity from com-
bined metagenomic and metatranscriptomic sequencing of these communities (40).
Because these reconstructed population genomes are not sensitive to sequence simi-
larity thresholds or minor sequencing errors, and the transcription of structural genes
is not directly dependent on variance in ribosomal amplification, these population
genomes and their transcription profiles provide another means of revealing microbial
metabolic activity, so can be used to validate the use of alternative taxonomic units and
rRNA/rDNA ratios to assess AD communities.

In this study, we sequenced 16S rDNA and rRNA amplicons from our five enriched
AD microbial communities and assessed microbial community structure and activity
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using rRNA/rDNA ratios with both the conventional OTU (97% sequence similarity) and
ZOTU (single-nucleotide resolution taxonomic unit by UNOISE3 [35]) methods. We also
used metagenomic and metatranscriptomic (mRNA) sequencing data from the same
samples to calculate transcription/abundance ratios for reconstructed population ge-
nomes, allowing us to cross-validate and identify relative biases in the 16S amplicon-
based methods.

RESULTS AND DISCUSSION
Overview of total and active communities. AD of cellulose or xylan to CH4 is

achieved by a diverse microbial community performing a range of functions at different
levels of metabolic activity. In this study, partial 16S rDNA and 16S rRNA regions were
sequenced to query the total and active microbial communities, and taxonomic units
formed with either conventional 97% sequence similarity clustering (OTUs) or denois-
ing with UNOISE3 at 100% similarity (ZOTUs). With both methods, the rDNA (total
community) and rRNA (active community) reads captured largely identical sets of
taxonomic units (see Table S1 in the supplemental material). From each sample, 83 to
268 OTUs and 86 to 263 ZOTUs were identified in both the rDNA and rRNA read sets,
accounting for �98% of the rDNA and �98% of the rRNA reads in all but one sample
(SWH-C-D15). While all samples yielded some taxonomic units that were identified in
only the rDNA or rRNA read sets, these represented �2% of the total reads for either
read set, again with the exception of SWH-C-D15. These read set-specific taxonomic
units ranged in number from 11 to 117 (OTUs) and 13 to 141 (ZOTUs) per sample. In
SWH-C-D15, a high proportion (35 to 36%) of rRNA reads contributed to OTUs or ZOTUs
that were not identified in the rDNA read set.

Taxonomic units that were detected exclusively in the rDNA read set might repre-
sent microbes that were present but not metabolically active (i.e., dormant or dead).
Conversely, taxonomic units exclusively detected in the rRNA read set represent
“phantom taxa,” where the rDNA template was not successfully identified due to either
undersampling of rDNA or the introduction of nucleotide errors during reverse tran-
scription (an error rate of �1/15,000 for reverse transcriptase) (41), PCR (an error rate
of �1/10,000 to 1/50,000 for Taq polymerase [41]), or sequencing (22). rDNA under-
sampling may be more likely in the case of rare taxa which are nonetheless highly
active and/or have high ribosomal amplification, which would yield abundant rRNA
transcripts relative to scarce rDNA genes. Either of these explanations is consistent with
the higher proportion of phantom taxa among ZOTUs (31% of ZOTUs) compared to
OTUs (11%). A single-nucleotide error introduced in PCR or sequencing and not
corrected by denoising will either create a phantom ZOTU or cause the sequence to be
misclassified into an incorrect ZOTU, where the same error may have no effect on OTUs
formed by 97% similarity clustering. Similarly, a single rRNA read from a taxon that did
not yield an rDNA read due to undersampling might not create a phantom taxon if the
read was included in a 97% similar OTU for which at least one complementary rDNA
sequence was detected, but such concealment is not afforded by 100% similar ZOTUs.

Community diversity and structure. While 80% of filtered reads were successfully
clustered into OTUs, only 48% were assigned to ZOTUs. Despite this, OTU and ZOTU
richness across all samples did not differ significantly among either the total (rDNA) or
active (rRNA) communities (Table 1). This suggests that the tendency of the 100%
similarity threshold to “split” taxa that would otherwise be “lumped” at the 97%
threshold mostly compensated for the decreased number of reads retained in the ZOTU
set, although it does not indicate which of the two methods achieved a more accurate
estimate of the ecologically meaningful taxon richness. Faith’s phylogenetic diversity
(PD) index was significantly higher among OTUs compared to ZOTUs in both the total
and active communities, suggesting that the OTU method was able to capture a greater
degree of phylogenetic diversity than the ZOTU method, likely because of the large
number of low-abundance reads discarded during ZOTU formation. The Shannon index
of diversity was significantly higher among ZOTUs compared to OTUs in both the total
and active communities, but as the two taxonomic unit formation methods yielded
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similar richness, this is likely due to greater abundance evenness among ZOTUs, which
again may be attributable to the discarding of low-abundance reads.

At the rank of family, the 16S rDNA (total community) and 16S rRNA (active
community) sample taxonomic compositions were broadly similar for both the OTU
and ZOTU taxonomic unit formation methods (Fig. S1). The exception was SWH-C-D15,
which was generally consistent in taxonomic composition between methods, but had
a large population of Mycoplasmataceae and Rhizobiaceae taxa in the rRNA community
which were not identified in the rDNA community. These represent phantom taxa,
which as described above were unusually abundant in SWH-C-D15. Members of the
Mycoplasmataceae and Rhizobiaceae families are not known to be prevalent in AD
communities, and these sequences could be contaminants (they were present in one
of the five negative controls at a relative abundance of �6.8%). The amplicon-based
taxonomic compositions were also reflected in our previously reported population
genomes (40), of which the bacterial families Clostridiaceae, Ruminococcaceae, and
Veillonellaceae and the methanogenic archaeal family Methanobacteriaceae were
among the most abundant taxa in most samples.

We have previously reported that the 16S rDNA profiles of these enrichment
cultures differ significantly by enrichment condition (39). This was found to hold true
for both read clustering and denoising methods using profiles that combined rDNA and
rRNA OTUs/ZOTUs (Fig. 1), with significant differences between enrichment conditions
based on both weighted (PERMANOVA pseudo-F � 12.19, P � 0.001 for OTU; pseudo-
F � 7.504, P � 0.001 for ZOTU) and unweighted (PERMANOVA pseudo-F � 8.823, P �

0.001; pseudo-F � 15.92, P � 0.001 for ZOTU) UniFrac distances (all time points pooled
for each enrichment condition).

Community-level correlations between taxon abundance and transcriptional
activity. Previous 16S amplicon sequencing studies have demonstrated that the rela-
tive abundance (contribution to total rDNA) and relative metabolic activity (contribu-
tion to total rRNA) of microbial taxa are significantly and positively correlated in a range
of environments, including coastal ocean (20), benthic glacier streams (17), and soil (26).
This is also a key premise of the rRNA/rDNA method of inferring cell-level microbial
activity, as it is assumed that after rRNA abundance is normalized against rDNA
abundance, any remaining variation can be attributed to cell-level differences in
ribosomal amplification.

We found a positive and significant linear correlation between rRNA and rDNA
relative abundances across both clustering and denoising methods and all samples
(Fig. 2; Pearson’s � � 0.63, P � 0.0001 for all samples). There was no significant
difference between the correlation coefficients obtained using the OTU clustering
versus ZOTU denoising methods (Mann-Whitney P � 0.08). For the samples from which

TABLE 1 Mean values across all samples of alpha-diversity indices in the 16S rDNA and
16S rRNA read sets for the OTU and ZOTU taxonomic formation methodsa

Alpha-diversity
index Read set

Mean (SD) value for
diversity index by the
following taxonomic
formation method:

PbOTU ZOTU

Richness rDNA 240 (68) 240 (56) 0.67
rRNA 240 (72) 220 (47) 0.20

Faith’s PD rDNA 7.9 (1.6) 5.0 (0.82) 0.00*
rRNA 8.2 (2.1) 5.3 (1.2) 0.00*

Shannon index rDNA 3.4 (0.7) 4.2 (0.6) 0.00*
rRNA 3.7 (0.8) 4.4 (0.64) 0.02*

aAlpha-diversity was calculated after all samples were normalized to a read depth of 31,560 or 17,707 for
OTUs and ZOTUs, respectively, by randomly subsampling 10 times, and values were averaged.

bP values are for Mann-Whitney tests for a significant difference between methods for the given index and
read set. P values of �0.05 are indicated by an asterisk.
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population genomes were reconstructed from metagenomes, we also tested for a
linear correlation between population genomes’ metagenomic and metatranscriptomic
relative abundances. In all but one sample (SWH-C-55-Mid), a significant positive linear
correlation was found (Fig. 2; Pearson’s � � 0.72, P � 0.001 for all samples except
SWH-C-55-Mid). On average, the 10 most abundant taxa in each sample contributed
79% (OTUs), 69% (ZOTUs), or 95% (population genomes) of RNA production (Fig. S2).

The positive relationship between genomic and transcriptional abundance and the
rapid accumulation of cell production support previous reports that the most abundant
community members are also the greatest contributors to total community metabolic
activity, independent of variation in cell-level metabolic activity between taxa (42). This
is unlikely to be an artifact of “lumping” dissimilar taxa during the clustering or
denoising of amplicon-based reads (32), as the correlation was consistent between the
OTU and ZOTU methods and was corroborated by the reconstructed population
genomes, which are not susceptible to clustering artifacts.

Cell-level metabolic activity. The rRNA/rDNA ratio of a taxonomic unit has been
used to infer its cell-level metabolic activity or growth rate, normalized against its
population abundance. We found that taxonomic units formed using the OTU method
had slightly higher average rRNA/rDNA ratios (mean � 1.5, SD � 8.1) than ZOTUs
(mean � 1.4, SD � 5.1), though the difference was not statistically significant (Mann-
Whitney P � 0.83). The rRNA/rDNA ratio ranged from 0 to 316 for OTUs and from 0 to
206 for ZOTUs, with approximately 50% of both sets of taxonomic units having a ratio
smaller than one across all samples. In contrast, the transcription/abundance ratios of
reconstructed population genomes had a similar mean (1.5) but much lower variance
(SD � 2.9; range, 0 to 26). As the population genome transcription levels were
estimated from the transcription of ORFs in the population genome scaffolds, this

FIG 1 Principal-coordinate analysis of the pooled total (rDNA) and active (rRNA) communities as measured with the weighted (A and
C) and unweighted (B and D) UniFrac distances, using either the OTU (A and B) or ZOTU (C and D) taxonomic unit formation method.
The percentage in parentheses on each axis gives the estimated contribution of each principal coordinate to the total variance.
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difference in variance may reflect a higher variance in ribosomal amplification between
taxa relative to variance in the transcription level of structural genes.

To compare the inferred metabolic activities of 16S amplicon-based taxonomic units
against those of the population genomes, we examined three high-abundance orders
for which a number of representative population genomes had been reconstructed
(Fig. 3). The Clostridiales had per-sample rRNA/rDNA ratios ranging from 0 to 316
among OTUs and from 0 to 206 among ZOTUs and transcription/abundance ratios from
0 to 13.4 among population genomes but had similar mean ratios with all three
methods (OTU mean � 1.4, ZOTU mean � 1.3, population genome mean � 1.6),
although the ratios were found to differ significantly between methods using an
analysis of variance (Kruskal-Wallis P � 0.001).

The Methanobacteriales had similarly low ratios across all three methods (OTU
range � 0 to 64, mean � 0.93; ZOTU range � 0 to 3.9, mean � 0.58; population
genome range � 0.05 to 0.96, mean � 0.34), with no statistically significant differences
between methods (Kruskal-Wallis P � 0.20). While this consistently low ratio might

FIG 2 Relationship between relative abundance and relative transcription (logarithmic scales) of OTUs (brown), ZOTUs
(turquoise), and population genomes (pink) across all samples. Each symbol represents one taxonomic unit. Lines represent
linear models fitted for each set of taxonomic units in each sample. For OTUs and ZOTUs, abundance and transcription are
the relative rDNA and rRNA abundances, respectively; for population genomes, they are derived from metagenomic and
metatranscriptomic abundances. Pearson’s � (when P � 0.05) for each set of taxonomic units is given in the top left-hand
corner of each plot.

FIG 3 Transcription/abundance ratios (logarithmic scale) of OTUs, ZOTUs, and population genomes of selected
microbial orders. For OTUs and ZOTUs, the transcription/abundance ratio is the rRNA/rDNA ratio; for population
genomes, it is derived from metagenomic and metatransciptomic abundances. The box indicates the 25th to 75th
percentiles, the thick vertical line indicates the median, and whiskers represent smallest and largest values no more
than 1.5� interquartile range.

Jia et al.

January/February 2019 Volume 4 Issue 1 e00208-18 msystems.asm.org 6

https://msystems.asm.org


suggest that the Methanobacteriales are mostly dormant, we note that methane
production was demonstrated for all the mesophilic enrichment cultures (39, 40),
suggesting that the Methanobacteriales were in fact metabolically active. This apparent
contradiction may be due to the fact that ribosomal amplification is not always linearly
correlated with metabolic activity (10), and it could also reflect the tendency for
mixed-growth rate communities and undersampling to falsely suggest that active taxa
are dormant (31).

rRNA/rDNA and transcription/abundance ratios for the order Desulfovibrionales (of
which only the genus Desulfovibrio was detected using either the amplicon-based or
population genome methods) tended to be higher than that for the other two orders,
suggesting a higher level of metabolic activity. The ratios ranged from 0 to 232
(mean � 32) among OTUs, 4.0 to 76 (mean � 18.4) among ZOTUs, and 3.2 to 26
(mean � 14.3) among population genomes, with no statistically significant difference
between the three methods (Kruskal-Wallis P � 0.68). Despite this high transcriptional
activity, the order was not abundant, with an average relative abundance of �0.3% (0
to 1.1% of OTUs and 0 to 0.7% of ZOTUs) among the amplicon-based populations.
While high rRNA/rDNA ratios were detected from Desulfovibrionales in all the mesoph-
ilic cellulose culture samples, no Desulfovibrionales were detected in the mesophilic
xylan or thermophilic cellulose cultures. Only one Desulfovibrionales population ge-
nome was reconstructed from a metagenome, and it was found only in the SWH-C-35
culture at two time points, where it exhibited transcription/abundance ratios of 3.2
and 26.

Variation in neither ribosomal amplification (10) nor the transcription of structural
genes is necessarily directly related to growth or metabolic activity, and different
growth strategies may entail different levels of transcriptional regulation. For example,
the oligotrophic marine bacterium “Candidatus Pelagibacter ubique” (SAR11), which
has an atypically small and streamlined genome, has been reported not to vary the
transcription of �99% of its genes in response to growth rate and to transcribe 30S and
50S ribosomal genes at much lower levels than taxa with a copiotrophic growth
strategy (43). However, the concordance between amplicon rRNA/rDNA and population
genome transcription/abundance ratios suggests that both methods capture at least
some of the true variance in metabolic and growth rates between taxa.

We compared the transcription/abundance ratios of 16S amplicon taxonomic units
and population genomes against their relative abundances (Fig. 4). For all three
methods, a pattern emerged in which taxonomic units with the highest rRNA/rDNA or
transcription/abundance ratios were almost always those with low relative abundances,
with the majority of taxonomic units with ratios of �1 having relative abundances
of �1%. Other studies have reported a similar pattern in marine environments (18–20),
as well as in outdoor air (22) and indoor air (23), and activated-sludge systems (28),
although as noted above and by others (42), despite this pattern, the vast majority of
total community production is still contributed by high-abundance taxa (Fig. S2).

There are several possible explanations for this observation. It may arise from
methodological artifacts, such as PCR bias or undersampling. Steven et al. (31) reported
that undersampling of simulated microbial communities can increase the apparent
range of rRNA/rDNA ratios, presumably due to the scarcity of rDNA relative to rRNA. The
higher number of rare compared to abundant taxonomic units could also give rise to
a higher absolute number of extreme rRNA/rDNA ratios by random chance, even if
variance in ratios was identical between rare and abundant taxa. Alternatively, this may
be a true biological pattern arising from the microbial community dynamics and/or
structure. The “kill-the-winner” hypothesis suggests that fast-growing taxa may be
more prone to lysis and grazing, preventing them from being dominant, while the
slow-growing taxa are more resistant and thus can flourish (44). This hypothesis has
been used to explain the higher growth rate of the rare taxa and the lower growth rate
of the abundant taxa in marine environments (20, 42).

To further investigate whether this pattern was biological or artifactual, we esti-
mated the replication rates of the population genomes using the iRep metric, which is
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derived from variable read coverage across the length of a genome (45), and thus
provides corroboration of microbial activity independent of the transcription/abun-
dance ratios. We found a similar pattern of high-iRep genomes being almost exclusively
low abundance (Fig. 5), although the linear correlation between the iRep metric and the
transcription/abundance ratio was only weakly positive (Pearson’s � � 0.22, P � 0.048).
Taken together, this suggests that while methodological artifacts may influence ob-
served rRNA/rDNA ratios, the rRNA/rDNA method can capture biologically meaningful

FIG 4 Relationship between relative abundance and transcription/abundance ratio (logarithmic scales) of OTUs (brown),
ZOTUs (turquoise), and population genomes (pink) across all samples. Each symbol represents one taxonomic unit. For
OTUs and ZOTUs, abundance and transcription are the relative rDNA and rRNA abundances, respectively; for population
genomes, they are derived from metagenomic and metatranscriptomic abundances. The gray dashed lines indicate a
relative abundance of 1% (vertical line) and a transcription/abundance ratio of 1 (horizontal line).

FIG 5 iRep index (estimated genome copy number/cell) compared to relative abundance (logarithmic scale) for
population genomes. Each symbol represents a population genome. The vertical gray dashed lines indicate a
relative abundance of 1%.
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patterns using either OTU or ZOTU taxonomic unit formation method even in the
presence of undersampling.

Close examination of the transcriptional profiles of the top three genomes with a
high transcription/abundance ratio but low relative abundance (�1%) in each sample
revealed that the top 20 transcribed ORFs spanned a wide range of biological functions,
although most of the proteins could not be classified based on the SEED system
category (46, 47) (Fig. S3). Among the most highly transcribed ORFs, they encode a
membrane transporter protein, a rubrerythrin and a zinc finger domain protein (Fig. S3).
These proteins are known to perform substrate uptake, stress protection, or diverse
molecular recognition and binding functions. Hence, microbial populations that are
rare but have a high transcription/abundance ratio could play important functional
roles in AD communities.

Transcriptional activity dynamics of abundant ZOTUs. In order to understand to
what extent the 97% sequence similarity threshold may cause ecologically different
microbes to be “lumped” into the same taxonomic unit, we mapped each ZOTU against
the representative sequence for each OTU sequence using a similarity threshold of 97%.
A total of 1,318 ZOTUs (87%) were successfully mapped to 425 OTUs, with each OTU
recruiting 1 to 29 ZOTUs. The mapping of the majority of ZOTU sequences to a small
subset of OTUs is consistent with the lower phylogenetic diversity of the ZOTU-based
communities (Table 1).

ZOTUs with a 16S rDNA relative abundance greater than 1% in any sample were
selected for further analysis. The relative abundances of these ZOTUs ranged from 0 to
32% in each sample, while their rRNA/rDNA ratios ranged from 0 to 15.9. In the two
mesophilic cellulose cultures for which time course data were available, ZOTUs mapped
to the same OTU showed similar dynamic trends in rDNA relative abundance, rRNA
relative abundance, and rRNA/rDNA ratio during the course of fermentation (Fig. S4).
Because compositional microbial abundance data are not independent and can exhibit
spurious cooccurrence patterns, we used a compositionally robust method (48, 49) to
investigate whether ZOTUs mapped to the same OTU tended to have different cooc-
currence patterns, which would suggest the inclusion of ecologically distinct taxa
within the same OTU. The resulting networks (Fig. 6) tended to closely group ZOTUs
from the same OTU into positively interacting clusters in both the total (rDNA) and
active (rRNA) communities. No significant negative interactions were observed in the
networks between ZOTUs from the same OTU. Overall, the results suggest that, at least
among abundant ZOTUs, OTUs tended to cluster together ZOTUs with similar dynamics
in abundance and metabolic activity.

Comparison of the ZOTU and conventional OTU methods in evaluating activity.
The use of ESVs, features, or ZOTUs in microbial community surveys has recently been
proposed as superior to conventional OTUs formed at 97% sequence similarity, as these
new methods may maximize the phylogenetic resolution of the sequencing data while
minimizing the conflation of biologically distinct populations into the same taxonomic
unit (32, 35, 37). We found that, at least for the UNOISE3 algorithm with default settings
and for the types of communities studied (which were simplified following long-term
enrichment), there was no clear advantage of the ZOTU method over conventional OTU
formation method and that the ZOTU method may indeed discard some biologically
relevant information. Both methods provided comparable pictures of the community
taxonomic compositions (Fig. S1), though the ZOTU method appeared to capture less
phylogenetic diversity (Table 1), and both methods largely agreed with the results of a
separate metagenome-based survey in the assessment of relative metabolic activity
(40). Both methods, and the reconstructed population metagenomes, appeared sus-
ceptible to the type of false-negative error described previously (31), in which taxa
confirmed to be active by in vitro measurements appeared dormant based on low
rRNA/rDNA ratios (Fig. 3). However, the ZOTU method produced a much larger pro-
portion (31%) of phantom taxa than the OTU method (11%). Because phantom taxa are
necessarily the result of undersampling and/or methodological error and because these
taxa must be excluded from any analysis that relies on relative rDNA and rRNA
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abundances, this suggests that the ZOTU method may be inferior to conventional OTUs
when attempting to assess metabolic activity inferred by the rRNA/rDNA ratio, espe-
cially for studies with insufficient sequencing effort or communities with a large
number of rare taxa. UNOISE3 uses the abundance of reads to denoise sequences,
rather than quality scores and a model of sequencing error as in other methods (37),
and it excludes sequences that do not meet an abundance threshold (by default 8) in
the pooled input reads (35). Given the large proportion of reads excluded in the ZOTU
pipeline compared to the OTU pipeline, it is likely that this default threshold had a
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significant effect on ZOTU formation and may have resulted in the ZOTU set discarding
many genuine low-abundance taxa. We found little evidence to support the proposal
that 97% similar OTUs frequently conflate taxa with different ecological roles in our
enriched model communities, at least among higher-abundance ZOTUs. Further work
is needed to explore whether this holds true for other artificial and natural systems and
whether other ZOTU formation algorithms give similar results.

Conclusions. Variation in microbial activity levels is an important factor in commu-
nity function. In our model AD communities, the rRNA/rDNA ratio revealed large
variance in cell-level microbial activity levels across taxa, cooperated with two alterna-
tive taxonomic unit formation methods and by reconstructed metagenomic population
genomes and their complementary transcriptomes. Confirming previous findings, the
most metabolically active and rapidly dividing taxa tended to be the least abundant in
the five AD communities, though further work is needed to establish whether this is an
entirely natural or at least partially artifactual pattern. We found no obvious evidence
to support the suggestion that the conventional 97% sequence similarity 16S OTUs
conflates distinct ecological entities or discards biologically relevant information com-
pared to the UNOISE3 method applied in this study, and instead found the UNOISE3-
based ZOTU method generated a higher rate of phantom taxa, suggesting it may less
suitable for assessing metabolic activity with the rRNA/rDNA ratio, a method already
fraught with difficulties in interpretation.

MATERIALS AND METHODS
Establishment of AD communities. Five stable anaerobic cultures digesting either cellulose or xylan

as the sole carbon and energy source were established after 2 years of enrichment (39), using inocula
from two full-scale anaerobic digesters: SWH, an municipal wastewater anaerobic digester in Shek Wu
Hui, Hong Kong SAR; and GZ, treating high-strength wastewater from a beverage factory in Guangzhou,
China (50). To assess the short-term microbial community dynamics and activity during batch fermen-
tation, replicate batch experiments were set up for the five enrichment cultures as described previously
(40). Briefly, time course samples were collected from the two mesophilic cellulose cultures at day 5, the
mid-exponential point (between days 5 and 10), day 10, and day 15, and samples at the mid-exponential
point were collected from the two mesophilic xylan cultures and the thermophilic cellulose culture.
The mid-exponential point was determined from the physiochemical profiles of the cultures using
analytical methods as previously described (39). Samples are named following the scheme of
“inoculum-substrate-(temperature for 55°C culture only)-time,” where for substrate “C” denotes
cellulose, while “X” denotes xylan. For example, sample GZ-C-D5 denotes a sample collected on day
5 from the enrichment culture inoculated from the GZ digester and cultured with cellulose as the
sole substrate. All enrichment cultures were incubated at 35°C (mesophilic), except for SWH-C-55,
which was incubated at 55°C (thermophilic).

Nucleic acid extraction and sequencing. From each of the two biological replicates of each culture
at each time point, one 12-ml sample was collected for DNA extraction and one for RNA extraction. DNA
extraction (39) and total RNA extraction, removal of genomic DNA, RNA quality assessment, and comple-
mentary DNA (cDNA) synthesis (40, 51) were carried out as described previously. Briefly, DNA was extracted
using the PowerSoil DNA isolation kit (MO BIO Laboratories, USA) with minor modifications, while total RNA
was extracted using the RNeasy minikit (Qiagen, USA) following the manufacturer’s protocol. The quality of
total RNA was verified by a Nano Drop 2000 spectrophotometer (Thermo Fisher Scientific, USA) and a
Bioanalyzer 2100 (Agilent, USA), contaminating genomic DNA was removed by on-column and in-solution
DNase digestion with an RNase-free DNase set (Qiagen, USA), and reverse transcription into cDNA was
performed using the Superscript III (Invitrogen, USA) reverse transcriptase following the manufacturer’s
instructions. Nucleic acid samples extracted from biological replicates were pooled by equal mass for
downstream processing. PCR targeting the 16S V4 hypervariable region was performed using the 515F/806R
primer pair (52). Triplicate reactions were performed for each sample, which were then pooled and purified
before indexing-PCR. Libraries were prepared using the Illumina MiSeq reagent kit v2 and sequenced on the
MiSeq platform by Health GeneTech Corporation (Taoyuan City, Taiwan), generating �250-bp paired-end
reads. Only forward reads were used for further analysis. A total of 22 rDNA and rRNA samples were
sequenced, as well as five blank samples (empty extraction kit tube) as negative controls. The metagenomics
(40) and 16S rDNA (this study) or metatranscriptomics (40) and 16S rRNA (this study) sequences were
generated from the same DNA or total RNA samples, respectively.

Read quality control and taxonomic unit formation. 16S rDNA and rRNA reads were processed in
parallel. The “fastq_filter” command in USEARCH (53) was used to trim and filter raw sequence reads
using the criteria of minimum read length of 230 bp and a maximum of one expected error per read,
retaining a total of 1,520,585 high-quality reads (64% of raw reads). Trimmed and filtered sequencing
reads were used to form OTUs and ZOTUs using the “-cluster_otus” (54) and “-unoise3” (35) commands
in USEARCH, respectively. Singleton OTUs or ZOTUs with fewer than eight reads were removed using the
default “-minsize” values. The “-usearch_global” command in USEARCH was used to map the filtered
high-quality reads to OTUs and ZOTUs at minimum sequence identities of 97% and 100%, respectively.
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The “-usearch_global” command with a minimum sequence identity of 97% was also used to map ZOTU
sequences to OTU sequences. Chimeric OTUs/ZOTUs were removed using the “uchime_ref” command in
USEARCH. OTUs/ZOTUs represented by �5% of reads on average in the negative controls were deemed
likely contaminants and were removed from all samples.

Following quality control, a total of 1,158 OTUs and 1,221 ZOTUs were retained, accounting for
1,222,807 (31,560 to 66,169 per sample) and 736,782 (17,707 to 41,275 per sample) reads, respectively
(see Table S2 in the supplemental material). Taxonomic information was assigned to each OTU/ZOTU
with the “assign_taxonomy.py” script from QIIME (54) with default settings, using the Greengenes 16S
rRNA gene sequence database (version 13_8).

Analysis of diversity, structure, and metabolic activity. Taxonomic unit richness, Faith’s phylo-
genetic diversity (FPD), and the Shannon diversity index were calculated using the “alpha_diversity.py”
command in QIIME after all the rDNA and rRNA samples were normalized to 31,560 or 17,707 reads for
OTUs and ZOTUs, respectively, by randomly subsampling to the normalization count 10 times and
averaging the results. The weighted and unweighted UniFrac distances (55) between samples were
calculated using the “beta_diversity.py” command in QIIME. Principal-coordinate analysis (PCoA) ordi-
nation of the UniFrac distances between samples was performed with the R package vegan (2.4-0).
PERMANOVA pseudo-F statistics for significant differences between culture conditions based on UniFrac
distances were calculated using QIIME with 999 permutations. Sparse inverse covariance estimation for
ecological association inference (SPIEC-EASI) (48, 49) was used to assess potential ecological interactions
between ZOTUs for the total and active microbial communities, respectively. Cytoscape (version 3.5.1)
was used to visualize the network. The replication rate of the reconstructed population genomes was
evaluated using the iRep algorithm (45) under default settings based on the genome coverage at each
time point obtained by bowtie2 (56) under default settings allowing no mismatches. For the 16S
amplicon-based taxonomic units, relative abundance was calculated from the relative abundance of
rDNA sequences, and cell-level metabolic activity was estimated using the relative abundances of rRNA
sequences normalized against the relative abundance of complementary rDNA sequences (rRNA/rDNA
ratio). The relative abundance of reconstructed genomes was calculated as the average coverage of all
contigs in a reconstructed genome divided by the total number of reads in the metagenome from which
it was assembled. The relative transcriptional activity of a population genome was calculated by
summing the TPM (transcripts per million) values of all open reading frames (ORFs) in a genome and
dividing by 106, after mapping metatranscriptomic mRNA reads to the reconstructed genomes as
described previously (40). The relative production of a taxonomic unit (OTU/ZOTU) or genome was
calculated as its relative contribution to total community rRNA or mRNA.

Data availability. The amplicon sequencing reads have been deposited in the NCBI Sequence Read
Archive under project number PRJNA394936.
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