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Abstract

Single-molecule localization microscopy (SMLM) has had remarkable success in imaging cellular 

structures with nanometer resolution, but standard analysis algorithms necessitate the activation of 

only single isolated emitters which limits imaging speed and labeling density. Here, we overcome 

this major limitation using deep learning. We developed DECODE, a computational tool that can 

localize single emitters at high density in 3D with highest accuracy for a large range of imaging 

modalities and conditions. In a public software benchmark competition, it outperformed all other 

fitters on 12 out of 12 data-sets when comparing both detection accuracy and localization error, 

often by a substantial margin. DECODE allowed us to take fast dynamic live-cell SMLM data 
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with reduced light exposure and to image microtubules at ultra-high labeling density. Packaged for 

simple installation and use, DECODE will enable many labs to reduce imaging times and increase 

localization density in SMLM.

Introduction

Single-molecule localization microscopy (SMLM) (e.g. PALM1 and STORM2) has become 

an invaluable super-resolution method for biology, as it can resolve cellular structures with 

nanometer precision. It is based on acquiring a large number of camera frames, in each 

of which only a tiny fraction of the emitters are activated into a bright ‘on’ state, so that 

their images do not overlap. This allows precise localization of the emitter coordinates 

by fitting a model of the Point Spread Function (PSF). A super-resolution image is then 

reconstructed from these coordinates. This principle of SMLM is at the same time one of its 

main limitations: the need for sparse activation leads to long acquisition times. This results 

in low throughput, poor time resolution when imaging dynamic processes, low labeling 

densities, and a reduced choice of fluorophores. Additionally, long acquisition times in 

combination with high excitation laser intensities needed for single-molecule imaging cause 

strong phototoxicity in live-cell SMLM.

All of these limitations can be mitigated by activating emitters at a higher density. In this 

‘multi-emitter’ setting, PSFs are no longer well-separated but may overlap, making both 

the detection of multiple nearby emitters and their accurate localization computationally 

challenging. This is not adequately addressed by existing algorithms: Current ‘multi­

emitter’ fitting algorithms3–5 work reasonably well on two-dimensional samples where all 

emitters have the same z-coordinate and thus produce identical PSFs. These algorithms, 

however, have had limited success for realistic three-dimensional biological structures. 

In a software competition that benchmarked SMLM algorithms using realistic computer­

generated data, simple single-emitter fitters outperformed dedicated high-density fitters on 

three-dimensional samples even in the high density regime6.

Deep learning is revolutionizing biological image analysis7–9. For SMLM, deep learning 

holds promise to extract emitter coordinates and additional parameters under conditions and 

densities too complex for traditional fitters. With enough training data, deep networks are 

flexible function approximators which can be trained to recognize patterns in the image and 

thus transform images directly into predicted emitter configurations, even for challenging 

high densities of emitters. While groundtruth data to train the neural network is typically 

not available, synthetic training data can be generated by numerically simulating the imaging 

process10, 11. Convolutional neural networks (CNNs, a class of deep networks suitable for 

image data) have recently been used to extract parameters describing single isolated emitters 

such as color, emitter orientation, z-coordinate, background or aberrations12–15 and to design 

optimized PSFs16. Two recent studies (DeepSTORM3D16 and DeepLoco17) used CNNs for 

extracting emitter coordinates, and outperformed traditional single-emitter fitting algorithms 

at densities higher than the single-molecule regime. These studies illustrate the potential 

of deep learning for SMLM, however they have only been demonstrated either for exotic 

engineered point spread functions or on simulated data.
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Here we present the DECODE (DEep COntext DEpendent) method for deep-learning based 

single-molecule localization that achieves high accuracy across a wide range of emitter 

densities and brightnesses. DECODE uses a novel deep network output representation, 

architecture, and cost function, which enable simultaneous detection and sub-pixel 

localization of single emitters. Uniquely, DECODE is able to predict both the probability 

of detection and the uncertainty of localization for each emitter. As the timing and duration 

of emitter activations are stochastic, they regularly persist over several imaging frames. 

The DECODE architecture can integrate information across neighboring frames (‘temporal 

context’), which improves emitter detection and localization.

In the public SMLM challenge6, DECODE outperformed all existing methods on 12 out 

of 12 datasets. Compared to previous deep learning based high-density fitters16, DECODE 

is 10x faster and up to 2x more accurate, and it can be applied to a wide range of PSFs. 

We demonstrate on biological structures that DECODE allows for 5-fold higher labeling 

densities or 10-fold faster imaging compared to imaging in the single emitter regime, and 

thus enables fast live-cell SMLM with reduced light exposure and visualization of dynamic 

processes. We show the versatility of DECODE by re-analyzing a published Lattice Light­

Sheet PAINT data set18 for which we could substantially improve fluorophore detection and 

localization accuracy. DECODE is packaged for simple use and can be easily trained and 

used by non-expert users, without having to design new network architectures. Thus, it will 

enable the entire community to overcome the need of sparse activation as one of the main 

bottlenecks in SMLM.

Results

DECODE network

DECODE introduces a new output representation and architecture for detecting and 

localizing emitters. For each image frame it predicts multiple channels with the same 

dimensions as the input image (Fig. 1a). The first two channels indicate the probability p 
that an emitter exists near that pixel, as well as its brightness N (number of photons emitted 

by the emitter in the frame). The next three channels describe the coordinates of the emitter 

with respect to the center of the pixel, Δxyz = [Δx, Δy, Δz]. An additional channel predicts 

the background intensity B in each pixel.

This architecture overcomes limitations of current deep-learning16, 17 and non-deep learning 

based high density approaches in three ways: First, DECODE predictions scale only 

with the number of imaged pixels (not super-resolution voxels as in DeepSTORM3D), 

resulting in over 20-fold improvement in prediction speeds, and the use of continuous 

sub-pixel coordinates eliminates a voxel size dependent limit on precision. The local output 

representation used by DECODE also avoids the potentially challenging non-local mapping 

of pixels to global coordinates used in DeepLoco.

Second, DECODE has four additional output channels that estimate the uncertainty of the 

localization along each coordinate given by σxyz = [σx, σy, σz] and of the brightness 

σN. These predicted localization uncertainties can be used to filter out poorly localized 

detections to improve the rendering of super-resolution images. In addition, training the 
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network to additionally predict the localization uncertainty corresponding to each detection 

also helps to improve the quality of the detection probabilities p by implicitly grouping all 

the detections corresponding to the same emitter. In contrast, standard output representations 

which only indicate the probability of detecting an emitter on a per-voxel basis make it 

more challenging to correctly group detection probability voxels corresponding to the same 

emitter in high emitter density and high localization uncertainty scenarios.

Third, the DECODE network integrates information across multiple frames with a two-stage 

design: The first stage (frame analysis module) analyses single imaging frames using a 2D 

multi-resolution convolutional network based on the “UNet” architecture19 to compute a 

feature representation of the single frame (1). The second stage (temporal context module) 

integrates the feature representations of the frame with those of the previous and next 

imaging frame using a second 2D UNet to produce the final predictions. As emitters persist 

over several frames, this improves detection and localization accuracy.

Training the DECODE network using simulator learning

We train DECODE to simultaneously detect and localize emitters in SMLM measurements. 

Ground truth data for supervised learning are not easily available for SMLM. However, 

it is possible to simulate realistic images of activated emitters as the physics of imaging 

single molecules is well understood11. We train the DECODE network by generating a 

large amount of simulated data. To avoid structural bias7, we place emitters at random 

coordinates, and calculate simulated images with a realistic image-formation model that 

includes dye photo-physics, a measured PSF and camera noise (see Methods).

We trained the DECODE network to predict the probability of detection, along with the 

sub-pixel localization and localization uncertainty of each detected emitter. Our loss function 

has three terms: 1) a count loss that compares the true and detected number of emitters in 

the image; 2) a localization loss that trains the network to correctly localize the detected 

emitters and estimate the localization uncertainty and emitter brightness; 3) an optional 

background loss. The count and localization loss functions were derived together as an 

approximation to a spatial point process probability distribution. They work together to 

correctly train the DECODE network to predict one detection per emitter, and to correctly 

assign the localization uncertainty of each emitter to the corresponding detection. Together, 

they constitute a novel loss for counting, detecting, and localizing sets of discrete point-like 

objects.

The count loss first constructs a Gaussian approximation to the predicted number of emitters 

by summing the mean and the variance of the Bernoulli detection probability map, and then 

maximizes the probability of the true number of emitters under this distribution. Uncertain 

detections will lead to large predicted count variance, while confident detections will result 

in low variance. Thus, the count loss encourages a detection probability map with sparse but 

confident predictions. The localization loss models the distribution of sub-pixel localizations 

Δxyz with a coordinate-wise independent Gaussian probability distribution20 with standard 

deviation σxyz. For imprecise localizations, this probability is maximized for large σxyz., 

for precise localizations for small σxyz. The distribution of all localizations over the entire 

image is approximated as a weighted average of individual localization distributions, where 
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the weights correspond to the probability of detection. By optimizing both the probability of 

detection, the sub-pixel localization Δxyz, and σxyz simultaneously, the network learns not 

only the best predictions for the coordinates of the emitters, but also the best estimate for 

their localization uncertainties. The emitter brightness predictions N and their uncertainties 

σN are optimized similarly. Finally, the optional background loss computes the mean 

squared error between the true and predicted background images B.

DECODE achieves high accuracy for a wide range of simulated data

Performance metrics—The quality of SMLM data analysis is commonly quantified by 

two factors: First, the detection accuracy quantifies the fraction of emitters that are detected. 

The metric we use here is the Jaccard Index (JI)6, that sets the true positives (TP) in relation 

to the false positives (FP) and false negatives (FN), JI = TP/(TP + FN + FP). The second 

factor is the localization error, i.e. how close the measured coordinates are to the true 

coordinates, measured here as the RMSE averaged over the dimensions (see Methods). We 

matched the detected emitters to the ground truth emitters in 3D with a lateral threshold of 

250nm and an axial threshold of 500nm.

There is a natural trade-off between JI and localization error: Discarding all but the brightest 

and best separated emitters will result in a good (low) localization error but a bad (low) 

JI. Conversely, including also poorly localized emitters might improve JI, but deteriorates 

the localization error. The optimal operating point between these two extremes will depend 

on the experimental conditions and the scientific question. Because DECODE also provides 

uncertainties for each localization, it offers a straightforward way to filter localizations and 

thus set the desired balance between the number of detected emitters and the localization 

error that can be tolerated.

The Cramér-Rao Lower Bound (CRLB) gives the minimum achievable localization error for 

an optimal fitter given a known PSF, background, and noise model21. Most commonly, it is 

calculated under idealized conditions (i.e. non overlapping PSFs, homogeneous background, 

assuming the chosen PSF model to be the true model) and we use it here for comparison as a 

best-case limit for localization error.

DECODE approaches the Cramér-Rao Lower bound for low densities—We 

simulated 100,000 frames with exactly one emitter per frame at random coordinates with 

a constant brightness and background and trained DECODE without temporal context. On 

this data with sparse activations, DECODE approaches the single emitter CRLB, i.e. the 

theoretical limit of precision (Fig. 2a). It thus performs as well as Maximum Likelihood 

Estimation (MLE) based fitters, which have also been shown to reach the CRLB22 in this 

regime.

DECODE’s uncertainty estimates are well calibrated—In the high density regime, 

DECODE’s σ predictions correlate closely to the measured localization error (Fig. 

2b), much better than the single emitter CRLB estimate that assumes isolated emitters 

(correlation coefficient 0.86 for σ vs. 0.07 for single emitter CRLB). For the low-density 

regime, the uncertainty estimates are in line with the measured error and the single emitter 

CRLB (Fig. 2a).
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Temporal context improves localization error and detection—DECODE’s 

temporal context module pools information across multiple (we used 3) frames, to model 

the fact that emitters can persist in multiple subsequent frames. Use of this context module 

improves both the detection accuracy (JI) and the localization error (Fig. 2c). The increase 

in JI is apparent for all densities and SNRs. In addition, the RMSE is reduced by up to 

20nm. Overall, the temporal context has a large impact across imaging conditions, and is 

also more powerful than ‘grouping’ approaches which are often applied to localizations in a 

post-processing step (see Extended Data Fig. 2).

DECODE architecture outperforms a voxel based network architecture and a 
multi-emitter fitter—To assess how the DECODE network architecture performs against 

other deep learning based and iterative methods, we directly compared to DeepSTORM3D16 

and CSpline3, a matching pursuit style multi-emitter fitter based on MLE, using the 

code provided by the authors. To minimise the risk of sub-optimal training, we trained 

DeepSTORM3D on data sampled from our generative model using the same parameters we 

used for the training of DECODE. For both DeepSTORM3D and CSpline we performed 

a parameter grid search over user-defined parameters to maximize their performance 

(measured as efficiency score6). To facilitate the comparison of localization precision, we 

filtered out DECODE localizations with the highest inferred uncertainties such that the 

remaining number match DeepSTORM3D. DECODE outperforms the other methods across 

all densities and SNRs (Fig. 2e, Extended Data Fig. 3) even without temporal context. When 

we use temporal context, DECODE reduces the localization error up to two-fold compared 

to DeepSTORM3D. Although both methods are based on deep learning, this performance 

improvement is based on the differences in output representation and loss function between 

DECODE and DeepSTORM3D. The localization error of DeepSTORM3D is limited by 

the super-resolution voxel size16 (Extended Data Fig. 4), which prevents the method from 

achieving the single emitter CRLB, unlike DECODE which has no such limitation. Because 

DECODE has multiple output maps it is also able to provide accurate estimates of the signal 

photon counts and background values (Extended Data Fig. 9). Notably, DECODE performs 

favourably in fitting time (Extended Data Fig. 6), taking less then 1.5s to analyze 1000 

frames of 64x64 pixels, while DeepSTORM3D requires between 34s and 54s and CSpline 

requires between 14s and 2680s, which is up to 1900-fold slower than DECODE. Training 

the DECODE network to convergence on a NVIDIA RTX2080Ti GPU requires around 10h 

while DeepSTORM3D takes around 50h.

DECODE outperforms all fitters on a public SMLM benchmark—The 

2016 SMLM challenge is an on-going and continuously updated second generation 

comprehensive benchmark evaluation developed for the objective, quantitative evaluations of 

the plethora of available localization algorithms6, 23. It offers synthetic datasets for training, 

created to emulate various experimental conditions. To avoid overfitting, evaluations are 

carried out on data not shared with contestants. It calculates various quality metrics, 

among them RMSE lateral or volume localization error, as applicable for 2D and 3D data 

respectively, the Jaccard index JI quantifying detection accuracy and a single ‘Efficiency’ 

score that combines RMSE and JI. The performanceof DECODE in the SMLM 2016 

challenge, including extensive evaluations and side by side comparisons, is available 
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online†. DECODE outperformed all 39 algorithms on 12 out of 12 datasets, often by a 

substantial margin (Fig. 3, data from challenge website, current as of Oct 1st, 2020). The 

datasets included high (N1) and low (N2, N3) signal to noise ratios (SNR), with low (LD) or 

high (HD) emitter densities, with 2D, astigmatism (AS) and double Helix (DH) PSF based 

imaging modalities.

DECODE achieves an average efficiency score of 66.6% out of the best possible score of 

100% (achievable only by a hypothetical algorithm that accurately detects 100% emitters 

with 0nm localization error). This is compared to an average score of 48.3% and 45.6% for 

all second and third place algorithms, respectively. The difference is particularly large under 

difficult imaging conditions, when high emitter densities and low SNR can conspire to make 

detection and localization challenging, particularly so for the double helix PSF. For example, 

compared to the second best algorithm (SMAP2018) in the Low SNR/high density/double 

helix condition, DECODE improves the localization error from 75.2nm to 48.4nm and the JI 

from 30.0% to 67.5%.

DECODE enhances super-resolution reconstructions by improving both the detection and 

the localization of single molecules. An example of this can be seen in Fig. 3c, where 

we compare the reconstruction obtained with DECODE and CSpline3 on a high-density 

3D double-helix dataset (using settings provided by the authors, github.com/ZhuangLab/

storm-analysis). Other deep learning based approaches have not yet submitted their results. 

However, we performed comparisons to DeepSTORM3D on low SNR high density training 

datasets and again achieved superior results (efficiency score of 51% against 32% on double 

helix and 45% against 31% on astigmatism data. See Supplementary Fig. S5, S6). Thus, 

DECODE is setting new quantitative standards for localization algorithms, across both low 

and high SNRs and densities.

Considerations—As with any fitter, DECODE relies on an accurate PSF model and 

proper parameters, otherwise artifacts will dominate the predictions. When the localization 

uncertainty is large, for very dim and dense localizations far from the focal plane, DECODE 

has a bias towards predicting localizations close to the pixel center. This effect can be 

overcome by filtering out localizations with large predicted uncertainty (Extended Data Fig. 

8, Methods).

DECODE reduces imaging times by one order of magnitude

By enabling accurate emitter localization at high densities of more than 2.5μm−2 per frame 

(Fig. 2 c), DECODE can yield high-quality super-resolution reconstructions with much 

shorter imaging times. We demonstrate this by imaging and reconstructing the same sample 

of labeled microtubules at four different activation laser powers using STORM (stochastic 

optical reconstruction microscopy)24, 25. This results in different emitter densities per frame 

between 0.08 and 0.86μm−2. The imaging time was chosen to result in the same number of 

total localizations and decreased from 1120s to 460s, 250s and 93s for stronger activation.

† http://bigwww.epfl.ch/smlm/challenge2016/leaderboard.html 
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We trained and applied one common DECODE model to all four datasets (Fig. 4a). Whereas 

CSpline reconstructions quickly degrade with high emitter densities, DECODE consistently 

yields reconstructions with high accuracy even for the densest sample. We quantified the 

lateral resolution using Fourier Ring Correlation (FRC)26, which estimates resolution by 

measuring the correlation of two different reconstructions of the same image across spatial 

frequencies. DECODE consistently improves the x,y resolution by 20 nm - 30 nm over 

CSpline across all imaging densities (Fig. 4b and c) while detecting around 30% more 

localizations.

DECODE enables fast live-cell SMLM with reduced light exposure

Fast imaging is especially relevant for live-cell SMLM where the dynamics of the biological 

system under investigation dictate the necessary time resolution. At the same time, fast 

imaging usually requires high laser powers, deteriorates resolution27 and leads to substantial 

phototoxicity28. As DECODE allows activating emitters to high density, it enables faster 

imaging with decreased light dose for a given number of localizations. We were able to 

image dynamic changes of the Golgi apparatus (Fig. 4d) and the endoplasmic reticulum 

(Fig. 4e) with 7.5s temporal resolution. We imaged nuclear pore complexes in living cells29 

within only 3 seconds (Fig. 4f), 7 times faster than our previous speed-optimized live-cell 

SMLM27 and with 70% reduced light dose and thus phototoxicity.

DECODE enables ultra-high labeling densities

Labeling densities in SMLM are fundamentally limited by the fraction of emitters that are 

in the bright state. For the best performing fluorophore Alexa Fluor 647, even without 

UV activation about 0.05% of the emitters are in the bright state30 due to activation by 

the red imaging laser and spontaneous activation. For the single-emitter blinking regime 

(activated emitter density < 0.1 μm−2), this limits the number of total emitters to about 

200μm−2. For higher labeling, pre-bleaching can be employed to reduce the number of 

emitters to this regime, but the resulting low labeling limits the resolution18 and in the 

superresolution reconstructions sparse individual emitters become dominant (Fig. 4g). With 

DECODE, we can now image densely labeled samples that previously were inaccessible. 

We demonstrated this on immuno-labeled microtubules that were labeled about 5-fold 

higher than compatible with single-emitter fitting, resulting in much smoother and denser 

decoration of the microtubules (Fig. 4g). In 50 nm thick orthogonal reconstructions, only the 

densely labeled microtubules were resolved as hollow cylinders, whereas after pre-bleaching 

to single-emitter blinking, these reconstructions only showed individual emitters (Fig. 

4g,3,4). Additional comparisons with DeepSTORM3D highlight that the superior output 

representation and loss function of DECODE are critical to reach the optimal resolution for 

this dataset (Extended Data Fig. 5).

DECODE enables high fidelity reconstructions of 3D lattice light sheet PAINT

To illustrate the general applicability of DECODE, we applied it to 3D lattice light 

sheet (LLS) microscopy combined with the PAINT (point accumulation for imaging of 

nanoscale topography labeling) technique18. In PAINT microscopy, the fluorophore labeling 

a sample stochastically binds and unbinds from the sample, providing dense labeling. In 
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LLS microscopy, thick volumes are imaged at high resolution by scanning a thin (1.1 μm) 

light sheet, with axial localization within the sheet enabled by astigmatism.

Single-molecule localization in LLS-PAINT is usually performed frame-wise using MLE 

fitting31. However, an emitter is visible in several adjacent z-planes in the volumetric data 

set. Thus, similar to exploiting the temporal context, we now use the same spatio-temporal 

context by analyzing three adjacent frames in the z-stack at the same time to improve 

detection accuracy and localization error.

We reconstructed a previously reported dataset of a chemically fixed COS-7 cell with 

intracellular membranes labeled byazepanyl-rhodamine (AzepRh)18, 31 consisting of 70,000 

3D volumes comprising more than 10 million 2D images acquired in 270nm steps. 

DECODE detected 500 million emitters, compared to 200 million emitters detected by 

the original algorithm. Thus, for a comparable quality of the reconstruction, only half of 

the frames are needed, reducing imaging times by over a day from 2.7 days to 1.35 days 

(Extended Data Fig. 7). At the same time, improved accuracy of DECODE results in sharper 

reconstructions (Fig. 5).

Discussion

We presented DECODE, a new deep-learning based method for single molecule localization 

that performs exceptionally well on dense 3D data. DECODE differs from traditional 

localization algorithms by simultaneously performing detection and localization of emitters. 

It can be used in a flexible and general manner for a wide range of imaging parameters 

(including arbitrary Point Spread Functions and noise models) and imaging modalities such 

as 3D lattice light sheet PAINT imaging. In a publicly available benchmark challenge it is 

the best performing algorithm in every condition, and often improves both localization and 

detection accuracy by a large margin.

By making use of the temporal context, DECODE improves detection accuracy and 

localization error of emitters that are active across multiple imaging frames. Temporal 

context is also used by post-processing steps in SMLM relying on ‘merging’ or ‘grouping’ 

of localizations, in which localizations occurring in consecutive images that are closer 

to each other than a fixed threshold are assumed to belong to the same emitter and 

their coordinates are averaged, weighted by the uncertainty of each localization. However, 

grouping does not improve detection of emitters, and it fails for dense or dim emitters whose 

localizations cannot be linked unambiguously across frames.

DECODE not only predicts coordinates of emitters, but also their uncertainty. This is 

highly useful for filtering out imprecise localizations, for reconstruction of superresolution 

images in which every localizations rendered as a Gaussian with a size proportional to the 

coordinate uncertainty, and as weights for quantitative coordinate-based analysis of SMLM 

data.

We demonstrated the performance of DECODE on various experimental SMLM data sets. 

We could show that the excellent performance on high-density data can increase the 

achievable localization density or decrease imaging times by one order of magnitude. This 
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allowed us to perform live-cell measurements on nuclear pore complexes with high temporal 

resolution and reduced light exposure, and to achieve ultra-high labeling on microtubules. 

LLS-PAINT data analyzed with DECODE showed markedly improved resolution due to 

substantial improvements in emitter detection and localization error.

Prediction of coordinates with DECODE can be as fast as GPU-based MLE-fitters for sparse 

activation, but greatly outperforms those for high densities, as the computational complexity 

of DECODE depends only on the size of the image and not the number of emitters in each 

imaging frame. However, it requires the training of a new neural network whenever the 

optical properties of the microscope change. This training can currently take over 10 hours 

on a single GPU, but after just 2 hours of training time, the localization error is within 1 nm 

and the JI within 2% of the final value (Extended Data Fig. 10). To reduce training times 

further, one can likely take an existing network and fine-tune its parameters using a smaller 

number of simulations, rather than training it from scratch. Ultimately, it may be possible 

to train a single network across multiple parameter settings or even PSFs, so that the same 

network can ‘amortize’ inference across multiple experimental settings.

To make DECODE easily usable by the entire community, we distribute it as a Python-based 

open source software package based on the PyTorch32 deep learning library. We provide 

pre-compiled, easily installable code, along with detailed tutorials and integration into 

the SMAP SMLM analysis software33. To enable anyone to directly use DECODE for 

training and prediction without relying on prior programming knowledge and dedicated 

local hardware, we deploy these Jupyter notebooks in Google Colab, complementing a 

recent initiative to make deep learning based image analysis tools accessible to non-experts 

at minimal cost34. Thus, DECODE will enable a large community to directly perform 

SMLM in a new high-density regime with greatly increased imaging speeds or localization 

densities and excellent localization and detection accuracy.

Methods

DECODE network architecture for probabilistic single molecule detection and localization

Our architecture consists of two stacked U-nets19 (Extended Data Fig. 1), each with two up- 

and downsampling stages and 48 filters in the first stage. Each stage consists of three fully 

convolutional layers with 3 × 3 filters. In each downsampling stage, the resolution is halved, 

and the number of filters is doubled, vice versa in each upsampling stage. Upsampling is 

performed using nearest neighbor interpolation to avoid checkerboard artifacts35. For multi­

frame DECODE, three consecutive frames are processed by the first frame analysis U-net 

(with parameters shared for every frame), and the outputs are concatenated and passed to the 

second temporal context U-net. The entire DECODE network is always trained end-to-end 

by gradient descent.

For each camera pixel k, the DECODE network predicts i) a Bernoulli probability map pk 

that an emitter was detected near that pixel, ii) the coordinates of the detected emitter Δxk, 

Δyk, Δzk relative to the center of the pixel xk, yk, zk, iii) a non-negative emitter brightness 

(“photon count”) Nk, and iv) the uncertainties associated with each of these predictions, σxk, 

σyk, σzk, σNk. For each of these outputs, we use two additional convolutional layers that 
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follow the second U-net. We used the Exponential Linear Unit (ELU) activation function36 

for all hidden units, and the logistic sigmoid nonlinearity for the non-negative detection 

probability p, brightness N, and the uncertainty outputs σx, σy, σz, σN (scaled by a 

pre-factor of three). For the coordinate outputs Δx, Δy, Δz we use the hyperbolic tangent 

nonlinearity which limits their range to [−1, 1] (i.e. to twice the size of a pixel). This 

way, even though the network can at most predict one emitter per pixel, when necessary 

the neighboring pixels can each contribute in order to place multiple localizations within a 

single pixel.

Novel loss function for simultaneous detection, localization, and uncertainty estimation

Given a set of E simulated emitters active in each imaging frame with locations for each 

emitter e given by xe, ye, ze and brightness Ne, and a background image map Bk simulated 

as described below, we developed a loss function that trains the DECODE network to 

detect the correct number of emitters, to predict the sub-pixel localization and brightness 

for each detection (along with the uncertainty), and to predict the image background. Our 

loss function is a sum of three terms − a count loss ℒcount, a localization loss ℒloc, and a 

background loss ℒbg,

ℒ = ℒcount + ℒloc + ℒbg . (1)

The count loss ℒcount is a function of the detection probability map pk with K total pixels 

and the total number of true emitters E. Interpreting pk as a Bernoulli detection probability 

for a single emitter, we can compute the mean and variance of the predicted total number 

of emitters detected, if we were to independently sample binary detections from each pk. 

While the predicted count distribution P E ∣ pk  over the number of emitters detected by 

this Bernoulli sampling procedure follows an intractable Poisson binomial distribution, we 

can approximate this predicted distribution as a Gaussian distribution,

P E ∣ pk ≈ P E ∣ μcount, σcount2 = 1
2πσcount

exp − 1
2

E − μcount
2

σcount2 . (2)

The mean of a sum of Bernoulli random variables is the sum of the means μcount = ∑k = 1
K pk,

and the variance is the sum of the variances of each independent Bernoulli random 

variable σcount2 = ∑k = 1
K pk 1 − pk . This count loss maximizes the log probability of the true 

number of emitters E under the Gaussian approximation of the predicted count probability 

distribution. This loss is minimized when μcount correctly matches E, sparsely predicting 

only one non-zero pk per detected emitter, and when σcount2  is small, which happens when pk 

are confident and so nearly binary,

ℒcount = − logP E ∣ μcount, σcount2 = 1
2

E − μcount
2

σcount2 + log 2πσcount . (3)
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The localization loss ℒ loc is a function of the true emitter locations, and the predicted 

detection probability map, and the sub-pixel localizations Δxk, Δyk, Δzk, brightness Nk, 

along with the associated uncertainties σxk, σyk, σzk, σNk for each detected emitter. For 

each pixel k, we predict a 4D Gaussian distribution P u k ∣ μ k, Σk  over the absolute position 

and brightness of an emitter u = [x, y, z, N] detected in pixel k corresponding to the mean 

and uncertainty in the sub-pixel localization and brightness of the emitter detected in 

pixel k, with mean μ k = xk + Δx, yk + Δyk, zk + Δzk, Nk , and diagonal covariance matrix 

Σk = diag σxk
2, σyk

2, σzk
2, σNk

2 ,

P u ∣ μ k, Σk = 1
(2π)4det Σk

exp − 1
2 μ k − u ⊤Σk

−1 μ k − u . (4)

Here, the xk, yk, and zk are the absolute coordinates for the center of pixel k, so xk + 

Δxk corresponds to the absolute coordinates of the emitter to sub-pixel precision. We note 

that the localization loss defined below ignores the predicted localization and brightness for 

pixels where no emitter is detected, i.e. pk is zero.

At any given point in training, the true number of emitters will not necessarily match 

the detected number of emitters perfectly, and we will not have a perfect correspondence 

between predicted emitters and true emitters. A full probabilistic loss function would sum 

over all possible assignments of true emitters to detected emitters in order to correctly 

evaluate P u ∣ μ k, Σk . And since pk will not necessarily be sparse, the correct cost function 

would include an intractably large sum over 
K
E

 terms. We approximate this by constructing 

a Gaussian mixture model over the predicted per pixel distributions P u k ∣ μ k, Σk  with 

mixture weights equal to pk/∑j = 1
K pj where the denominator is a sum of the detection 

probability over all pixels in the image.

The resulting approximation leads to the following localization loss function which 

maximizes the probability of the true absolute coordinates and brightness of each ground 

truth emitter u e
GT under the weighted mixture of per pixel probabilities,

ℒloc = − 1
E ∑

e = 1

E
log ∑

k = 1

K pk
∑j pj

P( u e
GT ∣ μ k, Σk) . (5)

The background loss ℒ bg computes the simple squared error between the predicted and 

true background maps,

ℒbg = ∑
k

Bk
GT − Bk

pred 2 . (6)
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Obtaining localizations and post-processing

The DECODE network predicts the probabilities pk of an emitter being located at a specific 

pixel k. To get deterministic, fast and precise final localizations we use a variant of spatial 

integration. A detection is considered at pixel k if one of two conditions is met. 1) pk > 0.6. 

2) pk > 0.3, and it is a local maximum of a 4-connected neighborhood. These candidates are 

then registered as detections if the cumulative probability of pk and its 4 nearest neighbor 

pixels is > 0.7. Therefore, if the network predicts high confidence detection probability (> 

0.6) in two adjacent pixels, two emitters will be considered to be detected. However, if a 

cluster of pixels has low predicted probability, their probabilities will be clustered toward 

the local maximum, if the local maximum has probability > 0.3, and an emitter will be 

considered to have been detected if the integrated probabilities of the cluster are > 0.7. The 

algorithm can be expressed purely in the form of pooling and convolution operations and 

therefore runs efficiently on a GPU.

For difficult imaging conditions when the predicted localization uncertainties are large, 

i.e. high densities, low SNR values, and large offsets from the focal plane, the sub-pixel 

coordinates Δx, Δy, and Δz can be biased towards the center of the pixels (Extended Data 

Fig. 8). This is because with large predicted localization uncertainty, the predicted mean 

location is poorly constrained. This bias towards 0 (pixel center) scales with the uncertainty 

of the predictions and can produce artifacts in the reconstructed image depending on 

how the reconstruction is performed. If a reconstruction uses only the coordinates while 

ignoring the uncertainty, poorly localized emitters will cluster towards the pixel centers. 

A more expensive rendering procedure which renders a Gaussian localization distribution 

with variance proportional to the estimated uncertainty corresponding to each emitter will 

reduce the impact of this artifact since the bias is usually small relative to the localization 

uncertainty. Also, filtering out localizations with high uncertainty removes this artifact 

(Extended Data Fig. 8).

Simulating training data

Training samples are continuously generated in an asynchronous fashion and each frame is 

only used once as a target. For this reason the network cannot overfit to specific frames. The 

performance of our approach will depend on an accurate generative model and could show 

reduced performance when there is a mismatch between the simulated and experimental 

data. Thus, we developed a realistic model for the image formation process that incorporates 

dye blinking behaviour, a realistic PSF model and realistic camera read noise.

Structural prior—While incorporating prior structural information has shown to be 

beneficial37, 38, there are concerns that these priors could potentially bias the model to 

the training data, which could result in the presence of misleading structures after the fitting 

procedure. We therefore sample the coordinates of the emitters from a 3D homogeneous 

spatial Poisson point process distribution with density as specified in the text, limits 

corresponding to the size of the image and the z-range for which the PSF was calibrated.

Photophysical prior—In contrast to prior work, DECODE can directly incorporate 

temporal context into the detection and localization of emitters, rather than as a post­
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processing step. We simulate the temporal dynamics of emitters, at least over the short 

time scale of three imaging frames corresponding to the temporal context of the DECODE 

network.

For each emitter, the time of initial appearance t 0 is sampled from a continuous random 

distribution. The on-time of the emitter follows an exponential distribution parametrized by 

λ. For each emitter, we draw a photon flux from a Gaussian distribution N(μflux, σflux). 

Together with the amount of time the emitter is active in each frame this determines the total 

number of photons emitted in a frame. Since the input to our model is only a window of 

three frames, we argue that it is not necessary to model long range temporal correlations 

that are part of a more detailed photoactivation model39, like an emitter in the dark state 

which reappears many frames later. The aforementioned parameters are estimated by a prefit 
procedure as described in Estimating simulation parameters.

Point spread function—The PSF is a fundamental characteristic of a microscope, 

specifying the image formed by a single point emitter, and we approximate it to be spatially 

invariant across the field of view. Given the object O( r ) in the object plane, and PSF( r ), the 

image I( r ) results as

I( r ) = O( r )⊛PSF( r ), (7)

where ⊛ denotes the convolution operator. While Gaussian approximations of the PSF are 

frequently used for both 2D and 3D4, 5 data, (cubic) spline functions have been shown to 

achieve more accurate results and can mimic almost arbitrary PSF’s,3, 22. Following Li et 
al.22 and Babcock et al.3 a three-dimensional PSF can be modelled as

fi, j, k(x, y, z) = ∑
m = 0

3
∑

n = 0

3
∑

p = 0

3
ai, j, k, m, n, p

x − xi
dx

m y − yj
dy

n z − zk
dz

p
, (8)

where i, j, k are the voxel indices, dx, dy are the pixel sizes; dz is the step size in 

the axial dimension; xi, yj, zk are the corner coordinates of the voxel (i, j, k) in the 

respective directions and ai,j,k,m,n,p are the respective spline coefficients, which amounts 

to 64 coefficients per pixel and per z-slice. In a bead calibration routine, the coefficients 

ai,j,k,m,n,p are estimated and account for varying experimental conditions. Because of the 

simple form of equation 8, the CRLB with respect to the fitting parameters x, y, z can be 

calculated easily as the diagonal elements of the inverse of the Fisher information matrix21.

Camera model—All real datasets presented in this work were recorded with an EMCCD 

camera, with the exception of the LLS data which was recorded with a sCMOS camera. The 

measured camera signal is subject to various noise sources, which we will discuss in the 

following:

Shot noise originates from the stochastic nature of photons when interacting with the camera 

chip. The expected number of detected electrons is

λk = λ0, k ⋅ qe + cs . (9)
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Here, λo,k is the expected number of photons that are collected in pixel k, qe is the quantum 

efficiency, and cs the spurious charge, measured in electrons. The probability p shot(sk) of 

observing the signal sk in pixel k follows a Poisson distribution,

pshot sk =
λk

ske−λk

sk! . (10)

EMCCD Amplification noise stems from the amplification of photo electrons that pass 

through the gain register and stochastically generate additional electrons. For our EMCCD 

camera noise model we follow Huang et al.40. EMCCD amplification noise can be described 

approximately by a Gamma distribution,

ρEM x ∣ sk, θ = 1
Γ sk θsk

xsk − 1e− x
θ . (11)

ρEM x ∣ sk, θ  denotes the probability that sk input photo electrons in pixel k with an EM gain 

of θ create x output electrons after the gain register.

Read noise stems from the process of converting electrons into a digital signal. In this 

process, the signal is usually multiplied by a gain factor g and an offset o is added to avoid 

negative signal. In this work, we convert the input camera image to photon units prior to 

inference by subtracting o and dividing by g. In addition, when using EMCCD cameras 

we divide by the EM gain θ, thus the units of the read noise are photo electrons. We 

approximate the read noise (both for sCMOS and EMCCD cameras) by a zero mean additive 

Gaussian distribution with variance σ2,

ρread x ∣ 0, σ2 = 1
2πσ2e− (x − μ)2

2σ2 . (12)

Training details

Training was performed on 40×40 pixel sized regions that are directly simulated or 

randomly selected from larger simulated images at each iteration. We used the AdamW 

optimizer41 with a group learning rate of 6· 10−4 for the network parameters. We reduce 

the learning rate by a factor of 0.9 after every 1500 iterations with a batch size of 64. To 

stabilize training we employ gradient norm clipping with a maximum norm of 0.03. Very 

dim emitters with less then 50 photons are excluded from the ground truth targets (but still 

rendered) so that the network is discouraged to make predictions for practically invisible 

emitters.

Estimating simulation parameters—For training DECODE, a proper parametrization 

of the simulation is needed to match the real data distribution. In a prefitting step, the main 

parameters, i.e. the emitter on-time, emitter brightness and background, can be determined. 

The prefitting can be performed with a single-emitter MLE fitter after filtering the log­
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likelihood value to exclude data from overlapping PSFs. This step is incorporated in the 

SMAP software for the sake of ease of use33. We observed that the precise values of 

the simulation parameters of the emitters’ photophysics (i.e. lifetime and brightness) and 

density are not crucial, as the stochastic nature of the emitters’ position, brightness and 

appearance time presents the network with data that matches the real experiments under 

different conditions and effectively covers a broad range of these parameters. The camera 

parameters are usually given by the manufacturer. The given network architecture and 

training parameters are effective across different real and simulated datasets and in our 

experience do not have to be optimized by the end user.

Evaluating localization error and reconstruction resolution

To evaluate performance on the challenge datasets, as well as our own simulations, we use 

two metrics:

First, instead of the Euclidean distance, we use the localization error, measured in nm, 

which is the RMSE averaged over the dimensions:

RMSEd = 1
TP ∑

i = 1

TP
∑

k = 1

d
xi, k − xi, k

GT 2/d
1/2

(13)

TP is the number of localizations that are matched to ground truth coordinates, d is the 

dimension (2 for 2D data, 3 for 3D data), xk = x,y, z are the predicted coordinates and 

xk
GT = x, y, z the ground truth coordinates.

Second, the detection accuracy or Jaccard index JI, which quantifies how well an algorithm 

does at detecting all the emitters while avoiding false positives:

JI = TP /(FN + FP + TP) (14)

T P are the true positives, F N the false negatives and F P the false positives.

Localizations are matched to ground truth coordinates when they are within a circle of 250 

nm radius and the distance in z is less than 500nm. As a single metric that evaluates the 

ability to reliably infer emitters with high precision we use the efficiency metric as defined 

in Ref. 6:

E = 1 − (1 − JI)2 + α2dRMSEd
2 (15)

Lateral and axial efficiency are calculated based on RMSE 2 and RMSE 1 with alpha values 

of α = 1 × 10−2 nm−1 and α = 0.5 × 10−2 nm−1 respectively and then averaged to obtain the 

overall efficiency. Detection accuracy is expressed in units of 0 to 1 (or 0% to 100%), the 

efficiency ranges up to 1 (or 100%) for a perfect fitting algorithm.
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The Fourier ring correlation26, 42 (FRC) in Fig. 4a was calculated by dividing the data in 10 

blocks of equal number of frames and constructing super-resolution images from even and 

odd blocks (pixel size 5nm).

Simulating data for performance evaluation

To simulate data for performance evaluation and comparison shown in Fig. 2, we assumed 

an ideal camera without EMCCD or read noise and an image size of 64 × 64 pixels. We 

used the PSF model that was acquired for the data set in Fig. 4a. Data used to test the 

effect of the SNR and density were simulated using the structural and photophysical prior 

previously described with an average on-time of 2 frames. Precise simulation parameters 

can be found in Supplementary Table S1. The CRLB is evaluated as the diagonal elements 

of the inverse of the Fisher information matrix21 with the simulated parameters and spline 

interpolated experimental PSF model and was calculated with the SMAP software33. A 

bootstrap estimate (N = 10000) of the RMSE was used to estimate the SEM on the 

localization error.

Comparison with DeepSTORM3D and CSpline

For both methods we used the software provided by the authors. For the DeepSTORM3D 

comparison instead of using their PSF fitting procedure and generative model we sampled 

ground truth coordinates and training images using our model so that it exactly matches the 

simulated test data. To minimize possible effects of overfitting we generated 22,500 images 

with a size of 121 × 121 pixels (22k for training and 500 for validation). DeepSTORM3D 

uses a fourfold super-resolved grid in the x − y dimensions and we chose discretization of 

15nm in z. As the camera we emulate in these experiments has a pixel size of 120nm, each 

voxel of the output representation has a size of 30 × 30 × 15nm. For DECODE (with and 

without temporal context), and DeepSTORM3D we trained six networks each on training 

data generated with average emitter densities of 0.65 and 2.17μm−2 as well as low, medium 

and high SNRs (1000, 5000 and 20,000 average photons). We used the low density network 

for the CRLB evaluation (Fig. 2a, Extended Data Fig. 4) and the simulated data with 

densities between 0.04 and 2.4μm−2 (Fig 2c,d, Extended Data Fig. 3) and the high density 

networks for densities between 2.4 and 5.6μm−2. DeepSTORM3D has two hyperparameters 

that control the post-processing and determine the balance between recall and localization 

error. We performed a sweep over combinations of radius = [5,6,7,8,10] and threshold = 

[5,8,12,20,30,40] and picked the values that maximized the efficiency score on the validation 

data for each of the six networks. We discovered and fixed a bug in the DeepSTORM3D 

post-processing software which led to poor localizations. All DeepSTORM3D results were 

reported with the fixed post-processing algorithm.

For the CSpline comparison we created a bright artificial bead with 500k photons using our 

PSF model, which we used to generate the CSpline PSF model. The most critical settings 

are the find-max-radius and threshold, which we again optimized by sweeping over values 

find-max-radius = [2,3,4,5], threshold = [6,7,8,9,10] to maximize efficiency for each of the 

three SNRs on data generated with an average emitter density of 0.9 μm−2.
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DECODE for LLS-PAINT microscopy

A DECODE model for lattice light sheet point accumulation for imaging of nanoscale 

topography (LLS-PAINT) microscopy18 was trained by simulating the imaging of an angled 

light sheet being swept through a volume. This leads to the same emitter appearing with 

fixed shift in the x and z coordinates relative to the imaged plane between consecutive 

camera frames. The offset in emitter coordinates from frame to frame are given by the 

microscope geometry as described in31. We simulated data with a high emitter density of 1 

μm−2 to match the densities seen in LLS-PAINT.

We analyzed a large dataset corresponding to a fixed COS-7 cell with intracellular 

membranes labeled with azepanyl-rhodamine (AzepRh) described in Legant et al.31. Over 

a period of 2.7 days (64.8 hours), LLS-PAINT imaging yielded 70,000 3D volumes 

comprising more than 10 million 2D images. Significant non-uniform swelling of the sample 

was observed over the course of the imaging, which was approximately corrected by non­

rigid registration in Legant et al.31. We applied the same correction transformation estimated 

by Legant et al.31 to DECODE localizations.

We introduced an additional simulation-free training step and loss function to the training of 

the LLS-PAINT DECODE network based on the Re-weighted Wake Sleep algorithm43 for 

training variational autoencoders (VAE)44,45. This form of auto-encoder learning allowed us 

to further optimize the parameters of the PSF and improve the background predictions based 

on the real data, as opposed to the simulation.

Sample preparation

Sample seeding—Before seeding of cells, high-precision 24mm round glass coverslips 

(No. 1.5H, catalog no. 117640, Marienfeld) were cleaned by placing them overnight in a 

methanol:hydrochloric acid (50:50) mixture while stirring. After that, the coverslips were 

repeatedly rinsed with water until they reached a neutral pH. They were then placed 

overnight into a laminar flow cell culture hood to dry them before finally irradiating the 

coverslips by ultraviolet light for 30min. Cells were seeded on clean glass coverslips 2 

days before fixation to reach a confluency of about 50 to 70 % on the day of fixation. 

They were grown in growth medium (DMEM; catalog no. 11880-02, Gibco) containing 1× 

MEMNEAA (catalog no. 11140-035, Gibco), 1× GlutaMAX (catalog no. 35050-038, Gibco) 

and 10% (v/v) fetal bovine serum (catalog no. 10270-106, Gibco) for approximately 2 days 

at 37 °C and5%CO2.

Transfection—The plasmids encoding calnexin (Addgene plasmid #57445; http://n2t.net/

addgene:57445; RRID:Addgene_57445) and α- mannosidase II (Addgene plasmid #57467; 

http://n2t.net/addgene:57467; RRID:Addgene_57467) tagged on their C-termini with 

mEos3.2 were gifts from Michael Davidson. The plasmids were isolated by midi-prep 

(catalog no. 12143; QIAGEN, Hilden, Germany) and transfected into U-2 OS cells 

using Lipofectamine™ 2000 (catalog no. 11668019; Thermo Fisher, Waltham, MA, USA) 

according to the manufacturer’s instructions. Briefly, cells were seeded on coverslips as 

described in the previous section, after 2 days the medium was replaced with OptiMEM™ 

(catalog no. 51985026, Thermo Fisher) and the transfection solution was added dropwise. 
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To prepare the transfection solution for 1 well (2mL of medium), in a first step 1 μg 

of plasmid was added to 50 μL of OptiMEM™ medium and 3 μL of Lipofectamine™ 

were added to 50 μL of OptiMEM™ medium, respectively. The two solutions were mixed 

individually by pipetting, incubated for 3min, and mixed together by pipetting to constitute 

the transfection solution after further incubation for 5 to 10 min. After 24 h, the OptiMEM™ 

medium was replaced by normal growth medium and the cells were grown for another 24 h 

before imaging.

Preparation of microtubule samples.—For microtubule staining, wild-type U-2 

OS cells (ATCC HTB-96) were prefixed for 2min with 0.3 % (v/v) glutaraldehyde in 

cytoskeleton buffer (CB, 10mM MES pH 6.1, 150mM NaCl, 5mM EGTA, 5mM glucose, 

5mM MgCl2) + 0.25% (v/v) Triton X-100 and fixed with 2% (v/v) glutaraldehyde in CB 

for 10min. Fluorescent background was reduced by incubation with 0.1 % (w/v) NaBH4 in 

PBS for 7min. After the samples had been washed three times with PBS, microtubules were 

stained with anti-α-tubulin (MS581; NeoMarkers, Fremont, CA, USA), and for ultra-high 

labeling (Fig. 4g) additionally with anti-β-tubulin (T5293; Sigma-Aldrich), each diluted 1:50 

in PBS with 2% (w/v) BSA, overnight. After being washed three times with PBS, samples 

were incubated with anti-mouse Alexa Fluor 647 (A21236; Invitrogen, Carlsbad, CA, USA) 

1:50 in PBS + 2% (w/v) BSA for 6h. After being washed three times with PBS, samples 

were imaged in blinking buffer as described below. The holder was sealed with parafilm.

Localization microscopy

Microscope setup—SMLM data were acquired on a custom built widefield setup 

described previously46, 47. Briefly, the free output of a commercial laser box (LightHub, 

Omicron-Laserage Laserprodukte) equipped with Luxx 405, 488 and 638 and Cobolt 561 

lasers and an additional 640nm booster laser (iBeam Smart, Toptica) were coupled into 

a square multi-mode fiber (catalog no. M103L05). The fiber was agitated as described in 

Ref. 48. The output of the fiber was magnified by an achromatic lens and focused into 

the sample to homogeneously illuminate an area of about 700μm2. The laser was guided 

through a laser cleanup filter (390/482/563/640 HC Quad, AHF) to remove fluorescence 

generated by the fiber. The emitted fluorescence was collected through a high numerical 

aperture (NA) oil immersion objective (HCX PL APO 160×/1.43 NA, Leica), filtered with a 

676/37 (catalog no. FF01-676/37-25, Semrock) bandpass filter (for imaging of Alexa Fluor 

647) or with a 600/60 (catalog no. NC458462, Chroma) bandpass filter (for live-cell imaging 

of mMaple and mEos3.2) on an EMCCD camera (Evolve 512, Photometrics). Astigmatism 

was introduced by a cylindrical lens (f = 1.00m; catalog no. LJ1516L1-A, Thorlabs) to 

determine the z coordinates of fluorophores. The z focus was stabilized by an infrared 

laser that was totally internally reflected off the coverslip onto a quadrant photodiode, 

which was coupled into closed-loop feedback with the piezo objective positioner (Physik 

Instrumente). Laser control, focus stabilization and movement of filters was performed 

using a field-programmable gate array (Mojo, Embedded Micro). The pulse length of the 

405nm laser could be controlled by a feedback algorithm to sustain a predefined number of 

localizations per frame.
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Imaging conditions—Coverslips containing prepared samples were placed into a custom­

built sample holder and 500 μL of blinking buffer (50 mM Tris/HCl pH 8, 10mM NaCl, 10% 

(w/v) d-glucose, 500μgmL−1 glucose oxidase, 40μgmL−1 catalase, 35mM MEA) was added 

for imaging of Alexa Fluor 647 samples.

For imaging of microtubules at different activation densities (Fig. 4 a), we used an exposure 

time of 15ms and an excitation intensity at 640nm of 15.5 kWcm−2. We adjusted the 

UV pulse length to result in the desired density of activated fluorophores. As we started 

with the highest density, by the time we imaged the lowest density a large fraction of the 

fluorophores was bleached so that we could operate in the single-emitter regime.

For imaging microtubules with ultra-high labeling, we used an exposure time of 15ms and 

an excitation intensity at 640nm of 13.4 kWcm−2 and no UV activation.

For live-cell imaging of Calnexin-mEos3.2 and MannII-mEos3.2 (Fig. 4d and e), the 

coverslips were washed briefly in PBS and subsequently mounted in 50mM Tris/HCl pH 

8 in 95 % (v/v) D2O. The data were acquired with an exposure time of 15ms, an excitation 

intensity of 22.6kWcm−2 for the 561 nm laser, and a maximum intensity of 42 to 127Wcm−2 

for the 405 nm laser. The pulse length of the 405nm laser was adjusted manually to maintain 

a high emitter density and to allow imaging of all fluorophores in the field of view in about 1 

min.

For the acquisition of live-cell data of Nup96-mMaple (Fig. 4f), coverslips containing 

Nup96-mMaple cells29 (catalog no. 300461; CLS Cell Line Service, Eppelheim, Germany) 

were rinsed twice with warm PBS before they were mounted in 1mL growth medium 

containing 20 mM HEPES buffer and imaged directly. During imaging, we used an 

excitation intensity at 561nm of 16.7kWcm−2 and a UV laser power of 80Wcm−2. The 

exposure time was 12 ms and the pulse length of the UV laser was automatically adjusted 

from 1 to 12 ms to keep the density of localizations constant.

Extended Data

Extended Data Figure. 1. Architecture
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The DECODE network consists of two stacked U-Nets19 with identical layouts (the three 

networks depicted on the left share parameters). The frame analysis module extracts 

informative features from three consecutive frames. These features are integrated by the 

temporal context module. Both U-Nets have two up- and downsampling stages and 48 filters 

in the first stage. Each stage consists of three fully convolutional layers with 3 × 3 filters. In 

each downsampling stage, the resolution is halved, and the number of filters is doubled, vice 

versa in each upsampling stage. Blue arrows show skip connections. Following the temporal 

context module three output heads with two convolutional layers each produce the output 

maps which have the same spatial dimensions as the input frames. The first head predicts the 

Bernoulli probability map p, the second head the spatial coordinates of the detected emitter 

Δx,Δy,Δz and its intensity N and the third head the associated uncertainties σx,σy,σz, σN. 

An optional fourth output head can be used for background prediction.
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Extended Data Figure. 2. Impact of grouping across grouping radius for different averaging 
weights.
Predictions in consecutive frames are grouped when they are closer to each other than 

the given grouping radius. A grouping radius of 0nm corresponds to not performing any 

grouping. Predictions within a group are assigned a common set of emitter coordinates 

which is calculated as weighted average of their individual coordinates. We compare 

three different options for the weighted average: Uniform weighting (‘None’, solid lines); 

Weighting by the inferred number of photons for CSpline and DECODE or the inferred 

confidence for DeepSTORM3D (‘photons’, dotted line); Weighting by the predicted 
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DECODE σ values, where the x,y and z values are individually weighted by σx, y, z−2 .
a, b): 3D efficiencies across grouping radii. Grouping is especially useful in the low 

density setting (a) where DECODE without temporal context (DECODE single) with a 

correctly set grouping radius can match the performance of DECODE with temporal context 

(DECODE multi) without grouping. This is, however, only the case when weighting by 

the uncertainty estimates that DECODE provides. Using grouping on top of DECODE 

multi offers little additional benefit. c, d): Number of groups divided by the number of 

localizations. Detecting all emitters and correctly grouping them would result in a ratio of 

1 : 3 as on average each emitter is visible in three consecutive frames. See methods and 

Supplementary Table S1 for additional details on training and evaluation.
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Extended Data Figure. 3. Comparison of performance metrics across densities and SNRs.
DECODE outperforms DeepSTORM3D and CSpline across densities and SNRs. See 

methods and Supplementary Table S1 for additional details on training and evaluation.
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Extended Data Figure. 4. Comparison of localization error and CRLB for single emitter fitting.
The RMSE achieved by DECODE and its predicted σ values closely match the single 

emitter CRLB in every dimension. CSpline is also able to achieve the CRLB, which has 

been shown for iterative MLE fitters before. In contrast the resolution that DeepSTORM3D 

can achieve is limited by its output representation and the size of the super-resolution voxels. 

a): Data simulated with high SNR (20000 photons) and random z. RMSE and DECODE σ 
averaged over 10 nm bins. b): Data simulated with fixed z (0nm) and varying SNR levels. 

See methods and Supplementary Table S1 for additional details on training and evaluation.
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Extended Data Figure. 5. Comparison of reconstruction quality on on experimental STORM 
data.
Reconstructions by DECODE and the DeepSTORM3D on a subset of data shown in Fig. 

4g. Histograms show within pixel distribution of localizations in x and y as well as the 

z coordinate in n. DeepSTORM3D has 4 significant peaks in the subpixel distribution, 

corresponding to the fourfold upsampling it uses for its network output. These are visible 

as grid artifacts in the reconstructions. In contrast the DECODE localizations are evenly 

distributed and no artifacts are visible. Scale bars 0.5 μm.
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Extended Data Figure. 6. Comparison of computation times.
a). Measured as the time it takes to analyze a 64 × 64 pixel frame with varying emitter 

densities. Trained DECODE and DeepSTORM3D models were evaluated using a NVIDIA 

RTX2080Ti GPU. Computation time includes the network forward pass and post-processing 

and does not include training time. CSpline was evaluated on an Intel(R)Xeon(R) CPU 

E5-2697 v3. b) Computation time per simulated emitter. The computation time of CSpline 

scales with the number emitters while the two deep learning based approaches scale with 

the number (and size) of the analyzed frames. GPU-based DECODE is about 20 times 

faster than GPU-based DeepSTORM3D and outperforms CPU-based CSpline even at low 

densities.
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Extended Data Figure. 7. DECODE reduces acquisition times in LLS-PAINT.
DECODE reconstruction of 35,000 frames (a) results in the same number of localizations 

as the Standard reconstruction of 70,000 frames (b). As DECODE detects twice as many 

localizations as the traditional analysis, it needs only approx. half of the frames for a 

high-quality reconstruction.
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Extended Data Figure. 8. Removing Pixelation artifacts.
Dim, dense out-of-focus localizations have a bias towards the pixel center (a,c). This is 

apparent as a non-uniform distribution of the sub-pixel positions in x and y (bottom row). 

This bias is not visible if every localization is rendered as a Gaussian with a standard 

deviation equal to the predicted uncertainty σ (b,g). Filtering according to the detection 

probability reduces the artifact (d). Filtering according to the predicted uncertainty σ (f) or 

the fluorophore z-position (e) also removes the pixelation artifact. Scale bars 10μm (a,b) and 

1 μm (c-g).
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Extended Data Figure. 9. DECODE provides accurate background and signal predictions on 
simulated data with inhomogeneous background of various length scales.
First row: sample frames. Second row: background values simulated using Perlin noise14, 49. 

Third row: background values inferred by a DECODE network that was trained on 40x40 

pixel sized simulations with uniform background. Fourth row: Scatter plot of inferred photon 

counts over simulated photon counts. Scale bars are 10 μm.
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Extended Data Figure. 10. Performance as a function of deep network training time.
Convergence of the accuracy of DECODE for several performance metrics. Runtimes are 

measured on a single nVidia RTX 2080 Ti GPU. The estimated training achievable with the 

maximum of 12 hours possible on the free tier of Google Colab is shown in green range 

(assuming that a Google Colab GPU is 2x-4x slower than the nVidia RTX 2080 Ti GPU). 

This suggests that acceptable performance is achievable using DECODE and Google Colab 

at minimal cost, no GPU needed. Metrics evaluated for prediction > 0.5 detection probability 
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estimate without sigma filtering. Training data was simulated at high SNR (as described in 

Figure 2c) at an average density of 1 μm−2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. DECODE for high-density single molecule localization.
a) DECODE architecture. The DECODE network uses information from multiple frames 

to predict detection probabilities, coordinates and uncertainty estimates. The frame analysis 
module with a multi-scale ‘U-Net’ architecture19 extracts informative features from each 

frame. These features are integrated by the temporal context module which produces 9 

output maps: a map of emitter detection probabilities p, a map predicting the brightness 

of the corresponding detected emitter N, three maps of the three spatial coordinates of 

the detected emitter Δx, Δy, Δz (relative to the to the center of the detected pixel) and 

four maps of the associated uncertainties (standard deviations) σN, σx, σy, σz. In addition, 

we optionally predict a map with the background intensity B in each pixel. b) Training 
DECODE. The DECODE network is trained by simulator-learning: Ground truth (GT) 

emitter coordinates are generated randomly and a forward-model of the image formation 

process is used to simulate synthetic images. These simulated images are passed through 

the DECODE network. The loss quantifies the probability that the GT explains the output 

predictions. This probability is maximized during training. While the network only uses 

camera images to make predictions, the network training procedure does require PSF 

calibration measurements.
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Figure 2. Performance of DECODE on simulated data
a) DECODE reaches the single emitter Cramér-Rao Lower Bound (CRLB) for isolated 

emitters. Root Mean Squarred Error (RMSE) and DECODE σ averaged over 50 nm 

bins. See Extended Data Fig. 4 for additional comparisons with other methods. b) The 
predicted localization uncertainty σ correlates well with the measured localization 
error for densely activated emitters. We simulated the same dense emitter configuration 

100 times and calculated the measured localization error as the RMSE of the predictions of 

the coordinates. In comparison, the (square-rooted) single-emitter-CRLB incorrectly under­

Speiser et al. Page 36

Nat Methods. Author manuscript; available in PMC 2022 March 03.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



estimates the true localization error for high emitter densities. See Supplementary Fig. S1 

for comparisons of individual dimensions. c) Temporal context improves both detection 
performance and localization error. We trained DECODE with (multi frame) and without 

temporal context (single frame) and compared detection accuracy and localization error for 

low, medium and high Signal to Noise Ratio (SNR). d) Representative simulated frames 
with ground truth coordinates (magenta circles) and predicted coordinates (yellow crosses) 

for the densities used in c and medium SNR. e) Comparison of DECODE with CSpline 
and DeepSTORM 3D. DECODE outperforms DeepSTORM and CSpline over a wide range 

of densities. See Extended Data Fig. 2 and 3 for additional comparisons with different 

conditions and metrics. The Standard Error of the Mean (SEM) on the localization error lies 

between 0.2 and 0.4 nm. See methods and Supplementary Table S1 for additional details on 

training and evaluation.
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Figure 3. Performance comparison on the SMLM 2016 challenge.
a) Performance evaluation on the twelve test datasets with low/high density, low/high SNR 

and different modalities (2D, AS: astigmatic, DH: double helix) using the detection accuracy 

(Jaccard Index, JI, higher is better) and localization error (lower is better) as metrics. Each 

marker indicates a benchmarked algorithm, large markers indicate DECODE. b) Efficiency 

scores (higher is better) for DECODE compared to other algorithms. Colored dots indicate 

performance numbers for other methods. All metrics were calculated by the SMLM 2016 

challenge and downloaded from the challenge website†. c) Reconstructions by DECODE 

and the CSpline algorithm on the high density, low signal double helix challenge training 

data. Upper panels x-y view, color coded by z coordinate, lower panels x-z reconstructions. 

Scale bars 1 μm. See Extended Data Fig. S5 and S6 for additional comparisons with 

DeepSTORM3D on training datasets.
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Figure 4. DECODE enables high-speed and live-cell SMLM and ultra-high labeling densities.
a) DECODE can reduce acquisition times by one order of magnitude. The same sample 

of microtubules, labeled with anti-α-tubulin primary and AF647 secondary antibodies, 

imaged with different UV activation intensities to result in different emitter densities per 

frame, between 0.08 and 0.86μm−2 and acquisition times between 93 and 1120 s, while 

keeping the total number of localizations the same. For high-density activation, we show 

a comparison with CSpline. b) Fourier Ring Correlation curves for DECODE and CSpline 

for different emitter densities. c) Resolution estimates obtained using the Fourier Ring 
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Correlation and 0.143 criterion across densities for both methods. d) Fast live-cell SMLM 
on the Golgi apparatus labeled with a-mannosidase II-mEos3.2. See Supplementary Movie 

1. e) Fast live-cell SMLM on the endoplasmic reticulum labeled with calnexin-mEos3.2. 

See Supplementary Movie 2 and Supplementary Fig. S3. f) Fast live-cell SMLM on 
the nuclear pore complex protein Nup96-mMaple acquired in 3 seconds. g) DECODE 
enables ultra-high labeling densities. Microtubules labeled with a high concentration 

of anti-α and anti-β-tubulin primary and Alexa Fluor 647 secondary antibodies. g1, g2) 
Magnified regions as indicated in g. Data acquired with high-density labeling shows 

continuous structures. As a comparison, the same sample was acquired after pre-bleaching 

of the fluorophores to reach the single-molecule blinking regime. Here, single labels 

are resolved in the superresolution reconstruction and lead to a sparse decoration of the 

microtubules. g3, g4) Side view reconstructions of regions as indicated in g1, g2 resolving 

the hollow, cylinder-like structure of immunolabeled microtubules. h) Representative raw 

camera frames for the high-density and single-emitter acquisitions, respectively. Scale bars: 

10μm (f inset, h), 1 μm (a, d, e, f, g, g1, g2), 100nm (g3, g4).
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Figure 5. DECODE improves resolution in LLS-PAINT.
a) COS-7 cell imaged with LLS-PAINT microscopy, overview. Data from Legant et al.31, 

70,000 volumes imaged over 2.7 days. b) 500nm thick slices of the region indicated in a 

(dashed line), comparing DECODE analysis and the original analysis using MLE fitting 

(standard analysis). c) Perpendicular (side-view) reconstructions of 500nm thick regions as 

indicated in a comparing DECODE and standard analysis. Scale bars 1 μm. See Extended 

Data Fig. 7 for additonal comparisons.
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