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Abstract: Catalytic [67 + 271]-cycloaddition of N-carbocholesteroxyazepine with functionally substi-
tuted terminal alkynes and 1,4-butynediol was performed for the first time under the action of the
Co(acac)y(dppe)/Zn/Znl, three-component catalytic system. The reaction gave previously unde-
scribed but promising 9-azabicyclo[4.2.1]nona-2,4,7-trienes (in 79-95% yields), covalently bound to a
natural metabolite, cholesterol. The structure of the synthesized azabicycles was confirmed by analy-
sis of one- and two-dimensional ('H, *C, DEPT '3C, COSY, NOESY, HSQC, HMBC) NMR spectra.

Keywords: cycloaddition; N-carbocholesteroxyazepine; alkynes; 9-azabicyclo[4.2.1]Jnona-2,4,7-trienes;
cobalt(II) acetylacetonate

1. Introduction

Although some 9-azabicyclo[4.2.1]nonane derivatives were described for the first time
back in the 1970s [1-5], they are still attracting the attention of synthetic chemists [6-15],
largely related to their pronounced biological activity and high pharmacological poten-
tial [14]. The 9-azabicyclo[4.2.1]nonane cage is a key structural component of several
important natural and synthetic alkaloids (anatoxin-a [6-14], pinnamine [13,16,17], bis-
homoepibatidine [18,19], and UB-165 [20-27]), possessing properties of nicotinic acetyl-
choline receptor agonists in the central and vegetative nervous systems (Figure 1). There-
fore, various analogues containing the 9-azabicyclo[4.2.1]nonane cage are actively being
studied by pharmaceutical scientists as potential medicinal agents for the treatment of
severe neurological disorders such as Parkinson’s and Alzheimer’s diseases, schizophrenia,
and depression [21-29].

According to previously published data, an efficient method for the synthesis of 9-
azabicyclo[4.2.1]nonane cages is based on the cycloaddition reactions of N-substituted
azepines catalyzed by transition metal complexes [30]. However, these reactions have been
studied rather superficially, being addressed in a few publications on the photoinduced
cyclo-codimerization of tricarbonyl(n®-N-carboalkoxyazepine)chromium(0) [31-36] and
tricarbonyl(né—N -cyanoazepine)chromium(0) [37] with alkenes and alkynes. Meanwhile,
data on catalytic versions of these reactions are scarcely reported in the literature, except
for two examples of Cr(0)-catalyzed cycloaddition of N-carbomethoxyazepine [34] and N-
carbethoxyazepine [38] to ethyl acrylate (Scheme 1). Hence, the catalytic cycloaddition of N-
substituted azepines is an alternative approach to the synthesis of 9-azabicyclo[4.2.1]nonanes,
and therefore, these reactions require further thorough investigation.

We previously reported [39-41] the development of an efficient one-pot synthesis
of some substituted 9-azabicyclo[4.2.1]nona-2,4,7-trienes and 9-azabicyclo[4.2.1]nona-2,4-
dienes based on the cobalt(I)-catalyzed cycloaddition of N-carbethoxy(phenoxy)azepines
to alkynes, 1,3-diynes, and 1,2-dienes (Scheme 2).
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Figure 1. Some biologically active azacycles containing the 9-azabicyclo[4.2.1]nonane skeleton.
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Scheme 1. Chromium(0)-promoted and chromium(0)-catalyzed [67 + 271] cycloadditions of N-
substituted azepines in the synthesis of 9-azabicyclo[4.2.1]nonadi(tri)enes.



Molecules 2021, 26, 2932 3of 16
Our previous works
COR R' CO,R COR
| N
_ % N
— R" / \ R'——=——R" — / R'
N \ Co(acac),(dppe)/Zn/Znl, — Co(acac),(dppe)/Zn/Znl, A
R R =Et, Ph R
R” t
" Cycloaddition of the simplest ; Eur. J. Org. Chem., 2020, 5, 623
Tetrahedron, 2020, 76, 130996 i N-substituted azepines : Mendeleev Commun., 2020, 30,318
This work A fragment of an important
natural steroid, cholesterol

o

i y

=N\ SN C—
\ N 0 ______ Rv — Rn N / 0
/
Cat. — R’
Cat. - Co(acac),(dppe)/Zn/Znl, A Y
R"
The first example of the synthesis of Flrst catalync cycloaddmon of alkyncs to
i N-carbocholesteroxyazepine i N-carbocholesteroxyazepine

Scheme 2. Schematic view of the goals of our investigation in comparison with previously published data.

In order to further develop the above promising trend towards new 9-azabicyclo[4.2.1Jnonanes,
and in view of the high relevance of the development of biologically active substances
for the synthesis of new-generation pharmaceutical agents, we set ourselves the task of
preparing 9-azabicyclo[4.2.1]nona-2,4,7-trienes containing a natural compound fragment
in their molecules. It is well known that half of the currently existing medicinal drugs have
been, and continue to be, developed on the basis of natural compounds’ skeletons and
their numerous synthetic analogues. As the natural compound for the present work, we
chose cholesterol, which performs very important functions in the human body [42-51].
Cholesterol is a structural component of cell membranes and provides their stability,
participates in the biosynthesis of steroid sex hormones and corticosteroids, serves as
a basis for the formation of bile acids and vitamin D, and also protects red blood cells
from the action of hemolytic poisons. Thus, to our knowledge, the present study is the
first to report on the catalytic [67r + 27]-cycloaddition of N-carbocholesteroxyazepine to
alkynes in order to access new 9-azabicyclo[4.2.1]nona-2,4,7-trienes containing, additionally,
cholesterol building blocks (Scheme 2). To this end, we emphasize here the novelty of
our planned investigation, since we succeeded in preparing, for the first time, an N-
carbocholesteroxyazepine system.

2. Results

Keeping this task in mind, we set the goal to prepare the starting monomer, N-
carbocholesteroxyazepine. First, we carried out the reaction of commercial cholesteryl
chloroformate with sodium azide, providing, in quantitative yield, cholesteryl azidoformate
1 in the conditions depicted in Scheme 3. Please see the Supplementary Figures S1-56.

Next, thermolysis of cholesteryl azidoformate 1 in benzene at 125 °C (in an autoclave)
gave the target N-carbocholesteroxyazepine 2 with a yield of 60% (Scheme 4). Please see
the Supplementary Figures S7-512.
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Scheme 3. Synthesis of cholesteryl azidoformate.
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Scheme 4. Synthesis of N-carbocholesteroxyazepine.

With N-carbocholesteroxyazepine 2 in our hands, we investigated its cycloaddition to the
terminal alkynes 3a—-t. Thus, we found that the desired [67 + 27t]-cycloaddition process occurred,
being catalyzed by the Co(acac);(dppe)/Zn/Znl, (dppe-1,2-bis(diphenylphosphino)ethane)
system [52-57] under developed conditions (10 mol% Co(acac),(dppe), 30 mol% Zn, and
20 mol% Znl,, in DCE (1,2-dichloroethane) as solvent, for 20 h at 60 °C) to afford substituted
9-azabicyclo[4.2.1]nona-2,4,7-trienes 4a—t with 79-95% yields (Scheme 5). The adducts were
formed as two N-(CO)O-cholesteryl rotamers [33,34,39-41] in a 1:1 ratio, arising due to
hindered rotation of the substituent around the CN bond. Please see the Supplementary
Figures S13-5112.

i
3a-t
C
— N e \0 R
\ Y Co(acac),(dppe)/Zn/Znl, = Y,
x
2 DCE, 60°C, 20 h dact
79-95% R

4a (R: "Bu, 91%), 4b (R: Ph, 89%), 4¢ (R: 0-MePh, 87%),

4d (R: p-BrPh, 81%), 4e (R: p-FPh, 86%), 4f (R: SiMe3, 85%),

4g (R: (CH,),0H, 79%),* 4h (R: (CH,)30H, 89%), 4i (R: (CH;),CN, 86%),*

4j (R: (CH,);CN, 92%), 4k (R: (CH,);Br, 88%), 41 (R: (CH,),COOEt, 90%),

4m (R: (CH,),S'Bu, 81%),* 4n (R: (CH,);S'Bu, 88%), 40 (R: CH(CH,),, 85%),

4p (R: CH(CH,)s, 82%), 4q (R: 2-phthalimidoethyl, 87%),* 4r (R: 2-phthalimidobutyl, 95%),
4s (R: 1-naphthyl, 84%), 4t (R: 9-phenanthrenyl, 79%)

Scheme 5. Cycloaddition of N-carbocholesteroxyazepine to alkynes. Reaction conditions: 2 (1 mmol),
3 (1.5 mmol), Co(acac),(dppe) (0.10 mmol), Zn (0.3 mmol), Znl, (0.20 mmol), DCE (3 mL), 60 °C,
20 h. Yields calculated based on effective amounts of material isolated by column chromatography.
2 Solvent: DCE:Trifluoroethanol 1:2 v/v.
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It is well known that at elevated temperatures, the transition from one rotamer to
another is accelerated. Therefore, we studied the exchange process between rotamers
upon heating and calculated the energy barrier at an operating temperature of 333 K. The
investigation of the temperature dependence of the NMR spectra of compound 4r in CyDg
at 333 K has shown the presence of coalescence of a number of characteristic signals in the
13C NMR spectrum—for example, the signal of the carbamide carbon atom C(10) (Figure 2).
In this case, at room temperature, double signals of the carbamide carbon atom C(10) are
observed with a difference of 0.05 ppm (6) or 25 Hz in accordance with the frequency scale.
The value of the energy barrier at 333 K (T'.o41.), calculated using the approximate formula
or the Eyring equation (1) [58], was about 17 kcal/mol, which corresponds to the values of
the barriers to hindered rotation around the amide bond. Please see the Supplementary
Figures 5118-5121.
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Figure 2. Fragments of temperature-dependent 3C NMR spectra of 4r in C;Dg.

Our experiments clearly demonstrated the Co(acac),(dppe)/Zn/Znl, three-component
catalytic system [52-57] being not only tolerant but equally efficient for a large variety of
the substituents (alkyl, phenyl, p-halophenyl, alcohol, nitrile, ester, sulfide, phthalimide,
cycloalkane, naphthalene, and phenanthrene) in the starting alkynes.

In identical conditions, N-carbocholesteroxyazepine 2 reacted as well with symmetri-
cal disubstituted 1,4-butynediol 5 to give the [67r + 27t]-cycloadduct, 9-azabicyclo[4.2.1]nona-
2,4,7-triene 6 (80% yield) as a 1:1 mixture of two N-(CO)O-cholesteryl-rotamers (Scheme 6).
Please see the Supplementary Figures S113-5117.
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Scheme 6. Cycloaddition of N-carbocholesteroxyazepine to 1,4-butynediol.

3. Materials and Methods
3.1. General Procedures

Briefly, 'H, 13C spectra were measured in CDCl3 on a Bruker Avance-500 spectrometer
(500 MHz for 'H; 125 MHz for 13C). High-resolution mass spectra (HRMS) were measured
on an instrument (MaXis impact, Bruker Daltonik GmbH, Bremen, Germany) using a
time-of-flight mass analyzer (TOF) with electrospray ionization (ESI). In experiments on
selective collisional activation, the activation energy was set at the maximum abundance of
fragment peaks. A syringe injection was used for solutions in MeCN (flow rate: 5 uL/min).
Nitrogen was applied as a dry gas; the interface temperature was set at 180 °C. All sol-
vents were dried and freshly distilled before use. All reactions were carried out under a
dry argon atmosphere. Cholesteryl chloroformate, sodium azide, the terminal alkynes,
alkynols, and Znl, were purchased from commercial sources and used without further pu-
rification. Co(acac),(dppe), ethyl pent-4-ynoate, 5-bromopent-1-yne, and sulfanylalkynes
were synthesized according to procedures described in the literature [59-61]. For column
chromatography, silica gel from Acros Organics (Thermo Fisher Scientific, Geel, Belgium)
(0.060-0.200 mm) was used.

3.2. Synthesis of Cholesteryl Azidoformate

A mixture of cholesteryl chloroformate (2.25 g, 5 mmol) and sodium azide (1.14 g,
17.5 mmol) in dry acetone (97 mL) was heated at 40 °C for 6 h with vigorous stirring. After
this period, the reaction mixture was left to reach room temperature, when minerals were
filtered off. The organic filtrate was concentrated under reduced pressure to dryness to
provide crude cholesteryl azidoformate 1 (2.278 g, 100% yield with respect to cholesteryl
chloroformate) as a white solid. This material was used as is in the next experiments
without further purification.

3.3. Synthesis of N-Carbocholesteroxyazepine

A solution of cholesteryl azidoformate 1 (2.28 g, 5 mmol) in dry benzene (106 mL)
was heated in an autoclave at 125 °C for 2 h with stirring, under autogenous pressure.
After this period, the cooled reaction solution was stripped of benzene under reduced
pressure. Chromatographic purification over silica gel (petroleum ether/ethyl acetate 20:1)
afforded the target product 2 (1.517 g, 60% yield with respect to cholesteryl azidoformate)
as a yellow solid.

3.4. Cycloaddition of N-Carbocholesteroxyazepine to Alkynes

Zinc powder (0.020 g, 0.3 mmol) was added to a solution of Co(acac),(dppe) (0.066 g,
0.1 mmol) in DCE (1.5 mL) for 3a—£,h,j-1,n—p,r—t (in 1 mL DCE for 3g,i,m,q,5) in a Schlenk
tube under a dry argon atmosphere, and the mixture was stirred at room temperature for
2 min. Next, N-carbocholesteroxyazepine (0.505 g, 1.0 mmol), the alkyne (1.5 mmol) in
DCE (1.5 mL) for 3a—f,h,j—1,n—p,r—t (in 2 mL trifluoroethanol for 3g,i,m,q,5), and dry Znl,
(0.064 g, 0.2 mmol) were added successively. After heating at 60 °C for 20 h, the reaction
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was stopped by the addition of petroleum ether and stirring in air for 10 min to deactivate
the catalyst. After filtration through a short pad of silica, the volatiles were removed under
vacuum. Chromatographic purification over silica gel (petroleum ether/ethyl acetate 5:1 as
eluent for 4a—p,s,t,6; petroleum ether/ethyl acetate 2:1 for 4q,r) afforded the target products
4a-t, 6.

3.5. Characterization of the Products

Cholesteryl azidoformate (1): Yield 100% (2.278 g), white solid, m. p. =96-97 °C, [a]pt”"—30.4 (c
0.48, CHCl3). '"HNMR (500 MHz, CDCl3): éy 5.42 (d, ] = 3.5 Hz, 1H), 4.57-4.66 (m, 1H),
2.35-2.47 (m, 2H), 1.80-2.08 (m, 5H), 1.24-1.73 (m, 11H), 1.07-1.23 (m, 7H), 0.99-1.06 (m,
5H), 0.93 (d, ] = 6.4 Hz, 4H), 0.88 (d, ] = 6.3 Hz, 6H), 0.70 (s, 3H) ppm. '3C NMR (125 MHz,
CDCl3): 6¢ 156.9,138.9, 1234, 78.8, 56.7, 56.2, 50.0, 42.3, 39.7, 39.5, 37.8, 36.8, 36.5, 36.2, 35.8,
31.9,31.8,28.2,28.0,27.5,24.3,23.9,22.8,22.6,21.1,19.3,18.7, 11.9 ppm. HRMS (ESI-TOF):
caled. for CogHysN30,Na [M + Na]t 478.3409, found 478.3416.

N-Carbocholesteroxyazepine (2): Yield 60% (1.517 g), yellow solid, m. p. = 124-125 °C, [«]p*>—13.9
(c 0.50, CHCl3), R¢ = 0.40 (petroleum ether/ethyl acetate 20:1). 'HNMR (500 MHz, CDCl3):
ou 6.07 (s, 2H), 5.91 (s, 1H), 5.84 (s, 1H), 5.55 (s, 1H), 5.47 (s, 1H), 5.40 (s, 1H), 4.59-4.68 (m,
1H), 2.33-2.47 (m, 2H), 1.92-2.08 (m, 3H), 1.80-1.91 (m, 2H), 1.23-1.69 (m, 11H), 1.08-1.22
(m, 7H), 0.99-1.07 (m, 5H), 0.93 (d, ] = 6.3 Hz, 4H), 0.88 (d, ] = 6.5 Hz, 6H), 0.69 (s, 3H)
ppm. 13C NMR (125 MHz, CDCly): 5¢ 153.0,139.6, 131.0 (2C), 130.6 (2C), 122.8, 119.4, 119.0,
75.9,56.7, 56.1, 50.0, 42.3, 39.7, 39.5, 38.4, 37.0, 36.6, 36.2, 35.8, 31.9, 31.87, 28.2, 28.1, 28.0,
24.3,23.8,22.8,22.6,21.1,19.4,18.7,11.9 ppm. HRMS (ESI-TOF): calcd. for C34Hs;NO,Na
[M + Na]* 528.3817, found 528.3824.

Cholesteryl (15*6R*)-7-butyl-9-azabicyclo[4.2.1]nona-2,4,7-triene-9-carboxylate equivalent with
Cholesteryl (1R*,65%)-7-butyl-9-azabicyclo[4.2.1]nona-2,4,7-triene-9-carboxylate (4a): Yield 91%
(0.535 g), yellowish solid, m. p. = 94-95 °C, [«]p!"—17.6 (c 0.49, CHCl3), exists as two
N-(CO)O-cholesteryl rotamers. R; = 0.45 (petroleum ether/ethyl acetate 5:1). 'HNMR
(500 MHz, CDCl3): oy 6.23-6.37 (m, 4H), 5.84-5.99 (m, 4H), 5.33-5.39 (m, 2H), 5.20 (d,
] =11.5Hz, 2H), 4.94 (d,] = 5.1 Hz, 1H), 4.88 (d,] = 5.1 Hz, 1H), 4.77 (d,] = 3.5 Hz, 1H), 4.73
(d,J =3.4 Hz, 1H), 4.43-4.52 (m, 2H), 2.23-2.39 (m, 4H), 2.13-2.22 (m, 4H), 1.93-2.05 (m,
4H), 1.76-1.89 (m, 6H), 1.23-1.61 (m, 30H), 1.05-1.22 (m, 14H), 0.99-1.04 (m, 10H), 0.93 (d,
] = 6.5 Hz, 8H), 0.90-0.92 (m, 6H), 0.89 (d, ] = 2.2 Hz, 6H), 0.88 (d, ] = 2.2 Hz, 6H), 0.69 (s,
6H) ppm. 3C NMR (125 MHz, CDCl3): §¢ 153.3 (2C), 140.0, 139.9, 138.5 (2C), 138.4 (2C),
137.7,137.65, 124.5 (2C), 123.4 (2C), 122.4, 122.3, 115.6, 115.5, 74.34, 74.3, 62.3, 62.2, 60.3,
60.2, 56.7 (2C), 56.1 (2C), 50.0 (2C), 42.3 (2C), 39.8 (2C), 39.5 (2C), 38.6, 38.4, 37.0, 36.96, 36.5
(2C), 36.2 (2C), 35.8 (2C), 31.9 (4C), 30.4, 30.3, 28.2 (3C), 28.18, 28.0 (2C), 26.5, 26.4, 24.3 (2C),
23.9 (2C), 22.8 (2C), 22.6 (2C), 22.4, 22.3,21.0 (2C), 19.4 (2C), 18.7 (2C), 13.9 (2C), 11.9 (2C)
ppm. HRMS (ESI-TOF): caled. for C4oHg1 NO;Na [M + Na]* 610.4600, found 610.4606.

Cholesteryl (15*,6R*)-7-phenyl-9-azabicyclo[4.2.1]nona-2,4,7-triene-9-carboxylate equivalent with
Cholesteryl (1R*,65%)-7-phenyl-9-azabicyclo[4.2.1]nona-2,4,7-triene-9-carboxylate (4b): Yield 89%
(0.541 g), yellowish solid, m. p. = 155-156 °C, [«]p'”—18.5 (c 0.18, CHCl3), exists as two
N-(CO)O-cholesteryl rotamers. R; = 0.47 (petroleum ether/ethyl acetate 5:1). THNMR
(500 MHz, CDCl3): o1 7.47 (d, ] = 7.4 Hz, 4H), 7.35 (t, ] = 7.5 Hz, 4H), 7.24-7.30 (m, 2H),
6.30-6.47 (m, 4H), 5.88-6.02 (m, 6H), 5.60 (d, ] = 4.8 Hz, 1H), 5.53 (d, ] =5.0 Hz, 1H), 5.39
(s, 2H), 5.01 (d, ] = 2.3 Hz, 1H), 4.97 (d, ] = 2.3 Hz, 1H), 4.47-4.62 (m, 2H), 2.21-2.46 (m,
4H), 1.79-2.08 (m, 10H), 1.24-1.71 (m, 22H), 1.08-1.23 (m, 14H), 0.98-1.07 (m, 10H), 0.94 (d,
] = 6.4 Hz, 8H), 0.90 (d, ] = 1.3 Hz, 6H), 0.89 (s, 6H), 0.70 (s, 6H) ppm. 3C NMR (125 MHz,
CDCls): ¢ 153.4 (2C), 139.9 (2C), 138.9 (2C), 137.2 (2C), 135.4, 135.2, 131.9, 131.7, 128.7 (2C),
128.6 (2C), 127.9 (2C), 126.8 (4C), 124.8 (2C), 124.2 (2C), 122.5, 122.4, 115.6 (2C), 74.6 (2C),
60.9 (2C), 60.7 (2C), 56.7 (2C), 56.1 (2C), 50.00 (2C), 42.3 (2C), 39.8 (2C), 39.5 (2C), 38.6, 38.5,
37.0 (2C), 36.6 (2C), 36.2 (2C), 35.8 (2C), 31.9 (4C), 28.3 (4C), 28.0 (2C), 24.3 (2C), 23.9 (2C),
22.8 (2C), 22.6 (2C), 21.1 (2C), 19.4 (2C), 18.7 (2C), 11.9 (2C) ppm. HRMS (ESI-TOF): calcd.
for C4pHs7NO,;Na [M + Na]* 630.4287, found 630.4305.
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Cholesteryl (15*,6R*)-7-(o-tolyl)-9-azabicyclo[4.2.1]nona-2,4,7-triene-9-carboxylate equivalent
with Cholesteryl (1R*,65%)—7-(o-tolyl)-9-azabicyclo[4.2.1]nona-2,4,7-triene-9-carboxylate (4c):
Yield 87% (0.541 g), yellowish solid, m. p. = 115-116 °C, [«]p'8—10.4 (c 0.49, CHCly),
exists as two N-(CO)O-cholesteryl rotamers. R¢ = 0.44 (petroleum ether/ethyl acetate 5:1).
THNMR (500 MHz, CDCl3): 8y 7.13-7.28 (m, 8H), 6.35-6.46 (m, 2H), 6.15-6.26 (m, 2H),
5.97-6.06 (m, 4H), 5.52 (d, ] = 1.5 Hz, 1H), 5.49 (d, ] = 2.0 Hz, 1H), 5.33-5.43 (m, 4H), 5.01 (dd,
] =5.1Hz, ] = 2.3 Hz, 1H), 4.96 (dd, ] = 5.1 Hz, ] = 2.3 Hz, 1H), 4.48-4.57 (m, 2H), 2.21-2.43
(m, 10H), 1.78-2.07 (m, 10H), 1.23-1.65 (m, 22H), 1.07-1.22 (m, 14H), 0.98-1.07 (m, 10H),
0.94 (d, ] = 6.5 Hz, 8H), 0.90 (d, ] =2.1 Hz, 6H), 0.88 (d, ] = 2.1 Hz, 6H), 0.70 (s, 6H) ppm.
13C NMR (125 MHz, CDCly): §¢ 153.4 (2C), 139.9 (2C), 138.3 (2C), 137.6 (2C), 136.8 (2C),
134.1 (2C), 132.1 (2C), 130.6, 130.56, 129.8, 129.7, 127.9, 127.8, 125.6, 125.58, 124.7 (2C), 124.2
(2C), 122.4,122.37, 118.6 (2C), 74.6, 74.55, 62.9 (2C), 60.9, 60.7, 56.7 (2C), 56.1 (2C), 50.0 (2C),
42.3 (2C), 39.8 (2C), 39.5 (2C), 38.6, 38.5, 37.0, 36.96, 36.6 (2C), 36.2 (2C), 35.8 (2C), 31.9 (4C),
28.2 (4C), 28.0 (2C), 24.3 (2C), 23.8 (2C), 22.8 (2C), 22.6 (2C), 21.1 (2C), 20.6, 20.57, 19.4 (2C),
18.7 (2C), 11.9 (2C) ppm. HRMS (ESI-TOF): caled. for C43H50NO,;Na [M + Na]* 644.4443,
found 644.4457.

Cholesteryl (15*6R*)-7-(4-bromophenyl)-9-azabicyclo[4.2.1]nona-2,4,7-triene-9-carboxylate equivalent
with Cholesteryl (1R*,65%)-7-(4-bromophenyl)-9-azabicyclo[4.2.1]nona-2 4,7-triene-9-carboxylate (4d):
Yield 81% (0.556 g), yellow solid, m. p. = 127-128 °C, [«]p'8—19.1 (c 0.50, CHCl3), exists as
two N-(CO)O-cholesteryl rotamers. R¢ = 0.48 (petroleum ether/ethyl acetate 5:1). THNMR
(500 MHz, CDCl3): 6y 7.45(d, ] = 8.3 Hz, 4H), 7.26-7.35 (m, 4H), 6.29-6.42 (m, 4H), 5.92-6.01
(m, 4H), 5.89 (d, ] = 12.4 Hz, 2H), 5.54 (d,] =4.9 Hz, 1H), 5.47 (d, ] = 5.0 Hz, 1H), 5.37 (s, 2H),
499 (d,]=24Hz, 1H),4.95(dd, ] =4.7 Hz, ] = 2.3 Hz, 1H), 4.48-4.58 (m, 2H), 2.21-2.43 (m,
4H), 1.78-2.07 (m, 10H), 1.23-1.64 (m, 22H), 1.07-1.22 (m, 14H), 1.00-1.06 (m, 10H), 0.94 (d,
] = 6.3 Hz, 8H), 0.89 (s, 6H), 0.88 (d, ] = 1.5 Hz, 6H), 0.69 (s, 6H) ppm. '*C NMR (125 MHz,
CDCl3): ¢ 153.3 (2C), 139.8 (2C), 138.6 (2C), 137.1 (2C), 134.3, 134.1, 131.8 (2C), 131.76
(2C), 130.9, 130.7, 128.3 (4C), 125.1 (2C), 124.2 (2C), 122.5, 122.4, 121.7 (2C), 116.2 (2C), 74.7,
74.65, 60.8, 60.7 (3C), 56.7 (2C), 56.1 (2C), 50.0 (2C), 42.3 (2C), 39.7 (2C), 39.5 (2C), 38.6, 38.4,
37.0 (2C), 36.6 (2C), 36.2 (2C), 35.8 (2C), 31.9 (2C), 31.88 (2C), 28.3 (3C), 28.2,28.0 (2C), 24.3
(2C), 23.9 (2C), 22.9 (2C), 22.6 (2C), 21.1 (2C), 194 (2C), 18.7 (2C), 11.9 (2C) ppm. HRMS
(ESI-TOF): caled. for C4oHs¢BrNO,Na [M + Na]* 708.3392, found 708.3401.

Cholesteryl (15*,6R*)-7-(4-fluorophenyl)-9-azabicyclo[4.2.1]nona-2,4,7-triene-9-carboxylate equivalent
with Cholesteryl (1R*,65%)-7-(4-fluorophenyl)-9-azabicyclo[4.2.1]nona-2 4,7-triene-9-carboxylate (4e):
Yield 86% (0.538 g), yellowish solid, m. p. = 125-126 °C, [a]p'®—17.7 (c 0.48, CHCly),
exists as two N-(CO)O-cholesteryl rotamers. R¢ = 0.43 (petroleum ether/ethyl acetate 5:1).
'HNMR (500 MHz, CDCl3): 8y 7.40-7.46 (m, 4H), 7.03 (t, ] = 8.6 Hz, 4H), 6.31-6.42 (m,
4H), 5.91-6.02 (m, 4H), 5.83 (dd, ] = 13.4 Hz, ] = 2.0 Hz, 2H), 5.55 (d, ] = 5.0 Hz, 1H), 5.49
(d, ] =5.1 Hz, 1H), 5.38 (s, 2H), 5.00 (dd, ] = 5.0 Hz, ] = 2.5 Hz, 1H), 4.95 (dd, ] = 5.2 Hz,
] =2.6 Hz, 1H), 4.48-4.59 (m, 2H), 2.21-2.43 (m, 4H), 1.77-2.08 (m, 10H), 1.24-1.64 (m, 22H),
1.08-1.23 (m, 14H), 1.00-1.07 (m, 10H), 0.94 (d, ] = 6.5 Hz, 8H), 0.90 (d, ] = 2.1 Hz, 6H), 0.88
(d,] =2.0 Hz, 6H), 0.70 (s, 6H) ppm. 3C NMR (125 MHz, CDCl3): 8¢ 162.3 (d, ] = 246.3 Hz,
2C), 153.3 (2C), 139.8 (2C), 138.8, 138.7, 137.3, 137.25, 134.4, 134.2, 128.5 (2C), 128.4 (2C),
128.1,128.0,125.0, 124.9, 124.1 (2C), 122.5,122.4, 115.7, 115.69, 115.5 (4C), 74.7, 74.6, 61.0,
60.92, 60.8, 60.7, 56.7 (2C), 56.2 (2C), 50.00 (2C), 42.3 (2C), 39.8 (2C), 39.5 (2C), 38.6, 38.5,
37.0,36.97, 36.6 (2C), 36.2 (2C), 35.8 (2C), 31.9 (2C), 31.89 (2C), 28.3 (3C), 28.2, 28.0 (2C), 24.3
(2C), 23.9 (2C), 22.8 (2C), 22.6 (2C), 21.1 (2C), 19.4 (2C), 18.7 (2C), 11.9 (2C) ppm. HRMS
(ESI-TOF): caled. for C4oHs¢FNO,Na [M + Na]* 648.4193, found 648.4202.

Cholesteryl (15*,6R*)-7-(trimethylsilyl)-9-azabicyclo[4.2.1]nona-2,4,7-triene-9-carboxylate equiva-
lent with Cholesteryl (1R*,65*)-7-(trimethylsilyl)-9-azabicyclo[4.2.1]nona-2,4,7-triene-9-carboxylate
(4f): Yield 85% (0.513 g), white solid, m. p. = 124-125 °C, [a]p'®—20 (c 0.50, CHCl3),
exists as two N-(CO)O-cholesteryl rotamers. R¢ = 0.41 (petroleum ether/ethyl acetate 5:1).
'HNMR (500 MHz, CDCl3): & 6.18-6.30 (m, 4H), 5.87-6.00 (m, 4H), 5.52 (d, ] = 7.8 Hz,
2H), 5.34 (s, 2H), 5.00 (d, ] = 5.0 Hz, 1H), 4.91 (d, ] = 5.0 Hz, 2H), 4.86 (d, ] = 3.5 Hz, 1H),
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4.41-450 (m, 2H), 2.17-2.38 (m, 4H), 1.92-2.06 (m, 4H), 1.74-1.91 (m, 6H), 1.22-1.62 (m,
22H), 1.05-1.21 (m, 14H), 0.98-1.04 (m, 10H), 0.92 (d, ] = 6.5 Hz, 8H), 0.88 (d, ] = 1.7 Hz,
6H), 0.87 (d, ] = 1.7 Hz, 6H), 0.68 (s, 6H), 0.13 (d, ] = 4.0 Hz, 18H) ppm. 13C NMR (125 MHz,
CDCly): 5¢ 153.2 (2C), 139.9 (2C), 137.7 (2C), 136.2, 136.1, 135.1, 135.0, 126.6, 126.5, 124.3,
124.27,123.7, 123.6, 122.3, 122.26, 74.3, 74.26, 63.4, 63.3, 61.5, 61.3, 56.7 (2C), 56.1 (2C), 50.0
(20), 42.3 (2C), 39.8 (2C), 39.5 (2C), 38.6, 38.4, 37.0, 36.97, 36.5 (2C), 36.2 (2C), 35.8 (2C),
31.9 (2C), 31.88 (2C), 28.3 (3C), 28.1, 28.0 (2C), 24.3 (2C), 23.9 (2C), 22.9 (2C), 22.6 (2C), 21.1
(2C), 19.4 (2C), 18.7 (2C), 11.9 (2C), —0.6 (3C), —0.7 (3C) ppm. HRMS (ESI-TOF): calcd. for
Cs9Hg1NO,SiNa [M + Nal* 626.4369, found 626.4376.

Cholesteryl (15* 6R*)-7-(2-hydroxyethyl)-9-azabicyclo[4.2.1 nona-2,4,7-triene-9-carboxylate equiva-
lent with Cholesteryl (1R*65*)-7-(2-hydroxyethyl)-9-azabicyclo[4.2.1]nona-2,4,7-triene-9-carboxylate
(4g): Yield 79% (0.455 g), yellowish solid, m. p. = 134-135 °C, [a]p'®—16.9 (c 0.49, CHCl3),
exists as two N-(CO)O-cholesteryl rotamers. R¢ = 0.50 (petroleum ether/ethyl acetate 5:1).
THNMR (500 MHz, CDCl3): 8y5 6.25-6.36 (m, 4H), 5.85-6.01 (m, 4H), 5.28-5.38 (m, 4H), 4.95
(d,J=5.0Hz, 1H), 491 (d,] = 5.1 Hz, 1H), 4.78 (s, 1H), 4.75 (s, 1H), 4.38—4.51 (m, 2H), 3.69
(d, J =5.8 Hz, 4H), 2.35-2.50 (m, 4H), 2.15-2.34 (m, 4H), 1.91-2.04 (m, 4H), 1.73-1.90 (m,
6H), 1.21-1.60 (m, 22H), 1.04-1.19 (m, 14H), 0.97-1.03 (m, 10H), 0.91 (d, ] = 6.4 Hz, 8H), 0.87
(d, ] = 1.6 Hz, 6H), 0.86 (s, 6H), 0.67 (s, 6H) ppm. 3C NMR (125 MHz, CDCl3): §¢ 153.3
(2C), 139.8 (2C), 138.5,138.4, 138.1 (2C), 133.5 (2C), 124.8 (2C), 123.6, 123.55, 122.4, 122.36,
117.9,117.6,74.5 (2C), 62.1, 62.06, 61.1, 61.0, 60.2, 60.15, 56.7 (2C), 56.1 (2C), 50.0 (2C), 42.3
(2C), 39.7 (2C), 39.5 (2C), 38.6, 38.4, 37.0, 36.9, 36.5 (2C), 36.2 (2C), 35.8 (2C), 31.9 (2C), 31.86
(2C), 30.5,30.4, 28.2 (3C), 28.17, 28.0 (2C), 24.3 (2C), 23.9 (2C), 22.8 (2C), 22.6 (2C), 21.0 (2C),
19.4 (2C), 18.7 (2C), 11.9 (2C) ppm. HRMS (ESI-TOEF): calcd. for C33Hs5;NO3Na [M + Na]*
598.4236, found 598.4238.

Cholesteryl (15*,6R*)-7-(3-hydroxypropyl)-9-azabicyclo[4.2.1Inona-2,4,7-triene-9-carboxylate equiva-
lent with Cholesteryl (1R*,65*)-7-(3-hydroxypropyl)-9-azabicyclo[4.2.1]nona-2,4,7-triene-9-carboxylate
(4h): Yield 89% (0.525 g), yellowish solid, m. p. = 142-143 °C, [«]p'8—17.2 (c 0.49, CHCl3),
exists as two N-(CO)O-cholesteryl rotamers. R¢ = 0.52 (petroleum ether/ethyl acetate 5:1).
THNMR (500 MHz, CDCl3): 8y 6.20-6.35 (m, 4H), 5.82-5.98 (m, 4H), 5.34 (s, 2H), 5.22 (d,
J=9.0Hz, 2H),4.92(d,] =4.8 Hz, 1H), 4.88 (d,] =4.9 Hz, 1H), 4.75 (d,] = 2.8 Hz, 1H), 4.72
(s, 1H), 4.39-4.50 (m, 2H), 3.60 (s, 4H), 2.10-2.37 (m, 8H), 1.91-2.04 (m, 4H), 1.65-1.90 (m,
10H), 1.21-1.60 (m, 22H), 1.04-1.19 (m, 14H), 0.97-1.03 (m, 10H), 0.91 (d, ] = 6.4 Hz, 8H), 0.87
(d,] = 1.4 Hz, 6H), 0.86 (d, ] = 1.2 Hz, 6H), 0.67 (s, 6H) ppm. 3C NMR (125 MHz, CDCl3):
5c 153.4 (2C), 139.8 (2C), 138.4 (2C), 138.2 (2C), 136.8, 136.7, 124.7 (2C), 123.5 (2C), 122.4,
122.3,116.0, 115.8, 74.5 (2C), 62.3 (2C), 62.0, 61.9, 60.3, 60.2, 56.7 (2C), 56.1 (2C), 50.0 (2C),
42.3 (2C), 39.7 (2C), 39.5 (2C), 38.6, 38.4, 37.0, 36.9, 36.5 (2C), 36.2 (2C), 35.8 (2C), 31.9 (2C),
31.86 (2C), 31.0 (2C), 28.2 (4C), 28.0 (2C), 24.3 (2C), 23.8 (2C), 23.1, 23.0, 22.8 (2C), 22.6 (2C),
21.0 (2C), 19.4 (2C), 18.7 (2C), 11.9 (2C) ppm. HRMS (ESI-TOF): calcd for C39Hs50NO3Na
[M + Na]* 612.4392, found 612.4389.

Cholesteryl(15*,6R*)-7-(2-cyanoethyl)-9-azabicyclo[4.2.1]nona-2,4,7-triene-9-carboxylate equiva-
lent with Cholesteryl (1R*,65%)-7-(2-cyanoethyl)-9-azabicyclo[4.2.1]nona-2,4,7-triene-9-carboxylate
(4i): Yield 86% (0.503 g), white solid, m. p. = 168-169 °C, [x]p?>—23 (c 0.51, CHCl3), ex-
ists as two N-(CO)O-cholesteryl rotamers. R¢ = 0.48 (petroleum ether/ethyl acetate 5:1).
THNMR (500 MHz, CDCl3): 811 6.24-6.37 (m, 4H), 5.89-6.04 (m, 4H), 5.33-5.41 (m, 4H), 4.96
(d,J=51Hz 1H),4.93 (d,] =5.1 Hz, 1H), 4.83 (d,] = 3.4 Hz, 1H), 4.79 (d, ] = 3.3 Hz, 1H),
4.42-4.52 (m, 2H), 2.55 (d, ] = 6.7 Hz, 4H), 2.50 (dd, ] = 10.9 Hz, ] = 4.2 Hz, 4H), 2.17-2.39 (m,
4H), 1.92-2.05 (m, 4H), 1.74-1.91 (m, 6H), 1.22-1.62 (m, 22H), 1.05-1.20 (m, 14H), 0.98-1.04
(m, 10H), 0.92 (d, ] = 6.5 Hz, 8H), 0.88 (d, ] = 2.1 Hz, 6H), 0.87 (d, ] = 2.1 Hz, 6H), 0.68 (s, 6H)
ppm. 3C NMR (125 MHz, CDCl3): 8¢ 153.2 (2C), 139.8 (2C), 138.2, 138.15, 137.4 (2C), 132.8,
132.6,125.6 (2C), 123.9 (2C), 122.5, 122.4, 118.8, 118.7, 117.9, 117.6, 74.6 (2C), 61.8 (2C), 60.2,
60.1, 56.7 (2C), 56.1 (2C), 50.0 (2C), 42.3 (2C), 39.7 (2C), 39.5 (2C), 38.6, 38.4, 37.0, 36.9, 36.5
(2C), 36.2 (2C), 35.8 (2C), 31.9 (2C), 31.87 (2C), 28.2 (3C), 28.1, 28.0 (2C), 24.3 (2C), 23.8 (2C),
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22.9,22.8 (3C), 22.6 (2C), 21.0 (2C), 19.4 (2C), 18.7 (2C), 16.53, 16.5, 11.9 (2C) ppm. HRMS
(ESI-TOF): calcd. for C39Hs6N,O,Na [M + Na]* 607.4239, found 607.4238.

Cholesteryl (15*,6R*)-7-(3-cyanopropyl)-9-azabicyclo[4.2.1Inona-2,4,7-triene-9-carboxylate equivalent
with Cholesteryl (1R*,65*)-7-(3-cyanopropyl)-9-azabicyclo[4.2.1Inona-2,4,7-triene-9-carboxylate (4j):
Yield 92% (0.551 g), yellowish solid, m. p. = 162-163 °C, [«]p?*—27.6 (c 0.49, CHCly),
exists as two N-(CO)O-cholesteryl rotamers. R¢ = 0.50 (petroleum ether/ethyl acetate 5:1).
THNMR (500 MHz, CDCl3): 8y 6.23-6.38 (m, 4H), 5.87-6.02 (m, 4H), 5.36 (d, ] = 5.0 Hz, 2H),
5.29 (s, 2H),4.92 (d,] = 5.1 Hz, 1H), 4.88 (d, ] = 5.1 Hz, 1H), 4.80 (d, ] = 3.5 Hz, 1H), 4.76
(d, ] =3.4Hz, 1H), 4.42-4.51 (m, 2H), 2.18-2.42 (m, 12H), 1.92-2.05 (m, 4H), 1.75-1.91 (m,
10H), 1.22-1.62 (m, 22H), 1.06-1.21 (m, 14H), 0.99-1.05 (m, 10H), 0.92 (d, ] = 6.4 Hz, 8H), 0.88
(d, ] =2.0 Hz, 6H), 0.87 (d, ] = 2.1 Hz, 6H), 0.68 (s, 6H) ppm. 3C NMR (125 MHz, CDCl;):
8¢ 153.2 (2C), 139.8 (2C), 138.4 (2C), 137.8 (2C), 134.4, 134.2, 125.1 (2C), 123.6 (2C), 122.4,
122.37,119.2 (2C), 117.5,117.2, 74.5 (2C), 62.0, 61.9, 60.2, 60.1, 56.7 (2C), 56.1 (2C), 50.0 (2C),
42.3 (2C), 39.7 (2C), 39.5 (2C), 38.6, 38.4, 37.0, 36.9, 36.5 (2C), 36.2 (2C), 35.8 (2C), 31.9 (20),
31.87 (2C), 28.2 (3C), 28.1, 28.0 (2C), 25.6, 25.5, 24.3 (2C), 24.1, 24.07, 23.8 (2C), 22.8 (2C), 22.6
(2C), 21.0 (2C), 19.4 (2C), 18.7 (2C), 16.4, 16.3, 11.9 (2C) ppm. HRMS (ESI-TOF): calcd. for
C40H53N202Na [M + Na]+ 621.4396, found 621.4406.

Cholesteryl (15%,6R*)-7-(3-bromopropyl)-9-azabicyclo[4.2.1]nona-2,4,7-triene-9-carboxylate equiva-
lent with Cholesteryl (1R*,65*)-7-(3-bromopropyl)-9-azabicyclo[4.2.1]nona-2,4,7-triene-9-carboxylate
(4k): Yield 88% (0.574 g), yellowish solid, m. p. = 106-107 °C, [«]p'8—18.8 (c 0.49, CHCl3),
exists as two N-(CO)O-cholesteryl rotamers. R¢ = 0.50 (petroleum ether/ethyl acetate 5:1).
THNMR (500 MHz, CDCl3): 8y 6.24-6.38 (m, 4H), 5.87-6.01 (m, 4H), 5.33-5.39 (m, 2H), 5.28
(d,J=6.1Hz, 2H),494 (d,] =5.1 Hz, 1H), 4.89 (d,] = 5.1 Hz, 1H), 4.79 (d, ] = 3.2 Hz, 1H),
4.75 (d, ] = 3.0 Hz, 1H), 4.43-4.52 (m, 2H), 3.33-3.43 (m, 4H), 2.19-2.42 (m, 8H), 1.93-2.07 (m,
8H), 1.75-1.92 (m, 6H), 1.22-1.62 (m, 22H), 1.06-1.22 (m, 14H), 0.99-1.05 (m, 10H), 0.93 (d,
] = 6.5 Hz, 8H), 0.89 (d, ] = 2.3 Hz, 6H), 0.88 (d, ] = 2.2 Hz, 6H), 0.69 (s, 6H) ppm. *C NMR
(125 MHz, CDCl3): 8¢ 153.3 (2C), 139.9 (2C), 138.4 (2C), 138.0 (2C), 135.3, 135.1, 124.9 (2C),
123.6 (2C), 122.4,122.35, 116.9, 116.6, 74.5 (2C), 62.2, 62.1, 60.3, 60.2, 56.7 (2C), 56.1 (2C), 50.0
(2C), 42.3 (2C), 39.7 (2C), 39.5 (2C), 38.6, 38.4, 37.0, 36.9, 36.6 (2C), 36.2 (2C), 35.8 (2C), 32.8,
32.77,31.9 (4C), 31.2, 31.1, 28.2 (3C), 28.16, 28.0 (2C), 25.2, 25.1, 24.3 (2C), 23.8 (2C), 22.8
(20),22.6 (2C), 21.0 (2C), 19.4 (2C), 18.7 (2C), 11.9 (2C) ppm. HRMS (ESI-TOEF): calcd. for
C39Hs5sBrNO,;Na [M + Na]* 674.3548, found 674.3558.

Cholesteryl (15*,6R*)-7-(3-ethoxy-3-oxopropyl)-9-azabicyclo[4.2.1]nona-2,4,7-triene-9-carboxylate
equivalent with Cholesteryl (1R*,65%)-7-(3-ethoxy-3-oxopropyl)-9-azabicyclo[4.2.1]nona-2,4,7-
triene-9-carboxylate (41): Yield 90% (0.569 g), yellowish viscous oil, [a]p'’—21.2 (c 0.50,
CHCl3), exists as two N-(CO)O-cholesteryl rotamers. R¢ = 0.45 (petroleum ether/ethyl
acetate 5:1). 'THNMR (500 MHz, CDCl3): 8y 6.23-6.35 (m, 4H), 5.84-5.99 (m, 4H), 5.35 (d,
J=55Hz,2H),5.24 (d, ] =9.2 Hz, 2H), 494 (d,] = 5.1 Hz, 1H), 4.89 (d, ] = 5.1 Hz, 1H), 4.77
(d,J=3.4Hz, 1H),4.73 (d,] = 3.3 Hz, 1H), 4.42-4.51 (m, 2H), 413 (qd, ] =7.1 Hz, ] = 3.0 Hz,
4H), 2.44-2.55 (m, 8H), 2.16-2.38 (m, 4H), 1.92-2.05 (m, 4H), 1.73-1.91 (m, 6H), 0.96-1.63 (m,
521), 0.92 (d, ] = 6.4 Hz, 8H), 0.88 (d, ] = 3.1 Hz, 6H), 0.87 (d, ] = 1.8 Hz, 6H), 0.68 (s, 6H)
ppm. 3C NMR (125 MHz, CDCls): 8¢ 172.6, 172.5,153.3 (2C), 139.9 (2C), 138.3 (2C), 138.1
(2C), 135.6,135.5, 124.9 (2C), 123.7 (2C), 122.4, 122.3, 116.3, 116.2, 74.44, 74.4, 62.2 (2C), 60.5
(2C), 60.2, 60.1, 56.7 (2C), 56.1 (2C), 50.0 (2C), 42.3 (2C), 39.7 (2C), 39.5 (2C), 38.6, 38.4, 37.0,
36.9, 36.5 (2C), 36.2 (2C), 35.8 (2C), 32.9 (2C), 31.9 (4C), 28.2 (3C), 28.16, 28.0 (2C), 24.3 (2C),
23.8 (2C), 22.8 (2C), 22.6 (2C), 22.0, 21.9, 21.0 (2C), 19.4 (2C), 18.7 (2C), 14.2 (2C), 11.8 (2C)
ppm. HRMS (ESI-TOF): caled. for C41Hg1NO4Na [M + Na]* 654.4498, found 654.4515.

Cholesteryl (15*,6R*)-7-(2-(tert-butylthio)ethyl)-9-azabicyclo[4.2.1]nona-2,4,7-triene-9-carboxylate
equivalent with Cholesteryl (1R*,65%)-7-(2-(tert-butylthio)ethyl)-9-azabicyclo[4.2.1]nona-2 4,7-triene-
9-carboxylate (4m): Yield 81% (0.525 g), yellowish solid, m. p. = 149-150 °C, [a]p'8—19.3 (c
0.48, CHCls), exists as two N-(CO)O-cholesteryl rotamers. R¢ = 0.51 (petroleum ether/ethyl
acetate 5:1). 'THNMR (500 MHz, CDCl3): 8y 6.23-6.37 (m, 4H), 5.86-6.00 (m, 4H), 5.36 (dd,
J=10.6 Hz,] =2.7 Hz, 2H), 5.28 (d, ] = 11.7 Hz, 2H), 4.99 (d,] =5.1 Hz, 1H), 492 (d,] = 5.1
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Hz, 1H), 4.79 (d,] = 3.4 Hz, 1H), 4.75 (d, ] = 3.7 Hz, 1H), 4.43-4.52 (m, 2H), 2.59-2.71 (m,
4H), 2.19-2.52 (m, 8H), 1.99 (dd, ] =25.1 Hz, ] = 15.0 Hz, 4H), 1.74-1.92 (m, 6H), 1.40-1.62
(m, 12H), 1.34 (d, ] = 3.4 Hz, 24H), 1.22-1.29 (m, 4H), 1.06-1.21 (m, 14H), 0.99-1.05 (m, 10H),
0.93 (d, ] = 6.5 Hz, 8H), 0.88 (d, ] = 2.1 Hz, 6H), 0.87 (d, ] = 1.9 Hz, 6H), 0.69 (s, 6H) ppm. 13C
NMR (125 MHz, CDCl3): 5¢ 153.3 (2C), 139.9 (2C), 138.3 (2C), 138.1 (2C), 135.8, 135.6, 124.9
(20), 123.7 (2C), 122.4,122.3,116.6, 116.4, 74.5, 74.4, 62.0, 61.9, 60.2, 60.1, 56.7 (2C), 56.1 (2C),
50.0 (2C), 42.3 (2C), 42.2 (2C), 39.7 (2C), 39.5 (2C), 38.6, 38.4, 36.9 (2C), 36.5 (2C), 36.2 (2C),
35.8 (2C), 31.9 (4C), 31.0 (6C), 28.2 (4C), 28.0 (2C), 27.4, 27.3, 26.9 (2C), 24.3 (2C), 23.8 (20),
22.8 (2C), 22.6 (2C), 21.0 (2C), 19.4 (2C), 18.7 (2C), 11.9 (2C) ppm. HRMS (ESI-TOF): calcd.
for C4oHgsNO,SNa [M + Na]* 670.4633, found 670.4639.

Cholesteryl (15*,6R*)-7-(3-(tert-butylthio)propyl)-9-azabicyclo[4.2.1]nona-2,4,7-triene-9-carboxylate
equivalent with Cholesteryl (1R*65%)-7-(3-(tert-butylthio)propyl)-9-azabicyclo[4.2.1]nona-2,4,7-
triene-9-carboxylate (4n): Yield 88% (0.583 g), yellowish solid, m. p. = 135-136 °C, [«]p'8—23.5
(c0.49, CHCl3), exists as two N-(CO)O-cholesteryl rotamers. R¢ = 0.53 (petroleum ether/ethyl
acetate 5:1). 'THNMR (500 MHz, CDCl3): 8y 6.22-6.38 (m, 4H), 5.84-6.01 (m, 4H), 5.35 (s,
2H),5.24 (d,] =11.1 Hz, 2H), 4.93 (d, ] =4.8 Hz, 1H), 4.88 (d, ] = 4.9 Hz, 1H), 4.78 (s, 1H),
4.74 (s, 1H), 4.42-4.52 (m, 2H), 2.50 (dd, ] = 12.0 Hz, ] = 6.7 Hz, 4H), 2.19-2.38 (m, 8H),
1.92-2.07 (m, 4H), 1.70-1.91 (m, 10H), 1.41-1.63 (m, 12H), 1.22-1.40 (m, 28H), 1.06-1.21 (m,
14H), 0.98-1.05 (m, 10H), 0.93 (d, ] = 6.3 Hz, 8H), 0.88 (s, 6H), 0.87 (s, 6H), 0.69 (s, 6H) ppm.
13C NMR (125 MHz, CDCl3): 5¢ 153.3 (2C), 139.9 (2C), 138.4 (2C), 138.2 (2C), 136.3 (2C),
124.7 (2C), 123.5 (2C), 122.4, 122.3, 116.2, 116.16, 74.4 (2C), 62.2 (2C), 60.3, 60.2, 56.7 (2C),
56.1 (2C), 50.0 (2C), 42.3 (2C), 42.0 (2C), 39.7 (2C), 39.5 (2C), 38.6, 38.4, 37.0, 36.95, 36.5 (2C),
36.2 (2C), 35.8 (2C), 31.9 (4C), 31.0 (6C), 28.4, 28.37, 28.2 (4C), 28.0 (2C), 27.6 (2C), 26.2, 26.1,
243 (2C), 23.8 (2C), 22.8 (2C), 22.6 (2C), 21.0 (2C), 19.4 (2C), 18.7 (2C), 11.9 (2C) ppm. HRMS
(ESI-TOF): caled. for C43Hg7NO,SNa [M + Na]* 684.4790, found 684.4810.

Cholesteryl (15*,6R*)-7-cyclopentyl-9-azabicyclo[4.2.1]nona-2,4,7-triene-9-carboxylate equivalent
with Cholesteryl (1R*,65%)-7-cyclopentyl-9-azabicyclo[4.2.1]nona-2,4,7-triene-9-carboxylate (40):
Yield 85% (0.510 g), yellowish solid, m. p. = 125-126 °C, [«]p'8—13.3 (c 0.50, CHCl3),
exists as two N-(CO)O-cholesteryl rotamers. R¢ = 0.48 (petroleum ether/ethyl acetate 5:1).
'HNMR (500 MHz, CDCl3): &y 6.22-6.37 (m, 4H), 5.84-5.97 (m, 4H), 5.36 (d, ] = 5.0 Hz,
2H),5.22 (d, ] = 11.7 Hz, 2H), 4.98 (d, ] = 5.1 Hz, 1H), 491 (d, ] = 5.1 Hz, 1H), 4.76-4.79 (m,
1H),4.74 (dd, ] =4.9 Hz, ] = 2.1 Hz, 1H), 4.42-4.53 (m, 2H), 2.56-2.66 (m, 2H), 2.17-2.40 (m,
4H), 1.75-2.05 (m, 14H), 1.64-1.73 (m, 8H), 1.22-1.63 (m, 26H), 1.06-1.21 (m, 14H), 0.99-1.05
(m, 10H), 0.93 (d, ] = 6.5 Hz, 8H), 0.89 (d, ] = 2.2 Hz, 6H), 0.88 (d, ] = 2.1 Hz, 6H), 0.69 (s,
6H) ppm. 3C NMR (125 MHz, CDCl3): §¢ 153.4, 153.3, 141.7 (2C), 140.0 (2C), 138.6 (2C),
138.3 (2C), 124.2 (2C), 123.5 (2C), 122.4 (2C), 114.2 (2C), 74.3 (2C), 62.0 (2C), 60.2, 60.15, 56.7
(2C), 56.1 (2C), 50.0 (2C), 42.3 (2C), 39.7 (2C), 39.5 (2C), 38.6, 38.4, 38.0, 37.9, 37.0 (2C), 36.6
(2C), 36.2 (2C), 35.8 (2C), 32.8, 32.7, 32.4, 32.2, 31.9 (4C), 28.2 (4C), 28.0 (2C), 24.9 (2C), 24.8
(2C), 24.3 (2C), 23.8 (2C), 22.8 (2C), 22.6 (2C), 21.0 (2C), 19.4 (2C), 18.7 (2C), 11.9 (2C) ppm.
HRMS (ESI-TOF): calcd. for C41HgiNO,Na [M + Na]* 622.4600, found 622.4599.

Cholesteryl (15%,6R*)-7-cyclohexyl-9-azabicyclo[4.2.1]nona-2,4,7-triene-9-carboxylate equivalent
with Cholesteryl (1R*,65%)-7-cyclohexyl-9-azabicyclo[4.2.1]nona-2,4,7-triene-9-carboxylate (4p):
Yield 82% (0.503 g), yellowish solid, m. p. = 128-129 °C, [«]p8—23 (c 0.50, CHCl3), exists as
two N-(CO)O-cholesteryl rotamers. R¢ = 0.45 (petroleum ether/ethyl acetate 5:1). THNMR
(500 MHz, CDCl3): 8y 6.21-6.35 (m, 4H), 5.83-5.96 (m, 4H), 5.36 (d, ] = 4.6 Hz, 2H), 5.19
(d,J=11.1Hz, 2H), 5.02 (d, ] = 5.0 Hz, 1H), 4.95 (d, ] = 5.2 Hz, 1H), 4.77 (dd, ] = 5.0 Hz,
J=2.1Hz, 1H), 4.73 (dd, ] = 5.0 Hz, ] = 2.1 Hz, 1H), 4.42-4.53 (m, 2H), 2.12-2.40 (m, 6H),
1.90-2.04 (m, 6H), 1.72-1.89 (m, 14H), 1.68 (d, ] = 14.2 Hz, 2H), 1.33-1.63 (m, 18H), 1.06-1.32
(m, 26H), 0.99-1.05 (m, 10H), 0.93 (d, ] = 6.5 Hz, 8H), 0.89 (d, ] =2.1 Hz, 6H), 0.88 (d,
] =2.1 Hz, 6H), 0.69 (s, 6H) ppm. 13C NMR (125 MHz, CDCl3): 5¢c 153.4 (2C), 143.4 (2C),
140.0, 139.9, 138.6 (2C), 138.2 (2C), 124.0 (2C), 123.4 (2C), 122.3, 122.27, 113.9, 113.8, 74.3,
74.29, 61.1 (2C), 60.2, 60.1, 56.7 (2C), 56.1 (2C), 50.0 (2C), 42.3 (2C), 39.7 (2C), 39.5 (2C), 38.6,
38.4, 37.0, 36.96, 36.6 (2C), 36.2 (2C), 36.1, 35.9, 35.8 (2C), 33.1 (2C), 32.7, 32.6, 31.9 (4C), 28.2
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(4C), 28.0 (2C), 26.4 (2C), 26.2, 26.16, 26.1 (2C), 24.3 (2C), 23.8 (2C), 22.8 (2C), 22.6 (2C), 21.0
(2C), 19.4 (2C), 18.7 (2C), 11.9 (2C) ppm. HRMS (ESI-TOF): calcd. for C4HgzNO,Na [M +
Na]* 636.4756, found 636.4765.

Cholesteryl(1S*,6R*)-7-(2-(1,3-dioxoisoindolin-2-yl)ethyl)-9-azabicyclo[4.2.1]nona-2,4,7-triene-9-
carboxylate equivalent with Cholesteryl (1R*,65%)-7-(2-(1,3-dioxoisoindolin-2-yl)ethyl)-9-azabicyclo[4.2.1]
nona-2,4,7-triene-9-carboxylate (4q): Yield 87% (0.613 g), yellowish solid, m. p. =127-128 °C,
[a]p'8—18.7 (c 0.49, CHCl3), exists as two N-(CO)O-cholesteryl rotamers. R; = 0.56
(petroleum ether/ethyl acetate 2:1). 'HNMR (500 MHz, CDCl3): &y 7.79-7.84 (m, 4H),
7.68-7.73 (m, 4H), 6.19-6.30 (m, 4H), 5.71-5.84 (m, 4H), 5.29-5.38 (m, 4H), 4.96 (d, ] = 4.9 Hz,
1H),4.93 (d,] =5.1 Hz, 1H), 4.75(d, ] = 3.6 Hz, 1H), 4.71 (d, ] = 4.1 Hz, 1H), 4.39-4.50 (m,
2H), 3.73-3.89 (m, 4H), 2.51-2.69 (m, 4H), 2.12-2.38 (m, 4H), 1.70-2.03 (m, 10H), 1.20-1.60
(m, 22H), 1.03-1.19 (m, 14H), 0.97-1.02 (m, 10H), 0.90 (d, ] = 6.4 Hz, 8H), 0.86 (d,] = 1.9 Hz,
6H), 0.85 (d, ] = 2.0 Hz, 6H), 0.66 (d, ] = 2.4 Hz, 6H) ppm. 13C NMR (125 MHz, CDCl3): 5¢
168.1 (4C), 153.2 (2C), 139.9 (2C), 138.1 (2C), 137.8 (2C), 134.0 (2C), 133.9 (2C), 132.4, 132.3,
132.0 (4C), 125.0 (2C), 123.6 (2C), 123.2 (4C), 122.3,122.27,117.4,117.3, 74.4, 74.37, 62.2, 62.0,
60.3 (2C), 56.7 (2C), 56.1 (2C), 50.0 (2C), 42.3 (2C), 39.7 (2C), 39.5 (2C), 38.6, 38.4, 37.0 (2C),
36.5 (4C), 36.2 (2C), 35.8 (2C), 31.9 (2C), 31.85 (2C), 28.2 (3C), 28.1, 28.0 (2C), 25.4,25.3,24.3
(20), 23.8 (2C), 22.8 (2C), 22.6 (2C), 21.0 (2C), 19.4 (2C), 18.7 (2C), 11.9 (2C) ppm. HRMS
(ESI-TOF): calcd. for C46HggN,O4Na [M + Na]* 727.4451, found 727.4463.

Cholesteryl (15*,6R*)-7-(4-(1,3-dioxoisoindolin-2-yl)butyl)-9-azabicyclo[4.2.1]nona-2,4,7-triene-9-
carboxylate equivalent with Cholesteryl (1R*,65*)-7-(4-(1,3-dioxoisoindolin-2-yl)butyl)-9-azabicyclo[4.2.1]
nona-2,4,7-triene-9-carboxylate (4r): Yield 95% (0.696 g), yellowish solid, m. p. =122-123 °C,
[o]p'8—15 (c 0.49, CHCl3), exists as two N-(CO)O-cholesteryl rotamers. R¢ = 0.60 (petroleum
ether/ethyl acetate 2:1). 'THNMR (500 MHz, CDCl3): 83 7.82 (d, ] = 2.7 Hz, 4H), 7.70 (s, 4H),
6.19-6.33 (m, 4H), 5.81-5.94 (m, 4H), 5.32 (s, 2H), 5.20 (d, ] = 10.0 Hz, 2H), 4.89 (d,] = 4.7 Hz,
1H),4.85(d,] =49 Hz, 1H),4.73 (s, 1H), 4.69 s, 1H), 4.38-4.49 (m, 2H), 3.67 (t, ] = 6.2 Hz, 4H),
2.13-2.37 (m, 8H), 1.61-2.02 (m, 14H), 1.20-1.60 (m, 26H), 1.03-1.19 (m, 14H), 0.93-1.02 (m,
10H), 0.90 (d, ] = 6.2 Hz, 8H), 0.86 (s, 6H), 0.85 (s, 6H), 0.66 (s, 6H) ppm. 1*C NMR (125 MHz,
CDCl3): ¢ 168.3 (4C), 153.3 (2C), 139.9 (2C), 138.4 (2C), 138.2 (2C), 136.7, 136.6, 133.9 (4C),
132.1 (4C), 124.6 (2C), 123.5 (2C), 123.2 (4C), 122.3,122.25,116.2, 116.0, 74.4, 74.3, 62.1 (2C),
60.2, 60.16, 56.7 (2C), 56.1 (2C), 50.0 (2C), 42.3 (2C), 39.7 (2C), 39.5 (2C), 38.6, 38.4, 37.6 (2C),
37.0 (20), 36.5 (2C), 36.2 (2C), 35.8 (2C), 31.9 (4C), 28.2 (2C), 28.1 (4C), 28.0 (2C), 26.3, 26.2,
25.5 (2C), 24.3 (2C), 23.8 (2C), 22.8 (2C), 22.6 (2C), 21.0 (2C), 19.4 (2C), 18.7 (2C), 11.8 (2C)
ppm. HRMS (ESI-TOF): caled. for C4gHgaN,O4sNa [M + Na]* 755.4764, found 755.4787.

Cholesteryl (15%,6R*)-7-(naphthalen-1-yl)-9-azabicyclo[4.2.1nona-2,4,7-triene-9-carboxylate equiva-
lent with Cholesteryl (1R*,65*)-7-(naphthalen-1-yl)-9-azabicyclo[4.2.1]nona-2 4,7-triene-9-carboxylate
(4s): Yield 84% (0.553 g), yellowish solid, m. p. = 123-124 °C, [«]p'”—6.7 (c 0.31, CHCl3),
exists as two N-(CO)O-cholesteryl rotamers. R¢ = 0.55 (petroleum ether/ethyl acetate 5:1).
'HNMR (500 MHz, CDCly): 5y 8.74 (dd, ] = 8.1 Hz, ] = 4.1 Hz, 2H), 8.69 (dd, ] = 8.1 Hz,
J=2.4Hz, 2H), 8.04 (d,] = 8.0 Hz, 2H), 7.86 (t, ] = 7.5 Hz, 2H), 7.59-7.72 (m, 6H), 6.48-6.59
(m, 2H), 6.05-6.24 (m, 6H), 5.69-5.74 (m, 2H), 5.65 (s, 1H), 5.55 (s, 1H), 5.36-5.46 (m, 2H),
5.12-5.16 (m, 1H), 5.07-5.11 (m, 1H), 4.59 (s, 2H), 2.23-2.51 (m, 4H), 1.81-2.07 (m, 10H),
1.24-1.72 (m, 22H), 0.99-1.23 (m, 24H), 0.96 (s, 8H), 0.89-0.93 (m, 12H), 0.71 (d, ] = 8.3 Hz,
6H) ppm. 3C NMR (125 MHz, CDCl3): §¢c 153.5 (2C), 139.9 (2C), 138.2 (2C), 137.6 (2C),
133.2 (2C), 131.1 (2C), 130.6, 130.3, 129.2, 129.0, 128.6 (2C), 128.0 (2C), 127.0 (2C), 126.9 (2C),
126.7 (2C), 126.3 (2C), 124.8 (2C), 124.5 (2C), 123.0 (2C), 122.5 (2C), 119.4 (2C), 74.7, 74.66,
63.6 (2C), 61.0, 60.8, 56.7 (2C), 56.2 (2C), 50.0 (2C), 42.3 (2C), 39.8 (2C), 39.6 (2C), 38.7, 38.5,
37.1 (2C), 36.6 (2C), 36.2 (2C), 35.8 (2C), 31.9 (4C), 28.3 (4C), 28.1 (2C), 24.3 (2C), 23.9 (2C),
229 (2C), 22.6 (2C), 21.1 (2C), 19.4 (2C), 18.8 (2C), 11.9 (2C) ppm. HRMS (ESI-TOF): calcd.
for C4H50NO,Na [M + Na]* 680.4443, found 680.4451.

Cholesteryl (15*6R*)-7-(phenanthren-9-yl)-9-azabicyclo[4.2.1 nona-2,4,7-triene-9-carboxylate equiva-
lent with Cholesteryl (1R*65%)-7-(phenanthren-9-yl)-9-azabicyclo[4.2.1]nona-2,4,7-triene-9-carboxylate
(4t): Yield 79% (0.559 g), yellowish solid, m. p. = 167-168 °C, [a]p'8—11.8 (c 0.49, CHCl3),
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exists as two N-(CO)O-cholesteryl rotamers. R¢ = 0.57 (petroleum ether/ethyl acetate 5:1).
THNMR (500 MHz, CDCl3): 8y 7.97 (d, ] = 4.0 Hz, 2H), 7.78-7.92 (m, 6H), 7.39-7.57 (m,
10H), 6.45-6.56 (m, 2H), 6.02-6.22 (m, 6H), 5.66 (d, ] = 11.3 Hz, 2H), 5.58 (s, 1H), 5.48 (s,
1H), 5.36-5.45 (m, 2H), 5.11 (s, 1H), 5.06 (d, ] = 2.2 Hz, 1H), 4.57 (s, 2H), 2.22-2.49 (m, 4H),
1.80-2.09 (m, 10H), 1.24-1.71 (m, 22H), 0.99-1.24 (m, 24H), 0.96 (s, 8H),0.91 (d, ] = 5.6 Hz,
12H), 0.71 (d, ] = 5.5 Hz, 6H) ppm. '*C NMR (125 MHz, CDClz): ¢ 153.5 (2C), 139.9 (2C),
138.1 (2C), 137.6 (2C), 133.7 (2C), 132.8 (4C), 132.2 (2C), 130.7 (2C), 130.6 (2C), 128.4 (2C),
128.3 (2C), 127.0 (2C), 126.4 (4C), 126.0 (4C), 125.4 (2C), 125.1 (2C), 124.8 (2C), 124.4 (2C),
122.4 (2C), 119.4 (2C), 74.7 (2C), 63.6 (2C), 61.0, 60.8, 56.7 (2C), 56.2 (2C), 50.0 (2C), 42.3 (2C),
39.8 (2C), 39.6 (2C), 38.7, 38.5, 37.1 (2C), 36.6 (2C), 36.2 (2C), 35.8 (2C), 31.9 (4C), 28.3 (4C),
28.0 (2C), 24.3 (2C), 23.9 (2C), 22.9 (2C), 22.6 (2C), 21.1 (2C), 19.4 (2C), 18.8 (2C), 11.9 (2C)
ppm. HRMS (ESI-TOF): caled. for C50Hg1NO,Na [M + Na]* 730.4600, found 248.4612.

Cholesteryl 7,8-bis(hydroxymethyl)-9-azabicyclo[4.2.1]nona-2,4,7-triene-9-carboxylate (6): Yield
80% (0.473 g), white solid, m. p. = 188-189 °C, [«]p'8—20.6 (c 0.34, CHCl3), exists as two
N-(CO)O-cholesteryl rotamers. R¢ = 0.58 (petroleum ether/ethyl acetate 5:1). 'HNMR
(500 MHz, CDCl3): d11 6.29-6.39 (m, 4H), 5.86-5.95 (m, 4H), 5.36 (d, ] = 7.4 Hz, 2H), 5.09 (dd,
] =9.2 Hz, ] = 5.2 Hz, 4H), 4.41-4.51 (m, 2H), 4.25-4.34 (m, 8H), 2.19-2.37 (m, 4H), 1.92-2.06
(m, 4H), 1.75-1.91 (m, 6H), 1.22-1.63 (m, 22H), 1.06-1.21 (m, 14H), 0.96-1.05 (m, 10H), 0.93
(d, ] = 6.5Hz, 8H), 0.89 (d, ] = 2.2 Hz, 6H), 0.87 (d, ] = 2.2 Hz, 6H), 0.69 (s, 6H) ppm. '>C
NMR (125 MHz, CDCl3): é¢ 153.6 (2C), 139.7 (2C), 138.8 (2C), 138.7 (2C), 132.9 (2C), 132.6
(2C), 124.7 (2C), 124.6 (2C), 122.6, 122.5, 75.0 (2C), 61.8 (2C), 61.75 (2C), 56.7 (2C), 56.1 (2C),
54.9 (2C), 54.8 (2C), 50.0 (2C), 42.3 (2C), 39.7 (2C), 39.5 (2C), 38.6, 38.4, 37.0, 36.9, 36.5 (2C),
36.2 (2C), 35.8 (2C), 31.9 (2C), 31.86 (2C), 28.2 (2C), 28.17 (2C), 28.0 (2C), 24.3 (2C), 23.9 (2C),
22.8 (2C), 22.6 (2C), 21.0 (2C), 19.4 (2C), 18.7 (2C), 11.9 (2C) ppm. HRMS (ESI-TOF): calcd.
for C3gH57NO4Na [M + Na]* 614.4185, found 614.4199.

4. Conclusions

In summary, we synthesized, for the first time, N-carbocholesteroxyazepine and
studied its [67r + 27t]-cycloaddition reactions with functionally substituted terminal alkynes
and 1,4-butynediol under the action of the Co(acac),(dppe)/Zn/Znl, three-component
catalytic system. Our strategy provided a new 9-azabicyclo[4.2.1]Jnona-2,4,7-triene series
bearing, at C-7, a large variety of substituents in high yields (79-95%, 20 examples of
feasibility). The synthesized azabicycles possess a high potential for practical application in
pharmacology and medicine, as they can be used as key precursors in the targeted search
for and development of innovative drugs and other practically significant compounds.
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