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To date, decoding limb kinematic information mostly relies on neural signals recorded
from the peripheral nerve, dorsal root ganglia (DRG), ventral roots, spinal cord gray
matter, and the sensorimotor cortex. In the current study, we demonstrated that the
neural signals recorded from the lateral and dorsal columns within the spinal cord
have the potential to decode hindlimb kinematics during locomotion. Experiments
were conducted using intact cats. The cats were trained to walk on a moving belt
in a hindlimb-only condition, while their forelimbs were kept on the front body of the
treadmill. The bilateral hindlimb joint angles were decoded using local field potential
signals recorded using a microelectrode array implanted in the dorsal and lateral
columns of both the left and right sides of the cat spinal cord. The results show that
contralateral hindlimb kinematics can be decoded as accurately as ipsilateral kinematics.
Interestingly, hindlimb kinematics of both legs can be accurately decoded from the lateral
columns within one side of the spinal cord during hindlimb-only locomotion. The results
indicated that there was no significant difference between the decoding performances
obtained using neural signals recorded from the dorsal and lateral columns. The
results of the time-frequency analysis show that event-related synchronization (ERS) and
event-related desynchronization (ERD) patterns in all frequency bands could reveal the
dynamics of the neural signals during movement. The onset and offset of the movement
can be clearly identified by the ERD/ERS patterns. The results of the mutual information
(MI) analysis showed that the theta frequency band contained significantly more limb
kinematics information than the other frequency bands. Moreover, the theta power
increased with a higher locomotion speed.

Keywords: neural decoding, spinal cord, locomotion, descending tracts, ascending tracts, convolutional neural
network

INTRODUCTION

Neural interfaces have the potential to restore limb function by translating neural activities into
command signals that could be used in a neuroprosthetic device for people with spinal cord
injury (SCI) (Jackson and Zimmermann, 2012). Restoring the lost function, such as locomotion,
requires the integration of both motor and sensory information. Sensory information is an essential
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requirement for the closed-loop control of locomotion. Many
attempts have been made to obtain sensory information from
different parts of the nervous system, such as the peripheral
nerve (Riso et al., 2000; Micera et al., 2001; Hansen et al., 2004;
Song et al., 2017), dorsal root ganglia (DRG) (Stein et al., 2004;
Weber et al., 2006, 2007; Rigosa et al., 2011; Wagenaar et al.,
2011; Bruns et al., 2013; Holinski et al., 2013; Han et al., 2017;
Kashkoush et al., 2019), ventral roots (Debnath et al., 2014),
and spinal cord gray matter (Yeganegi et al., 2018; Fathi and
Erfanian, 2019). Moreover, intracortical recordings were used to
decode the hindlimb kinematics and muscle electromyographs
(EMGs) during bipedal walking in monkeys (Fitzsimmons et al.,
2009) and rats (Rigosa et al., 2015) and during quadrupedal
locomotion in rats (Song et al., 2009; Barroso et al., 2019).
These studies suggest that cortical recording can be used to
bypass spinal cord injuries. Several studies have examined the
intracortical regulation of the spinal circuit through epidural
electrical stimulation (Capogrosso et al., 2016; Knudsen and
Moxon, 2017; Bonizzato et al., 2018).

Another possible source of hindlimb kinematic information
is the descending pathways (i.e., motor tracts). Motor signals are
sent from the brain to the spinal cord through descending tracts.
The main descending pathways, including the corticospinal and
rubrospinal tracts, play a significant role in controlling balance,
posture, locomotion, and reaching. Reticulospinal pathways are
also critical in initiating locomotion, postural control, and
postural muscle tone. The rubrospinal and corticospinal tracts
together with the medullary reticulospinal tract project all to
the lateral columns in spinal cord (Lemon, 2008; Rossignol
et al., 2009; Frigon et al., 2011; Takakusaki et al., 2016). The
previous studies revealed that there was a correlation between the
neural signals recorded from the descending tracts and forelimb
movements (Prasad and Sahin, 2006, 2010, 2012; Guo et al.,
2014). Recently, it was demonstrated that the EMG signals of
the forelimb flexor and extensor can be decoded from the lateral
columns (Guo et al., 2018; Gok and Sahin, 2019).

In the previous study, we decoded the kinematics of only one
leg using the neural signals recorded from the lateral and dorsal
columns on one side of the spinal cord during cat hindlimb-
only locomotion (Fathi and Erfanian, 2021). A linear regression
model was used for decoding hindlimb joint angles. In the
current study, we expanded the previous work and decoded the
kinematics of both hindlimbs from neural activity recorded from
the descending lateral tracts and from the ascending tracts during
voluntary hindlimb-only walking on the treadmill. Moreover, we
demonstrated that the neural signals recorded from the spinal
cord could reflect the speed of locomotion.

Another critical issue in decoding kinematic information from
neural signals is the decoding model. Different decoding methods
have been employed for this purpose. Linear regression methods
were used to estimate the hindlimb kinematics from populations
of neurons in the DRG (Stein et al., 2004; Weber et al., 2006,
2007; Bruns et al., 2013; Holinski et al., 2013). To improve the
performance of decoding limb kinematics, different nonlinear
methods, including particle filtering (Wagenaar et al., 2011),
fuzzy neural network (FNN) model (Rigosa et al., 2011), and
recurrent neural networks (RNNs) (Han et al., 2017; Yeganegi

et al., 2018) have also been employed. It was demonstrated that
the nonlinear model provided better decoding accuracy than
the multiple linear regression and Kalman filter estimators (Han
et al., 2017). Recently, we proposed a probabilistic recurrent
neural network (PRNN) for decoding hindlimb kinematics from
neural activity recorded from the dorsal horn of the spinal
cord. We demonstrated the superiority of the PRNN over
the conventional recurrent neural network and Kalman filter
(Fathi and Erfanian, 2019).

In contrast to the previous work, in which a linear
regression model was used for decoding, in the current study,
a three-dimensional convolutional neural network (3D-CNN)
was employed for decoding kinematic information. In recent
years, tremendous interest in CNNs has emerged as the most
established deep learning algorithm. CNN is a biologically
inspired model that can learn high-level local features by
convolving a set of filters with input data (LeCun et al., 2015;
Patterson and Gibson, 2017). CNNs have achieved significant
progress in image processing (Li et al., 2021), video (Liu
et al., 2020), speech (Mustaqeem and Kwon, 2020), and natural
language processing (Widiastuti, 2019; Li et al., 2020). CNNs
have also been applied extensively in cortical signal processing for
different applications (Zhang et al., 2021) such as brain-computer
interfaces (Lawhern et al., 2018; Craik et al., 2019; Kundu and Ari,
2020; Zhang et al., 2021) decoding finger kinematics (Xie et al.,
2018; Petrosyan et al., 2021) and seizure detection (Gao et al.,
2020). Recently, it was shown that CNN outperformed linear
decoder in estimating EMG signals from neural signals recorded
from the spinal cord (Guo et al., 2018). In the current study, we
used a 3D-CNN with a regression layer to decode the hindlimb
joint kinematics from neural signals recorded from the lateral
column as well as from the dorsal column. We also compared the
performance of the 3D-CNN with conventional decoding models
such as partial least squares (PLS) (Geladi and Kowalski, 1986)
and Lasso (Zou and Hastie, 2005).

MATERIALS AND METHODS

The animals used in this study were kept and handled
in compliance with the Experimental Animal Regulation
Ordinances defined by the Ministry of Health and Medical
Education, IRAN. All surgical procedures and experimental
protocols involving animal models described in this paper were
approved by the Institutional Animal Care and Ethics Committee
of the Iran Neural Technology Research Center, Iran University
of Science and Technology. All protocols and methods were
performed according to the recommendations and relevant
guidelines for the care and use of laboratory animals.

Microwire Array Fabrication
Neural signals were recorded from the spinal cord using a
custom-made microelectrode array. The array was fabricated
using PFA-insulated tungsten wires with a diameter of 50 µm
(No. 795500, A-M Systems, United States). As depicted in
Figure 1, eight microwires were arranged in two rows with an
inter-electrode spacing of ∼1.5 mm in each row to cover the

Frontiers in Neuroscience | www.frontiersin.org 2 March 2022 | Volume 16 | Article 801818

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-801818 March 21, 2022 Time: 13:48 # 3

Fathi and Erfanian Decoding Movement From Lateral Columns

FIGURE 1 | (A) Schematic figure showing ascending and descending tracts in the spinal cord and how and where the microwire array was implanted.
(B) Numbering of eight implanted electrodes in the dorsal and lateral columns.

distance from left to right lateral columns. In each row, the length
of the microwires that should be inserted in the lateral columns of
the spinal cord were considered longer than those that should be
inserted in the dorsal column of the spinal cord (∼ 0.5–1.5 mm
length for the dorsal column electrodes and 1.5–2.5 mm for the
lateral column). The lengths of the microwires of the second row
were considered to be about ∼ 0.5 mm longer than the first row
to cover different depths.

Implantation Process
The experiments were conducted on two male cats (3.1–4.2 kg).
Prior to surgery, the cats were trained for approximately 2
months to walk on the treadmill. We encouraged the animals
to walk by rewarding with the pellet food. Initial anesthesia was
induced by intramuscular injection of ketamine (20 mg/kg) into
the cranial thigh muscle. The animals were then intubated with
endotracheal tube and maintained at a surgical level of anesthesia
under isoflurane inhalation (1.0–3.0% in O2). A partial 4× 4 mm
laminectomy was performed over the left (with respect to the
rostral-caudal vector) L4 vertebra. Four screws were inserted into
the bone of the L4 vertebra in the bulkier regions. We utilized
these screws as anchors for the array and connector. The array
and connector were fixed to the vertebra using dental acrylic.

The animal was then placed on a stereotactic frame (SN-
1N, Narishige Group Product, Japan). The electrode array
connector was attached to a micromanipulator (SM-15, Narishige
Group Product, Japan) that could control the three-dimensional

positioning of the electrode with a minimum graduation of 10
µm. To implant the electrode, a 4 × 4 mm section of the
dura mater below the L4 vertebra was gently opened with an
iridectomy scissor to obtain direct access to the spinal cord. Then,
the array was vertically inserted into the target position in the
spinal cord to cover the dorsal column and both the left and
right lateral columns (Figure 1). After implantation, the surface
of the spinal cord was covered with a thin layer of Sylgard 184.
Then, the array and connector were attached to the bone using
metal screws and dental acrylic. The DC and LC, at the L3–L4
spinal segments, typically cover a span of 0.0–1.5 and 1.5–3.0 mm
laterally from the midline to the lateral side and a span of 0.0–1.5
and 1.5–3.0 mm in depth from the dorsal surface, respectively.
The microelectrode array was implanted in the range 0.5–2.5 mm
laterally from the midline and 0.5–2.5 mm in depth from the
dorsal surface to cover the DC and LC. A tungsten reference wire
was placed proximally in the epidural space of the spinal canal.

After surgery, necessary care, such as regular injection of
Cefazolin and tramadol were taken to reduce the risk of infection
and to relieve pain. Cefazolin (30 mg/kg) was intramuscularly
injected twice daily for a week and tramadol (2 mg/kg) daily for 2
or 3 days after surgery. The urination and excretion of the animals
were monitored daily to check for possible abnormalities.

Data Collection
The neural signal and kinematics of the hindlimbs were collected
almost once a week. On each experimental day, one to three
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FIGURE 2 | Schematic representation of the experimental setup. Cats were
trained to walk on the treadmill in a hindlimb-only condition while keeping their
forelimbs on the front frame of the treadmill for balance. Kinematics
information was recorded using a motion capture system. Neural signals were
recorded during walking on a treadmill and converted from analog to digital
using a data acquisition system and were then used to decode the joint
angles in a desktop computer.

recording sessions were conducted. In cat 1, 18 sessions of
the experiment were conducted for 14 weeks and in cat 2, 10
sessions were conducted. The duration of each recording session
was 2–3 min. On average, each cat took 40 steps per minute.
During each session, the animals could walk on a running
treadmill with their hindlimbs only while keeping their forelimbs
on the front frame of the treadmill (Figure 2). It should be
noted that locomotor pattern resulted during hindlimb-only
locomotion with placing forelimbs on a stationary platform
is different from that resulted during normal quadrupedal
locomotion (Harnie et al., 2022). The walking cadence of cat 1
varied between 0.59 and 0.8 steps per second, while the walking
cadence of cat 2 had less variation between 0.9 and 0.99 steps
per second.

Joint Angle Measurements
A 6-camera motion capture system (Vicon Motion Systems
Ltd., United Kingdom) was used to measure the joint angles
at a sampling rate of 50 Hz. To measure the hindlimb joint
angles of both legs, ten reflective markers were attached to
the iliac crest, greater trochanter (hip joint), lateral condyle of
the femur (knee joint), lateral malleolus (ankle joint), and the
distal end of the fifth metatarsophalangeal) joints of both legs.
Three-dimensional positions of markers were obtained using a
motion capture software (Tracker 2.2, Vicon, United Kingdom).
Using the measured positions of the five markers of each
leg, three joint angles (ankle, knee, and hip) were calculated

FIGURE 3 | An example of the recorded joint angles from the left leg (A) and
right leg (B), recorded raw signal, filtered raw signal (0.5-250 Hz), and
amplitude of the filtered LFP signal (C).
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FIGURE 4 | An example of the recorded raw signal, corresponding extracted local field potential (LFP), extracted band-limited signals at different frequency bands,
corresponding rectified signals, and their envelopes.
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FIGURE 5 | Schematic illustration of the neural signal processing. The smoothed amplitude of LFP signal (ALFP), envelopes of LFP signals at six frequency bands
including δ (0.5-4 Hz), θ (6-12 Hz), β (15-30 Hz), γ (40-80 Hz), high-γ (80-120 Hz), and ripple (150-210 Hz), and their ten time lags (t, t− 100 ms, . . . , t− 900 ms)
constitute the three-dimensional feature matrix [channel × time lag × (ALFP + average of signal envelope in each frequency band)].

FIGURE 6 | A schematic of 3D-CNN. It consists of four layers: a 3D convolutional layer, followed by a max-pooling layer, a flattering layer, and a fully connected layer.

and displayed online using a custom-built LabVIEW program.
Figure 3 shows an example of the recorded joint angles from the
left and right leg.

Neural Signals Recording and
Preprocessing
The neural signals were measured using a multi-channel
recording system (USB-ME64 system, Multichannel Systems
Reutlingen, Germany) at a sampling rate of 500 Hz. Both the
joint angles and the neural signals were synchronously captured
using a custom-built LabVIEW (National Instruments, Austin,
TX) program and saved for offline processing. Power line
interference was removed using 4th order Butterworth notch
filters at 50, 100, and 150 Hz. The signals were then band-pass

filtered into six frequency bands using 4th order Butterworth
filters. The frequency bands consisted of δ (0.5–4 Hz), θ (6–
12 Hz), β (15–30 Hz), γ (40–80 Hz), high-γ (80–120 Hz),
and ripple (150–210 Hz). Then, the envelope of the signal at
each frequency band was computed by low-pass filtering (4th
order Butterworth with a cutoff frequency of 4 Hz) the rectified
band-limited signal and then resampled at 10 Hz (Figure 4).
In addition, the average amplitude of the local field potential
(ALFP) signal was also calculated by taking the average of
the LFP signal within sliding windows of 200-ms length and
100-ms step. Finally, ten time lags of the envelope of the
signal at each frequency band and ten time lags of the average
amplitude of the LFP signal at each time t (t, t − 100 ms, t −
900 ms) were used as the features for decoding the kinematics
information (Figure 5). The feature space can be constituted
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FIGURE 7 | Average of gait cycle for the left (A) and right (B) leg during a typical trial of cat locomotion (cat 1, 56 days post-implant) on the treadmill and
corresponding spatial time-frequency analysis of the recorded LFP signal. Average of the LFP envelope over different gait cycles is calculated for each channel and
each frequency band.

by a three-dimensional matrix (channel×lag×signal envelope
at six frequency bands and ALFP features). This 3D feature
matrix at each time was fed to the 3D-CNN to estimate the
hindlimb joint angle.

Decoding Model
The architecture of the 3D-CNN proposed in this work for
decoding is shown in Figure 6. It consists of four layers: a 3D
convolutional layer, followed by a pooling layer, a fully connected
layer, and a regression layer (Patterson and Gibson, 2017). The
features described in the previous section were organized in a

three-dimensional array [channel×time lag×(ALFP and average
of signal envelope in each frequency band)] and then fed into the
3D convolutional layer. The convolution layer is the fundamental
component of the CNN that uses the local correlation of the
information in the input to extract features. The process of the
convolution operation is convolving a filter (or a kernel) to the
input and the result is a feature map (activation map). The
filter is applied across the input volume in a sliding window
manner. The filter out is computed at each position of the
input by the dot product of the filter and the input window.
This procedure is repeated with many different filters to form
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FIGURE 8 | Average of mutual information between each feature and each joint angle (i.e., hip, knee, and ankle) for the left and right legs. The features were
extracted from each channel and consisted of the LFP envelope at different frequency bands and the amplitude of LFP signal. The error bar on each bar graph
represents the standard deviation. The results were obtained from cat 1 (A) and cat 2 (B).

different feature maps. Then, a nonlinear activation function is
applied to the convolution-layer output. The rectified linear unit
(ReLU) is considered as the activation function of the neurons
in this layer. Two key parameters of the convolution operation
are size and number of filters. In this study, a total of 70 filters
of size 7 × 6 × 8 are convolved into the input feature space
with stride sizes of 1 in each dimension. The size of the filter
and the number of filter are heuristically chosen to achieve the
best classification performance. The distance that the window
moves is called a stride. The common choice of a stride is 1. The
convolutional layer followed by a pooling layer which reduces the
dimensionality of the feature maps. The most common pooling
operation is the max-pooling which extracts patches from the
feature map and select the maximum value in each patch. Here,
a max-pooling with a filter size of 2 × 2 × 2 and a stride of
1 was used. The output of the pooling layer is flattened (i.e.,
transformed into a one-dimensional array) and connected to
a fully connected layer. Here, fully connected layer is a single

hidden neural network with one output neuron. The output is
the estimated joint angle.

Training a network is a process of estimating the weights
of filters in convolution layer and weights in fully connected
layers. The training is performed by minimizing a loss
function which is of the mean squared error of estimation
(differences between output predictions and measured values).
The stochastic gradient descent with momentum solver is
considered for minimizing the loss function and estimating
the network. A regularization term for weights with a
coefficient of 0.3 is also added to the loss function. The
momentum that specifies the contribution of the last estimated
parameter for the current parameter update is set to 0.75.
Other training parameters, such as the mini-batch size and
maximum number of epochs, are set to 128 and 10, respectively
(Beale et al., 2017). These parameters are set based on the
trial-and-error method and remained unchanged during the
evaluation of all data.
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FIGURE 9 | Average of mutual information between the LFP signal at each frequency band and each joint angle for different electrode positions in the spinal cord.
The most kinematic information is represented by the low-frequency components. There is no significant difference between the kinematic information of the signals
recorded from the DC and LC regions.

Performance Evaluation
To assess the performance of the CNN in decoding the hindlimb
kinematics, the coefficient of determination, R2 value, was used.
The R2 can be defined as:

R2 (%) =

(
1−

∑N
n=1

(
yn − ŷn

)2∑N
n=1

(
yn − y

)2

)
× 100 (1)

where y is the measured joint angle, y is its mean value, ŷ is the
estimated angle, and N is the number of data points. Threefold
cross-validation was used to train and test the model using the
data recorded during each session of the experiment. In threefold
cross validation, the dataset was split into three equal parts (they
are called folds). Two fold of the data (67%) obtained during
each session of the experiment was assigned for training and
the remaining fold (33% of the data) were assigned for testing
the model. In the next round of threefold cross-validation, a
different fold of data was selected for testing and the remaining
folds for training. The average of decoding performance over the
threefold and all the sessions of the experiment were reported.
Moreover, mutual information (MI) was employed to evaluate
the information content of the recorded neural signals. MI
measures the mutual dependence of two or more variables. In
other words, MI is a measure of the information that a random
signal have on the other random signals and can be quantified
using entropy. If two random variables are independent, then
their mutual information is zero, but if the mutual information
is large, it means two variables are closely related. Mutual

information was calculated based on an adaptive partitioning
of the observation space (Darbellay and Vajda, 1999). MI has
an advantage over the linear correlation coefficient in that it is
able to capture both linear and nonlinear dependencies. MI was
calculated between the extracted features from the LFP features
at each frequency band and hindlimb kinematics. Analysis of
variance (ANOVA) followed by Tukey’s HSD post hoc test
was used to assess the statistical significance of the results and
differences. A confidence level of 95% (p< 0.05) was chosen to
indicate a significant difference. All data analyses were performed
with customized algorithms written in MATLAB.

RESULTS

Time-Frequency Analysis
The average of the gait cycle for the left and right legs during
a typical trial of cat locomotion on the treadmill and the
corresponding spatial time-frequency analysis of the recorded
LFP signals are plotted in Figure 7A. It can be seen that a
strong amplitude enhancement or event-related synchronization
(ERS) and a strong amplitude attenuation or event-related
desynchronization (ERD) occurred during joint flexion and
extension, respectively. ERS and ERD occurred in both the dorsal
column and lateral columns. ERS was observed in the ripple and
high-γ bands during left hip flexion; β and γ bands during left
ankle flexion; θ and β during left knee flexion; δ and β bands
during right knee flexion; and δ and γ bands during right hip
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FIGURE 10 | The effect of walking cadence on the mean amplitude of LFP envelope at various frequency bands during movement on the treadmill. The sessions on
which animal walking cadence was between 0.59 and 0.67 steps per second were considered as lower cadence category while sessions with cadence between
0.73 and 0.8 steps per second considered as higher cadence category.

and ankle flexion. A short ERS in the ripple band at 70% of
the gait cycle can be associated with a small right knee flexion.
Figure 7B shows the average of the time-frequency over all
sessions of the experiment. Almost, the same ERS/ERD patterns
were observed in the averaged time-frequency across all sessions
but with broader distributed ERS pattern.

Mutual Information Analysis
The relative kinematic information of the LFP signal recorded
from the lateral and dorsal columns during treadmill locomotion
was investigated. Hence, MI was calculated between each joint
angle and each band-limited LFP signal recorded from each
electrode for all sessions of experiment (18 sessions for cat 1 and
10 sessions for cat 2) and then averaged over all sessions. All the
data obtained during each session of experiment (from beginning
of treadmill locomotion to termination) were used for calculating
MI. Moreover, the MI between the ALFP and each joint angle was
computed. Figure 8 shows the average of the MI over the different
sessions of the experiment and over the three joint angles at each
frequency band for both legs and two cats. The results of the two-
way ANOVA show that the ALFP contains significantly more
information about limb kinematics than the frequency bands
(p < 10e-7) in both cats. Comparing the information content of

the frequency bands, the results show that the θ band provides
significantly more information than the other frequency bands
(p < 10e-7) in cat 1, and the δ and θ bands were more informative
than the other bands (p < 0.01) in cat 2. Moreover, it was found
that the kinematics information of different spinal regions (i.e.,
left and right lateral columns, left and right dorsal columns) are
not significantly different. Comparison between the information
of channels in the left and right sides of the spinal cord showed
that there was no significant difference between the two sides of
the spinal cord, except for cat 2, where the ALFP at the right
side of the spinal cord provides significantly greater MI for both
legs (p < 0.01).

Figure 9 shows the average of MI between the LFP and
hindlimb kinematics at different frequency bands for each
recording channel and for both legs and both cats. It can be seen
that the most kinematic information is represented by the low-
frequency components. The results of the statistical test show
that there is no significant difference between the kinematic
information of the recording channels. This result is consistent
with the previous study (Fathi and Erfanian, 2021) that the
results show that there is no significant difference between the
information content of the signals recorded from the DC and LC
regions during walking on the treadmill.
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FIGURE 11 | Examples of decoding the hip, knee, and ankle joint angles for the left (top) and right leg (bottom) during walking on the treadmill. The results are
obtained from cat 1 on day 12 after implantation. The coefficient of determination (R2) values obtained for the left leg are 0.66, 0.42, and 0.56 for the hip, knee and
ankle angles, respectively. For the right leg, the R2 values are 0.68, 0.64, and 0.6 for the hip, knee, and ankle angles, respectively.

Effects of Walking Cadence
The effects of running speed on the oscillatory behavior of
LFP signals recorded from the brain during locomotion have
been investigated (Ahmed and Mehta, 2012; Bender et al., 2015;
Noga et al., 2017). Increased running speed has been reported to
be accompanied by hippocampal gamma oscillations (Ahmed
and Mehta, 2012) and hippocampal theta oscillations (Bender
et al., 2015). It was also demonstrated that theta LFP oscillations

in the mesencephalic locomotor region are correlated with the
speed of locomotion (Noga et al., 2017).

In this section, the effects of the walking cadence on the
LFP and the spectral features are investigated. The data from
different sessions were divided into two subgroups: one with
walking cadence lower than a lower threshold (0.67 steps per
second) and the other with higher than the threshold (0.73 steps
per second). The data obtained during 12 sessions of experiment
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FIGURE 12 | Average of decoding performance for both left and right legs using the LFP signals recorded from electrodes implanted in the lateral columns
(electrodes 1, 4, 5, and 8), dorsal columns (electrodes 2, 3, 6, and 7), left-side of the spinal cord (electrodes 3, 4, 7, and 8), right-side of the spinal cord (electrodes 1,
2, 5, and 6), and all eight electrodes. The error bar on each bar graph represents the standard deviation. The results are obtained from cat 1 (top) and cat 2 (bottom).

(6 sessions for low cadence and 6 sessions for high cadence)
were selected for this analysis. We refer to these two groups as
the lower and higher cadence groups, respectively. The mean
envelope values of the LFP signals at different frequency bands
were computed for both groups. Figure 10 shows the results
of the analysis. It can clearly be seen that the amplitude of the
low-frequency components (i.e., delta, theta, beta, and gamma)
increased during the high cadence of locomotion relative to that
of the low cadence. However, this increase was not observed
for the high-gamma and ripple components. The results of this
analysis indicate that the LFP oscillations can reflect running
speed. The results show that there is a significant difference
between the mean amplitude of LFP envelope obtained during
low cadence and high cadence walking only at the theta frequency
band (p = 0.03).

Decoding and Its Performance
Figure 11 shows a typical example of decoding the joint
angles in cat 1 while walking on the treadmill for the left

(top) and right (bottom) legs using the neural signals recorded
from all electrodes implanted in the spinal cord. It can
be seen that good tracking performance was obtained for
all joints of two legs during hindlimb-only locomotion. The
coefficients of determination (R2) obtained for the hip, knee,
and ankle joints of the left leg were 0.66, 0.42, and 0.56,
respectively, and those for the right leg were 0.68, 0.64, and
0.60, respectively.

Figure 12 shows the average of the decoding performance for
the left and right legs using the neural signals recorded from
the left and right lateral columns (channels 1, 4, 5, and 8) as
well as from the left and the right dorsal columns (channels 2,
3, 6, and 7) and from all channels. The results of the statistical
analysis show that there is no significant difference (p > 0.4)
between the performances obtained using the neural signals
recorded from the lateral columns and that from the dorsal
column for both cats. This result indicates that the lateral column
can be used as the source of extracting motor information for
motor neuroprosthesis.
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FIGURE 13 | Scatter plots comparing the decoding performances obtained by the 3D-CNN, Lasso, and PLS for cat 1 (A) and cat 2 (B). Each point in the scatter
plot represents the decoding performance obtained in one trial of experiment. The results over the diagonal line indicate that the method in y-axis (i.e., 3D-CNN)
outperforms the method in x-axis (e.g., PLS or Lasso). Pairwise comparisons between the decoding performance obtained using different methods for cat 1 (C) and
cat 2 (D). The results show that the 3D-CNN yields higher decoding performance than the Lasso and PLS methods.

Furthermore, there was no significant difference between the
decoding performance of the left and right legs using the neural
signals recorded from the right side of the spinal cord (p > 0.16)
(channels 1, 2, 5, and 6) as well as from the left side (p > 0.27)
(channels 3, 4, 7, 8). Moreover, using all the channels in decoding
could improve the decoding performance with p < 0.05 for cat 1
and with p < 0.001 for cat2.

Decoding Model Comparison
The decoding performance of the 3D-CNN was also compared
with that obtained using a conventional method such as the Lasso
and PLS regression models. The decoding performance of the 3D-
CNN was also compared with that obtained using a conventional
method such as the Lasso and PLS regression models. The CNN
was implemented using MATLAB with Deep Learning Toolbox
and PLS as well as Lasso with Statistics and Machine Learning
Toolbox. Pairwise comparisons of the decoding performance
using scatterplots are provided in Figures 13A,B for cats 1 and
2, respectively. For cat 1, the decoding performance obtained

using the 3D-CNN model outperformed both the Lasso and PLS
methods. For cat 2, it can be seen that the 3D-CNN outperformed
the PLS, but no clear difference was observed when comparing
the 3D-CNN with the Lasso method. Figures 13C,D show the
average decoding performance over the left and right legs for
each cat. One-way ANOVA with Tukey’s HSD post hoc test
was performed to compare the decoding performance using
different methods. The results of statistical tests showed that
the 3D-CNN outperformed the Lasso (p < 0.001) and PLS (p <
0.0001) in cat 1. In cat 2, the R2-values obtained using the
3D-CNN were significantly higher than those obtained using
the PLS (p < 0.01), while no such difference exists between the
3D-CNN and Lasso.

DISCUSSION AND CONCLUSION

In this study, we explored the capability of descending
and ascending spinal cord neural signals in decoding both
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hindlimb kinematics. The decoding of the hindlimb kinematics
information from the neural signals recorded from the
descending tracts within the spinal cord indicates that the motor
information could be extracted from these neural signals to
develop motor neuroprostheses.

Here, we demonstrated that the neural signals recorded from
the lateral columns can decode hindlimb kinematics as accurately
as the dorsal columns. Interestingly, the neural signals from one
side of the spinal cord could be used to decode both ipsilateral and
contralateral hindlimb movements with very similar accuracy.

Decoding the ipsilateral and contralateral hindlimb
movements indicates that the lateral columns contain
information about the motor behaviors of discrete body
parts. It has been reported that excitatory spinal interneurons are
responsible for the timing and amplitude control of locomotor
movements (Bouvier et al., 2015; Hayashi et al., 2018). Here,
we showed that the lateral columns contain information about
the timing and amplitude of the ipsilateral and contralateral
movements. This finding suggests that supraspinal centers
contribute to the locomotor coordination of timing and
amplitude (Armstrong, 1986; Drew and Marigold, 2015; Frigon,
2017). In the current study, the results of the time-frequency
analysis showed that the frequency bands of the LFP signals
recorded from the lateral columns could represent the onset and
offset of locomotor activity.

Although, the efferent signal carries motor information
which is different from sensory information, the analysis of MI
shows that there is no significant difference between hindlimb
kinematics information obtained from the lateral columns and
from the dorsal column during ipsilateral and contralateral
movements. Interestingly, this result is in agreement with the
results of decoding performance. The results of decoding show
that there is no significant difference (p > 0.4) between the
performances obtained using the neural signals recorded from
the lateral columns and that from the dorsal column for both
cats. Moreover, the MI analysis shows that the theta band
provides significantly more information about the hindlimb
kinematics than the other frequency bands (p < 10e-7). Previous
studies have demonstrated that theta frequency oscillations of the
hippocampal LFP are the main brain rhythm influenced by the
periodic movements of locomotion (Ledberg and Robbe, 2011;
Noga et al., 2017). Interestingly, our results also showed that the
theta rhythm of the spinal LFP was associated with locomotor
activity. It has also been shown that theta and gamma oscillations
in the hippocampal increase in amplitude and frequency with
faster running speed (Ledberg and Robbe, 2011; Ahmed and
Mehta, 2012; Bender et al., 2015). Our primary results show that
the power in different frequency bands changes with locomotion
speed. In particular, the theta power increased with a higher
locomotion speed. However, further experiments are required to
provide further evidence.

Furthermore, we employed a state-of-the-art decoding model,
3D-CNN, to decode the hindlimb joint angles from the
descending and ascending neural signals. The results show
significant improvements in comparison to other well-known
regression models in the field, such as the PLS and Lasso
methods. However, the performance could still be increased by
searching for optimal parameters or using deeper structures that

are beyond the scope of the current study and will be considered
for future work.

In the current study, we used the LFPs of the ascending and
descending tracts to decode the hindlimb kinematics during cat
locomotion on the treadmill, whereas in the previous study (Fathi
and Erfanian, 2019), spike activity recorded from the dorsal horn
was used to decode the kinematics information during passive
hindlimb movement. Here, we face an important unanswered
question: which one of these spinal neural signals; LFPs or multi-
unit spikes, is the most suitable for decoding hindlimb kinematics
considering longevity of recording, movement artifact, and
computational cost. Comparisons between the intracortical LFPs
and multi-unit spikes have been performed by a number of
groups (Jackson and Hall, 2017) and showed that LFPs were
significantly more stable than spikes (Flint et al., 2016), however,
since the spinal cord environment is tougher than the brain for
recording, the intraspinal recording faces more severe challenges
than intracortical recording and can be considered for future
research purposes.

Furthermore, the results presented in the current study are
based on the data obtained from two cats. To make broad
conclusions, the experiments should be conducted on more cats
which can be considered for future study.
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