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Abstract

Social memory dysfunction is an especially devastating symptom of many neuropsychiatric 

disorders, which makes understanding the cellular and molecular processes that contribute to 

such abnormalities important. Evidence suggests that the hippocampus, particularly the CA2 

region, plays an important role in social memory. We sought to identify potential mechanisms of 

social memory dysfunction in the hippocampus by investigating features of neurons, glia, and the 

extracellular matrix (ECM) of BTBR mice, an inbred mouse strain with deficient social memory. 

The CA2 is known to receive inputs from dentate gyrus adult-born granule cells (abGCs), neurons 

known to participate in social memory, so we examined this cell population and found fewer 

abGCs, as well as fewer axons from abGCs in the CA2 of BTBR mice compared to controls. 

We also found that BTBR mice had fewer pyramidal cell dendritic spines, in addition to fewer 

microglia and astrocytes, in the CA2 compared to controls. Along with diminished neuronal 

and glial elements, we found atypical perineuronal nets (PNNs), specialized ECM structures that 

regulate plasticity, in the CA2 of BTBR mice. By diminishing PNNs in the CA2 of BTBR mice 

to control levels, we observed a partial restoration of social memory. Our findings suggest that 

the CA2 region of BTBR mice exhibits multiple cellular and extracellular abnormalities and 

identify atypical PNNs as one mechanism producing social memory dysfunction, although the 

contribution of reduced abGC afferents, pyramidal cell dendritic spine and glial cell numbers 

remains unexplored.
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Introduction

Social memory is an essential function that forms the basis of adaptive social interactions, 

including between family members and within groups of unrelated individuals. Social 

memory dysfunction is a feature of many neuropsychiatric illnesses, such as autism 

spectrum disorder (ASD), schizophrenia, major depressive disorder, and Alzheimer’s disease 

[1,2] and is considered to be a particularly devastating symptom in terms of its effects 

on overall function and quality of life [3,4]. Studies have sought to determine the neural 

mechanisms of social memory using rodent models, and many of these reports have 

provided evidence that the hippocampus plays an important role in this capability [5,6]. 

Involvement of this brain region is perhaps not surprising given that human conditions with 

social memory impairments often exhibit hippocampal abnormalities [7–9].

Studies in mice have shown that social memory requires the CA2 region of the 

hippocampus. Chemogenetic and optogenetic inactivation of the CA2 and lesions of the 

CA2 have been shown to selectively impair social recognition memory, while optogenetic 

activation of CA2 neurons has been show to improve social recognition memory, suggesting 

that this region is critical for social memory formation [10–13]. Several studies have shown 

that the dentate gyrus is important for social memory and in particular, dentate gyrus granule 

cells that are born in adulthood appear to be essential for storing and/or retrieving social 

memories [14–18]. Since adult-born granule cells (abGCs) in the dentate gyrus are known to 

project to the CA2 [19], it seems likely that they exert their influence over social memory 

through this circuit.

In the adult mammalian brain, perineuronal nets (PNNs), specialized extracellular matrix 

(ECM) lattice-like structures that surround neurons, have been shown to promote 

synaptic stabilization [20–22]. In the hippocampus, PNNs typically form around inhibitory 

interneurons [23], but in the CA2 region, PNNs have been observed surrounding both 

inhibitory and excitatory neurons [24–25]. A recent study suggests that PNNs surrounding 

pyramidal neurons in the CA2 represent those ensheathing the terminals of inhibitory 

synapses projecting onto these cells [25]. PNNs in the CA2 have been shown to inhibit 

synaptic plasticity [24], but their potential role in behaviors linked to the CA2 remains 

relatively unexplored. Along these lines, it is interesting to note that irregularities in PNNs 

have been observed as a feature shared across neuropsychiatric disorders that are associated 

with social behavior dysfunction [21,22,26]. In order to investigate potential mechanisms 

of social memory impairments, we examined an inbred strain of social dysfunction, BTBR 

T+ Itpr3tf/J (BTBR) mice [27,28], for evidence of abnormalities in neuronal structure 

and circuitry as well as in PNNs in the CA2 region. Because microglia and astrocytes 

also influence synaptic signaling [29–31] and have been linked to social memory [32], 

we investigated these nonneuronal cells for potential abnormalities as well. We found that 

social memory dysfunction in BTBR mice is accompanied by aberrations in pyramidal cell 

dendritic spines, afferents from the abGCs of the dentate gyrus, microglia and astrocytes in 

the CA2 region. We also observed abnormal PNNs in the CA2 of BTBR mice and found 

that reducing PNNs to control levels partially restored social memory in this mouse model of 

social dysfunction.
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Materials and Methods

Animals

Age-matched adult male C57BL/6J and BTBR T+ Itpr3tf/J (BTBR) mice were obtained 

from The Jackson Laboratory and group-housed on a reverse 12 h light/dark cycle. See 

Supplementary Methods.

Behavioral testing

Mice underwent testing in the following order: 3-chamber social test, object location 

memory, direct social interaction test. For PNN degradation experiments, mice were only 

tested on the direct social interaction test. Sociability and social novelty recognition were 

assessed with a 3-chamber box [10, 28] over a 2-day period. To assess social memory, 3 

versions of the direct social interaction test were adapted from established protocols [10, 12, 

18]. See Supplementary Methods.

Histology

Mice were perfused and hippocampal sections were stained with Wisteria floribunda 
agglutinin (WFA) lectin or antibodies for 3R-Tau, Purkinje cell protein 4 (PCP4), mCherry, 

parvalbumin (PV), orthodenticle homeobox 2 (OTX2), ionized calcium binding adaptor 

molecule 1 (iba1), glial fibrillary acidic protein (GFAP), or aggrecan. See Supplementary 

Methods, Supplementary Table 1. Diolistic labeling of CA2 pyramidal neurons with the 

fluorescent carbocyanine dye DiI (Sigma-Aldrich) was achieved using a Helios Gene Gun 

System (BioRad) as previously described [33].

Histological analyses

Z-stack images of the dentate gyrus (DG), CA3, CA2, and CA1 regions of the hippocampus, 

as well as of the choroid plexus, were obtained with a Zeiss confocal microscope (LSM 

700). See Supplementary Methods. Volume, cell density, optical intensity, and dendritic 

spine density measurements were made using Image J software or Stereo investigator 

software (MBF Bioscience).

Surgical procedures

To label granule cells projecting to the CA2, unilateral injections of the retrograde virus 

rAAV-EF1a-mCherry-WPRE-hGHpA virus (AAV2-retro, made by the Princeton Viral Core, 

titer: 1×1013) were made in the CA2. To explore whether CA2 PNNs participate in social 

memory, bilateral injections of chondroitinase ABC (chABC, 50 U/ml, Sigma), an enzyme 

that temporarily degrades PNNs by digesting the sulfated sugar chains responsible for PNN 

glycoprotein function, or the control enzyme penicillinase (PNase, 50 U/ml, Sigma) were 

made in the CA2. CA2 coordinates were −1.82 AP, +/−2.15 ML, and −1.7 DV for control 

mice and −1.7 AP, +/−2.6 ML, and −1.4 DV for BTBR mice. See Supplementary Methods.

Cope et al. Page 3

Mol Psychiatry. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Statistical analyses

Data were analyzed with a linear mixed-effects model, unpaired two tailed student’s t-test, 

Mann-Whitney U tests or 2-way ANOVA and repeated measures 2 or 3-way ANOVA with 

Bonferroni post hoc comparisons. See Supplementary Methods.

Results

BTBR mice have impaired social and object memory

Consistent with previous reports [28, 34], we found that BTBR mice had impaired 

sociability in the 3-chamber test. While control mice preferred the social stimulus over 

the novel object, BTBR showed no such preference (Figure 1A). We then examined social 

novelty recognition 24 hours later. Control mice had a strong preference for a novel mouse, 

while BTBR mice spent similar amounts of time investigating a familiar mouse and a 

novel mouse (Figure 1B), suggesting an impairment in their ability to recognize a familiar 

conspecific. We corroborated this finding using the direct social interaction test [10, 12, 

18] with a 1-hour delay between presentation of a novel mouse and re-exposure to the 

same mouse. BTBR mice investigated novel mice less than controls. In addition, BTBR 

mice showed no difference in investigation times between novel and familiar mice (Figure 

1C). Both control and BTBR mice investigation times did not decrease during the second 

encounter when a new, novel mouse was introduced (Figure 1D), indicating that sociability 

was not reduced from repeated social interactions.

The hippocampus is well known for its other cognitive functions including processing 

information related to context and spatial location [35]. Consistent with previous findings 

[36], we found that BTBR mice have impairments in hippocampus-dependent object 

location memory as demonstrated by their low discrimination ratios compared to controls 

(Supplementary Figure 1).

BTBR mice have fewer axons from abGCs in the CA2 than controls

Diminished adult neurogenesis has been shown to impair social memory performance in 

mice [14–18]. Granule cells of the DG, including abGCs, project to the CA2 [19, 37]. 

Since the CA2 has been linked to social memory [10–12], we examined its afferents from 

the DG. We first used 3R-Tau to label abGCs and their mossy fiber axons [19] (Figure 

2A). Consistent with previous reports [38], we found decreases in the density of 3R-Tau+ 

cell bodies in the dorsal DG (Figure 2B) and ventral DG (Control: 19158±2049 cells per 

mm3, BTBR: 9991±1729 cells per mm3, t16 = 3.42, p = 0.0035) of BTBR mice compared 

to controls. Examination of 3R-Tau+ fibers revealed BTBR mice have considerably fewer 

abGC mossy fibers in the CA2 compared to controls (Figure 2C).

To examine the overall population of granule cells that projects to the CA2, we injected a 

retrograde recombinant AAV (AAV2-retro) into the CA2. In addition to cell body uptake at 

the site of injection, AAV2-retro enters through the terminals of axons and is transported 

retrogradely toward the cell body of origin [39]. Two weeks after virus injection, mCherry+ 

cells were identified in the CA2 and DG of both control and BTBR mice, with similar 

virus expression and cell morphology observed in both strains (Figure 2D,E). Many of 
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the mCherry+ granule cells were primarily located in the superficial layer of the granule 

cell layer (Figure 2E), suggesting typical input to CA2 from mature granule cells in 

BTBR mice. Taken together, these findings suggest that in BTBR mice, the pathway from 

developmentally generated DG granule cells to the CA2 seems similar to controls. However, 

the number of abGCs and their projections to the CA2 is substantially lower.

BTBR mice have a smaller CA2 region, with fewer pyramidal cell dendritic spines, 
microglia, and astrocytes, compared to controls

To determine whether CA2 structure was different in BTBR mice, we used the CA2 marker 

PCP4 in comparison with controls [40, 41] and found a significantly smaller CA2 volume 

in BTBR mice (Figure 3A). We then explored whether BTBR mice had different numbers 

of dendritic spines on CA2 pyramidal neurons using DiI-labeling and found lower dendritic 

spine density on both apical and basal dendrites compared to controls (Figure 3B). Since 

glia are known to regulate synaptic numbers in the healthy and diseased brain [42–45], we 

investigated whether there were changes in the number of microglia and astrocytes in BTBR 

mice. We found fewer iba1+ microglia (Figure 3C) and GFAP+ astrocytes (Figure 3D) in the 

CA2 of BTBR mice compared to controls.

PNNs and OTX2 are atypical in the CA2 of BTBR mice compared to controls

PNNs are specialized ECM structures that surround some neurons and regulate plasticity 

[21, 22]. Consistent with previous work [24–25], using the lectin-based stain WFA, we 

found intense staining surrounding both pyramidal cells and inhibitory interneurons in the 

CA2 of controls. Compared to controls, BTBR mice had an increase in WFA+ volume in the 

CA2 (Figure 4A). WFA staining intensity was also notably increased in the CA2 of BTBR 

mice (Figure 4B). Examination of individual 2μm optical sections revealed that the WFA 

staining was clearly perineuronal, surrounding PCP4-labeled cell bodies in the pyramidal 

cell layer (Supplementary Figure 2). To explore this difference further, we investigated the 

expression of aggrecan, a proteoglycan that is common to most, if not all PNNs, and found 

no differences in aggrecan volume (Control: .00237 ± .00013 mm3, BTBR: .00227±.00012 

mm3, t14 = 0.5360, p = 0.9095). Since WFA is thought to recognize only those PNNs that 

have specific sulfation patterns, these findings together suggest that the number of CA2 cells 

with PNNs may be similar between BTBR and control mice, but that PNN composition is 

different. We next investigated the transcription factor OTX2 because of its association with 

the formation of PNNs in the developing visual cortex [46] and found differences in the CA2 

that were consistent with our WFA data; BTBR mice exhibited greater OTX2 intensity in 

the CA2 compared to controls (Supplementary Figure 3B). Since OTX2 is synthesized in the 

choroid plexus in adulthood and then distributed throughout the brain where it is taken up 

by certain neurons [47], we next examined the choroid plexus and found that compared to 

controls, BTBR mice had decreased OTX2 intensity (Supplementary Figure 3A).

PNNs are atypical in additional subregions within the hippocampus of BTBR mice 
compared to controls.

We examined WFA+ cell numbers and staining intensity in other subregions within the 

hippocampus. In BTBR mice, we found a decrease in the number of WFA+ cells in both the 

dorsal and ventral DG (Supplementary Figure 4). These decreases were specific to WFA+ 
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cells that colocalized with PV (Supplementary Figure 4). BTBR mice also had fewer PV+ 

cells in the DG (Supplementary Figure 4). Compared to controls, there was no difference 

in WFA mean intensity in the DG of BTBR mice regardless of whether WFA+ PNNs 

colocalized with PV (Supplementary Figure 4). In the dorsal CA3 (dCA3) and ventral CA3 

(vCA3) of BTBR mice, there was an increase in the number of WFA+ cells that did not 

co-label with PV (Supplementary Figure 5). No differences were detected in the number 

of WFA+ cells that colocalized with PV or in the number of PV+ cells in the dCA3 or 

vCA3 of BTBR mice (Supplementary Figure 5). In the dCA3, BTBR mice had reduced 

WFA mean intensity of WFA+ cells that colocalized with PV but not in WFA+ cells 

that did not colocalize with PV (Supplementary Figure 5). There was no change in WFA 

staining intensity of PV+ or PV- cells in the vCA3 of BTBR mice compared to controls 

(Supplementary Figure 5). In the dorsal CA1 of BTBR mice, there was no difference in 

the number or intensity of WFA cells regardless of whether they were co-labeled with PV 

in BTBR mice compared to controls (Supplementary Figure 6). We next analyzed PNNs in 

the ventral CA1 (vCA1), a hippocampal subregion that has also been associated with social 

memory [13]. In the vCA1 of BTBR mice, however, there was no difference in WFA cell 

numbers regardless of whether they were co-labeled with inhibitory interneuron marker PV 

(Figure 5C). We then analyzed WFA staining intensity of individual WFA+ PNNs. There 

was no difference in WFA staining intensity of PV+ or PV- cells in BTBR mice compared to 

controls (Figure 5D).

Reducing CA2 PNNs in control mice impairs social memory

To explore the involvement of CA2 PNNs in social memory, we first investigated whether 

degradation of PNNs in the CA2 of control mice would impair social memory performance. 

Adult mice received bilateral injections of either chABC, an enzyme known to digest 

sulfated sugar chains on the glycoproteins that form the basis of PNNs [24, 25], or a control 

enzyme, PNase, into the CA2. Since PNN degradation is temporary after chABC injection, 

we tested behavior using a 3-trial direct social interaction test paradigm (Figure 5A,B) 

at 5 days post-injection (DPI), a time when mice had recovered from surgery but WFA+ 

PNNs have not completely recovered. Control mice injected with PNase had normal social 

memory, showing decreased interactions with familiar mice, whereas mice injected with 

chABC spent similar times interacting with novel and familiar mice (Figure 5C). Neither 

group showed significant increases in interaction times with a new, novel mouse after the 

familiarization period, although control mice showed a nonsignificant increase (Figure 5D). 

chABC treatment affected sociability as there was a slight decrease in social investigation 

times compared to PNase in the first novel trial (Figure 5C).

Reducing PNNs to control levels in BTBR mice improves social memory

We next explored the possibility that atypical PNNs in BTBR mice contribute to their social 

memory deficit. In pilot studies, we found that WFA staining intensity has been restored to 

control levels in BTBR mice and is no longer significantly diminished in control mice by 10 

DPI of chABC (Supplementary Figure 7). We then examined social memory in control and 

BTBR mice 10 DPI of PNase or chABC (Figure 5A,B). Control mice injected with PNase 

or chABC with 10 DPI recovery had normal social memory, showing decreased interaction 

times toward familiar mice and increased interaction times for novel mice (Figure 5F-H). As 
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expected given our studies in unoperated BTBR mice, BTBR mice injected with PNase did 

not show evidence of recognizing familiar mice. However, BTBR mice injected with chABC 

with a 10 DPI recovery l time displayed some evidence of social memory in that they had 

decreased interaction times for familiar mice and increased interaction times for novel mice 

(Figure 5F-H). Consistent with our previous findings, BTBR mice displayed lower levels 

of sociability in the novel 1 trial compared to control mice. chABC-induced restoration of 

control-like PNN staining had no restorative effect on sociability as there was no difference 

in social investigation times between BTBR mice injected with PNase or chABC in the 

novel 1 trial.

Discussion

Our data indicate that BTBR mice exhibit social memory impairments, as well as multiple 

cellular and extracellular abnormalities in the CA2, including in measures associated 

with plasticity, such as abGC afferents, dendritic spines, microglia, astrocytes and PNNs. 

Synaptic function can be influenced by each of these measures [29, 31] raising multiple 

possible mechanisms underlying social memory dysfunction in this mouse model. We 

directly investigated whether atypical PNNs in the CA2 were responsible for social memory 

impairments in BTBR mice and found that reducing PNNs to control values partially 

rescued social recognition memory.

CA2 PNNs and social memory

In addition to its unique molecular signature among other hippocampal subregions [48–50], 

the CA2 is known for its unusually high concentration of PNNs [24]. In other parts of the 

hippocampus, PNNs surround subsets of inhibitory interneurons, whereas in the CA2, they 

also surround pyramidal neurons [24, 25]. In the CA2, PNNs have been shown to reduce 

excitation [24, 51] and facilitate a form of synaptic plasticity associated with social memory, 

LTD at inhibitory synapses [25]. It has also been suggested that CA2 PNN development 

during postnatal life is required for the emergence of mature social memory capabilities, 

and consistent with our findings in adult control mice, degradation of CA2 PNNs has 

been shown to interfere with social recognition memory [25]. In addition, degradation of 

PNNs in the entire dorsal hippocampus has been shown to diminish nonsocial hippocampus-

dependent memories [52], raising the possibility of a general mechanism linking PNNs to 

experience-dependent plasticity in the adult hippocampus.

We found that the typically high concentration of PNNs in the CA2 of control mice is further 

increased in BTBR mice with substantially greater volume and intensity of WFA staining. 

While this staining intensity was much greater in BTBR mice raising the possibility that it 

represents diffuse ECM labeling, examination of thin (2μm thick) optical sections revealed 

that WFA staining was clearly perineuronal, but considerably more intense. Increased WFA 

staining is consistent with our finding of increased expression of OTX2, a transcription 

factor known to increase PNNs during development [53], in the BTBR CA2. PNNs comprise 

chondroitin sulfate proteoglycans (CSPG) with their function determined by both the CSPG 

composition as well as CSPG sulfation pattern. 4-sulfation, which has been causally linked 

with substantially reduced plasticity, is the dominant PNN sulfation pattern in older mice 
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[54, 55]. WFA is not a pan-PNN marker but instead may label PNNs with a 4-sulfation 

pattern [56]. Aggrecan, on the other hand, is a CSPG thought to be a component of most, if 

not all, PNNs [56]. Our results of greater WFA labeling without similar changes in aggrecan 

in the BTBR CA2 suggest that PNNs may not necessarily be increased, but instead, changed 

in their sulfation patterns such that the plasticity-diminishing 4-sulfation pattern dominates. 

Thus, our finding that excessive WFA labeling in the CA2 co-occurs with a complete lack of 

behavioral evidence of social memory is consistent with the interpretation that BTBR mice 

have a much greater proportion of PNNs with plasticity-inhibiting PNNs. chABC works 

by digesting sulfated sugar chains on CSPGs, thus eliminating WFA staining temporarily. 

CSPG sulfated sugar chains typically reconstitute themselves within a few weeks of their 

degradation. Using a post-chABC survival time when BTBR mice have not yet reached 

their excessively high WFA labeling seen at baseline but instead, had achieved control-like 

WFA staining patterns, we found partially rescued social memory. These findings suggest 

that excessive WFA labeling in the CA2 is causally linked to impaired social experience-

dependent plasticity. Since sociability is known to be low in BTBR mice compared to 

controls [28, 34], this raises the possibility that PNN degradation restored social memory by 

increasing sociability, however, we found no change in social investigation times in response 

to novel mouse exposure despite newfound evidence for social recognition suggesting that 

typical social behavior is only partially rescued in BTBR mice with diminished CA2 PNNs.

Given the evidence suggesting that PNNs facilitate plasticity and social memory in the 

CA2 [25], our results showing that reduced PNNs coincide with enhanced social memory 

may seem paradoxical. However, studies in mouse models of Alzheimer’s disease and age-

related cognitive dysfunction have shown that degradation of PNNs in the perirhinal cortex 

improves cognitive function on object memory tasks [55,57], suggesting that under certain 

conditions PNNs may induce a pathological suppression of plasticity and function. Although 

the exact mechanisms whereby abnormal PNNs may inhibit function remain unknown, some 

evidence suggests that under control conditions PNNs inhibit LTP at excitatory synapses 

[24] and since LTP has been shown to be sensitive to vasopressin [58], a neuropeptide 

in the CA2 important for social memory [12], further suppression by the presence of 

atypical PNNs may interfere with normal synaptic function in the area. This possibility is 

consistent with recent findings that abnormal PNNs in the CA2 coincide with a premature 

developmental downregulation of synaptic plasticity in a MECP2 deletion model [59]. PNNs 

have also been shown to diminish sharp wave ripples [60], neuronal oscillatory events that 

play key roles in hippocampal replay underlying memory consolidation [61], presenting an 

additional mechanism whereby atypical PNNs might adversely affect social memory.

Potential contribution of other hippocampal abnormalities to BTBR social memory 
dysfunction

The CA2 has been described as a “critical hub” for processing social information [10], but 

social memory clearly requires other brain regions as well. Within the hippocampus, the 

CA2 receives inputs from the DG [37] and has connections with the CA1 and CA3 [48]. 

Since reducing CA2 PNNs to control-like levels in BTBR mice only partially restored social 

memory function, other abnormalities we detected, including those in PNNs in the DG and 

CA3, might contribute to dysfunction. The extent to which PNN differences in these areas 
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contribute to social memory dysfunction remains unexplored. However, it is relevant to note 

that no PNN differences were detected in the vCA1, a CA2 target known to participate in 

social memory [13, 62], suggesting that PNN abnormalities are not a ubiquitous feature of 

the BTBR social memory circuitry.

We identified additional cellular abnormalities in the BTBR CA2 that might contribute 

to social memory dysfunction. First, afferents from abGCs of the DG are substantially 

lower in BTBR mice compared to controls, despite apparently normal inputs from mature 

granule cells. Since abGCs have been linked to social memory [14–18], they may exert 

this influence through connections with the CA2. Taken together with the reduced dendritic 

spine density on CA2 pyramidal cells, overall synaptic activity may be diminished to the 

point of impaired function. We also found lower numbers of microglia and astrocytes 

in the CA2 of BTBR mice compared to controls. Since both microglia and astrocytes 

contribute to synaptic function [29–31] and some evidence has shown that hippocampal-

specific reductions in microglia causes impaired social memory in mice [32], it raises the 

possibility that low numbers of glial cells additionally contribute to suboptimal function in 

BTBR mice. Previous studies examining the hippocampus of BTBR and control mice have 

identified numerous differences in gene expression, including in genes related to microglia 

and neuronal growth and maintenance [63,64]. Taken together with the findings of the 

present study, there are likely multiple, perhaps interrelated, causal factors for producing a 

deficit of social memory dysfunction.

Potential interactions among PNNs, abGCs, dendritic spines, and glia

BTBR mice are an inbred strain that has been studied extensively because of its well-known 

deficits in social function [28, 34]. Our findings add to the list of known neuroanatomical 

abnormalities in this mouse model [65] by showing fewer abGC afferents to the CA2 as 

well as fewer dendritic spines on CA2 pyramidal cells of BTBR mice compared to controls. 

Taken together with our observations of differences in PNNs, microglia, and astrocytes in 

the BTBR CA2 compared to controls, these findings raise questions about whether specific 

abnormalities are responsible for others. For example, it is possible that lower levels of 

excitation in the CA2, reflected by sparse excitatory abGC afferents and pyramidal cell 

dendritic spines, are responsible for atypical PNN formation in the region. Along these 

lines, a previous study showed that chemogenetic decreases in CA2 neuronal activity 

increase PNN expression in the CA2 of controls [59]. PNN aberrations themselves may 

further exaggerate disruptions in neural activity in hippocampal circuits by limiting synaptic 

plasticity and neuronal oscillations, producing a feedforward loop whereby reduced activity 

induces PNN abnormalities, which themselves insure the persistence of reduced activity [21, 

22].

It is also possible that low numbers of glial cells in the CA2 contribute to abnormal 

PNNs. Studies have suggested that glia may act as homeostatic regulators of the ECM. 

For example, microglia have been shown to release proteases that degrade the ECM under 

conditions of inflammation [66, 67] and across the diurnal rhythm [68]. Microglia-mediated 

engulfment of the ECM has recently been shown to be important for synaptic plasticity 

in response to experience [69]. It is possible that social memory function in BTBR mice 
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is inhibited by the inability of low numbers of microglia to remodel the ECM and allow 

new synaptic connections to form. It is also worth noting that BTBR mice exhibit white 

matter abnormalities, including diminished or absent commissural connections [70,71]. 

These differences are likely related to altered expression of genes associated with axon 

guidance [70] as well as myelin basic protein in BTBR mice [71]. BTBR mice have also 

been shown to have altered expression of ECM-related proteins [72], and additional studies 

have shown that ECM proteins can inhibit both axon outgrowth [73] and myelination [74], 

raising additional putative connections among BTBR brain abnormalities. These possibilities 

should be the focus of future work.

Conclusions

Our work suggests that atypical PNNs in the CA2 are at least partially responsible for social 

memory dysfunction in BTBR mice. These findings may be relevant to neuropsychiatric 

conditions associated with social memory dysfunction and abnormal expression of PNNs 

such as ASD, schizophrenia, major depressive disorder, and Alzheimer’s disease [1, 2, 

21, 22]. Restoring PNNs to normal levels may be a potential therapeutic target for these 

disorders. Future work is needed to explore the extent to which hippocampal abnormalities 

in adult neurogenesis and glia also contribute to social memory impairments in BTBR mice.

Supplementary Material
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Figure 1. BTBR mice have impairments in sociability and social memory.
A. Left: Control mice display a preference for a social over nonsocial stimulus while 

BTBR mice show no such preference in the 3-chamber test. Control mice spent more time 

investigating a cagemate than a novel object and BTBR mice spent equal times investigating 

both stimuli (two-way ANOVA, strain: F(1,42) = 0.1097, p = 0.7422, chamber: F(1,42) = 

9.106, p = 0.0043, strain X chamber: F(1,42) = 7.756, p = 0.0080). *p < 0.05 compared to 

cagemate. Right: BTBR mice have lower difference scores (cagemate – object) compared 

to controls (unpaired t-test, t21 = 2.25, p = 0.035). n = 11 for controls and n = 12 for 

BTBR. *p < 0.05 compared to controls. B. Left: Control mice display robust social memory 

while BTBR mice exhibit no evidence of social memory in the 3-chamber social novelty 

test (two-way ANOVA, strain: F(1,44) = 42.50, p < 0.0001, chamber: F(1,44) = 48.86, p < 
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0.0001, strain X chamber: F(1,44) = 22.86, p < 0.0001). *p < 0.05 compared to novel. Right: 

BTBR mice have lower difference scores (novel – cagemate) compared to controls (unpaired 

t-test, t22 =4.62, p = 0.00013). n = 12 for both groups. *p < 0.05 compared to controls. 

C. Left: Control mice show evidence of social memory while BTBR mice display no such 

evidence in the novel to familiar direct social interaction test (two-way repeated measures 

ANOVA, trial: F(1,28) = 18.56, p = 0.0002, strain: F(1,28) = 37.70, p < 0.0001, trial X strain: 

F(1,28) = 7.29, p = 0.012). *p < 0.05 control novel to familiar. Right: BTBR mice have 

lower difference scores (novel – familiar) compared to controls (Mann-Whitney test, U28 = 

49, p = 0.0075). *p < 0.05 compared to controls. D. Left: Neither control nor BTBR mice 

decrease their investigation times for a new, novel mouse in the novel to novel direct social 

interaction test (two-way repeated measures ANOVA, trial: F(1,28) = 0.0398, p = 0.8433, 

strain: F(1,28) = 8.443, p = 0.0071, trial X strain: F(1,28) = 0.000746, p = 0.9784). Right: 

There was no change between groups in difference scores (novel 1 – novel 2) (unpaired 

t-test, t28 = 0.02732, p = 0.9784). *p < 0.05 compared to controls. For panels C and D, n 
= 15 for both groups. Error bars represent SEM. See Supplementary Table 2 for complete 

statistics.
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Figure 2. BTBR mice have fewer mossy fibers from abGCs to the CA2.
A. Image of the dorsal DG immunolabeled with new neuron marker 3R-Tau (red) and 

counterstained with Hoechst (blue) in a control mouse (left). Scale bar = 100 μm. Dorsal 

DG labeled with 3R-Tau+ abGCs and their mossy fiber projections in a control (middle). 

Scale bar = 25 μm. 3R-Tau+ mossy fiber labeling in the CA2 of a control (right). Scale bar 

= 50 μm. B. Dorsal DG immunolabeled with abGC marker 3R-Tau (red) and counterstained 

with Hoechst (blue) in control and BTBR mice (left). Scale bar = 25 μm. BTBR mice have 

fewer 3R-Tau+ abGCs in the dorsal DG compared to controls (unpaired t-test, t16 = 4.73, 
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p = 0.00023) (right). C. The CA2 labeled with 3R-Tau+ fibers (red) in control and BTBR 

mice (left). Scale bar = 50 μm. BTBR mice have less 3R-Tau+ in the CA2 (Mann-Whitney 

test, U16 = 14, p = 0.019) (right). For panels B and C, n = 9 for each group. D. CA2 

of control and BTBR injected with AAV2-retro (mCherry, red) into the CA2 (PCP4, red). 

Scale bar = 100 μm. E. The DG of control and BTBR showing mCherry+ labeled granule 

cells after injection with AAV2-retro in the CA2. Scale bar = 10 μm. Similar expression 

of mCherry+ was observed in granule cells of control and BTBR mice, with no significant 

differences detected in the density of mCherry+ granule cells divided by the volume of the 

CA2 injection site (Mann-Whitney test, U6 = 3, p = 0.700) (right). Error bars represent 

SEM. *p <0.05 compared to controls.
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Figure 3. BTBR mice have a smaller CA2 region as well as fewer pyramidal cell dendritic spines, 
microglia, and astrocytes.
A. Images of the CA2 from control and BTBR mice immunolabeled with the CA2 marker 

PCP4 (red) (left). Scale bar = 100 μm. BTBR mice have a smaller CA2 compared to controls 

(unpaired t-test, t14 = 2.22, p = 0.043) (right). n = 8 for each group. B. Apical and basal 

dendritic segments from CA2 pyramidal neurons labeled with DiI in control and BTBR 

mice (left). Scale bar = 2.5 μm. BTBR mice have reduced dendritic spine density on apical 

and basal dendrites of CA2 neurons (linear mixed effects model, apical: t45 = −5.088, p = 

0.0002, basal: t43 = 3.355, p = 0.0017) (right). n = 6 for each group. C. Microglia labeled 

with iba1 (red) in the CA2 of control and BTBR mice (left). BTBR mice have a lower 

density of iba1+ microglia in the CA2 compared to controls (unpaired t-test, t17 = 3.40, p 
= 0.0034) (right). D. Astrocytes labeled with GFAP (red) in the CA2 of control and BTBR 

mice (left). BTBR mice have lower density of GFAP+ astrocytes in the CA2 compared to 

controls (unpaired t-test, t17 = 8.068, p < 0.0001) (right). For panels C and D, n = 9 for 

controls and n = 10 for BTBR. Scale bars = 25 μm. Error bars represent SEM. *p < 0.05 

compared to controls.
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Figure 4. BTBR mice have greater WFA+ volume and intensity in the CA2 but not the vCA1.
A. Images of the CA2 labeled with the PNN marker WFA (green) in control and BTBR mice 

(left). BTBR mice have greater WFA+ volume in the CA2 compared to controls (unpaired 

t-test, t14 = 2.75, p = 0.016) (right). B. Images of PCP4 (red) and WFA (green) in the CA2 

from control and BTBR mice (left). BTBR mice have increased mean intensity of WFA in 

the CA2 compared to controls (unpaired t-test, t14 = 11.56, p < 0.0001) (right). Due to the 

exceedingly high intensity of WFA staining in the BTBR CA2, mean intensity values were 

normalized to control. For panels A and B, n = 8 for each group. Images shown are confocal 
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projections made from multiple optical sections through the z plane combined to produce 

a single 2D image (see Supplementary Figure 2 for example optical sections demonstrating 

perineuronal staining of WFA in BTBR CA2). C. No differences in the numbers of WFA+ 

cells, PV+ cells, or WFA+PV+ cells were observed in the vCA1 between control and BTBR 

mice. D. No difference in WFA intensity was observed surrounding PV+ or PV- cells in the 

vCA1 between control and BTBR mice. For panels C and D, n = 8 for control and n = 7 for 

BTBR. Scale bars = 100 μm. Error bars represent SEM. *p < 0.05 compared to controls. See 

Supplementary Table 3 for complete statistics.
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Figure 5. Reducing CA2 PNNs in control mice impairs social memory, while reducing PNNs in 
BTBR mice to control values partially rescues social memory impairment.
A. Timeline of experiment. Control and BTBR mice were injected with either PNase or 

chABC in the CA2, tested for social memory at 5 days (control mice) or 10 days (control 

and BTBR mice) later. B. Schematic of 3-trial social memory test. C. chABC impairs 

social memory (two-way repeated measures ANOVA, trial: F(2,36) = 11.90, p = 0.0001; 

drug: F(1,18) = 2.757, p = 0.1142; trial X drug: F(2,36) = 2.593, p = 0.0 87). *p < 0.05 

Control PNase novel 1 to familiar. D. chABC-treated control mice have lower difference 

scores (novel 1 – familiar) compared to PNase-treated mice (Mann-Whitney test, U18 = 21, 

p = 0.0288). *p < 0.05 compared to controls. E. There was no significant change between 

groups in difference scores (familiar – novel 2) (unpaired t-test, t18 = 1.16, p = 0.2613). *p 
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< 0.05 compared to controls. F. While BTBR mice treated with PNase showed no evidence 

of social memory, BTBR mice treated with chABC showed evidence of social memory 

(three-way repeated measures ANOVA, trial: F(1.872,103.0) = 48.52, p < 0.0001; strain: F(1,55) 

= 29.46, p < 0.0001; trial X strain: F(2,110) = 16.08, p < 0.0001; drug: F(1,55) = 0.6334, 

p = 0.4295; trial X drug: F(2,110) = 3.061, p = 0.0508; trial X strain X drug: F(2,110) = 

1.904, p = 0.1538). *p < 0.05 from novel 1 to familiar. G. BTBR mice treated with chABC 

investigated the novel mouse more than the familiar mouse and this difference was greater 

than that of BTBR mice treated with Pnase (novel 1 – familiar) (two-way ANOVA, strain: 

F(1,55) = 26.69, p < 0.0001; drug: F(1,55) = 4.365, p = 0.0413; strain X drug: F(1,55) = 

4.062, p = 0.0488). *p <0.05 compared to all other groups. H. Unlike BTBR mice treated 

with PNase, BTBR mice treated with chABC investigated the familiar mouse more than 

the second novel mouse (familiar – novel 2) (two-way ANOVA, strain: F(1,55) = 27.96, p < 

0.0001; drug: F(1,55) = 5.756, p = 0.0199, strain X drug: F(1,55) = 0.07349, p = 0.7873). *p 
< 0.05 compared to Control + PNase and Control + chABC. For panels C - E, n = 10 for 

each group. For panels F - H, n = 15 for control groups, n = 15 for BTBR + PNase, and n = 

14 for BTBR + chABC. Error bars represent SEM. See Supplementary Table 4 for complete 

statistics.
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