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Purpose: This study proposes an optical coherence tomography angiography (OCTA)
frame-averaging method and investigates the effects of the number of frames
acquired and averaged on metrics quantifying the foveal avascular zone (FAZ), vessel
morphology, and parafoveal intercapillary area (PICA).

Methods: Ten OCTA frames were acquired for each of the 19 subjects without known
retinal disease using the AngioVue OCTA system. For each subject, acquired frames
were ranked by an image quality metric. A subset of frames was then registered and
averaged. The effects of the number of frames acquired and averaged on FAZ
segmentation and metrics of FAZ geometry, vessel morphology, and PICA were
analyzed.

Results: Frame averaging increased the accuracy of the automatically segmented FAZ
region; for example, the absolute error in FAZ area decreased from 0.026 mm2 (1
frame) to 0.005 mm2 (5 frames). Averaging multiple frames exponentially decreased
the estimated number of vessel endpoints and increased the average vessel length
with a 32% decrease in number of endpoints and 14% increase in average vessel
length when averaging five frames compared with one. Frame averaging also
improved the precision of PICA estimates.

Conclusions: Averaging multiple OCTA frames using the Optovue AngioVue system
reduced error in FAZ segmentation and improved the robustness of OCTA vessel
morphology and perfusion metrics. The study demonstrated limited benefit in
acquiring and averaging more than five frames.

Translational Relevance: Averaging multiple OCTA frames improved the robustness
of OCTA foveal biomarkers with limited benefit when averaging more than five
frames.

Introduction

The retina has one of the highest oxygen demands
in the body.1 Due to the demands placed on the
retinal vasculature, it is susceptible to pathologic
changes in a multitude of diseases both ocular2–4 and
systemic5,6 in nature. Capillary dropout can be found
in a variety of diseases, including sickle cell retinop-
athy7–9 and diabetic retinopathy,10–12 whereas path-

ologic growth of blood vessels is well documented in
wet age-related macular degeneration,3 proliferative
diabetic retinopathy,12–14 and retinopathy of prema-
turity.15–17 Fluorescein angiography has been the gold
standard for assessing the retinal vasculature since the
method was first described in the 1960s.18 Yet, use of
this test is limited due its invasive nature, along with
the risks posed by injection of the dye, which include
nausea, vomiting, and anaphylactic shock.19,20 Fur-
thermore, visualization of microvasculature within
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the macula is limited in comparison to other devices
either due to the resolution of the fundus camera6,21

or due to the leakage of dye caused by damaged
vessels.22,23

Because of the limited resolution of the camera
when using fluorescein angiography, measurements of
the foveal avascular zone (FAZ), an area devoid of
capillaries, including the fovea, is limited.6,21 With the
increased resolution available using optical coherence
tomography angiography (OCTA), measurements of
the FAZ and parafoveal microvasculature have
become more accurate, leading to their increased use
in clinical practice. With more detailed imaging
available, it is of interest to both clinicians and
scientists to develop robust biomarkers that provide
useful information about retinal health.

Image noise and blur may make robust estimation
of OCTA metrics more difficult. Image noise may
lead to erroneous detection of a vessel structure or
may erroneously fragment an identified vessel.
Image blurring, commonly caused by eye motion,
weakens vessel edges. Recent studies have shown
that averaging multiple OCTA images improves
metrics of image quality for the peripapillary area,24

the choriocapillaris,25 and the parafoveal region.26

These studies averaged up to 10 frames after
registering all frames to the subjectively selected
highest-quality frame. Despite the clear improve-
ments in image quality, the computational overhead
to perform image averaging as well as the added time
it takes to acquire multiple images makes such an
approach challenging for clinical applications. It is
critical to assess the ‘‘return on investment’’ for
image averaging, as clinical translation of the
method will require using the fewest number of
images necessary.

This study proposes an OCTA averaging protocol
of (1) acquiring multiple OCTA frames, (2) ranking
frames using an image quality metric, (3) registering
the OCTA frames, and (4) averaging a subset of
registered OCTA frames. This study investigated the
effects of the number of frames acquired and averaged
on metrics quantifying the FAZ, foveal vessel
geometry, and parafoveal intercapillary area (PICA).

Methods

Subjects

This study was approved by the institutional
review board of the Medical College of Wisconsin
(PRO 23999) and was conducted in accordance with

the tenets of the Declaration of Helsinki. Informed
consent was obtained for all subjects once the nature
and risks of the study were explained. Exclusion
criteria included any prior history or clinical evidence
of retinal or systemic vascular disease. We imaged 19
Caucasian subjects (3 male, 16 female) with ages
ranging from 23- to 49-years old.

OCTA Imaging

Subjects were imaged with the AngioVue OCTA
system (software version: 2016.2.0.16; Optovue Inc.,
Fremont, CA). Two scans, one fast horizontal and
one fast vertical were acquired, centered on the
fovea of the right eye. The nominal size of each scan
was 333 mm. The two scans were then co-registered
to create one volume scan to minimize motion
artifacts. Ten such volume OCTA images were
acquired for each subject. The en face image of the
superficial slab (304 3 304 pixels), measuring 3 lm
above the inner limiting membrane to 16 lm below
the inner plexiform layer, was exported for further
analysis.

Multiple Frame Acquisition and Automated
OCTA Frame Averaging

Figure 1 illustrates the developed OCTA frame
processing workflow, for which M acquired OCTA
frames are input for processing. For each frame, the
gradient magnitude image was calculated using the
Sobel operator (v2017a; MATLAB; MathWorks,
Natick, MA).27 The mean gradient magnitude of
each frame was calculated as a metric of frame image
quality to quantify the sharpness and contrast in the
image. The image frames were then sorted from
highest to lowest mean gradient magnitude. The N
frames with highest mean gradient magnitude were
rigidly registered to the frame with highest mean
gradient magnitude (StackReg,28 ImageJ29). The N
registered frames were then averaged, and the
averaged image was further processed to calculate
the OCTA biomarkers described in the following
sections.

We performed two studies to investigate the effects
of multiple frame acquisition and multiple frame
averaging. In the first study, the number of frames
input to the algorithm, M, was set equal to 10, while
the number of frames averaged, N, was varied
between one and 10. The second study investigated
the combined effects of multiple frame acquisition
and averaging. The number of frames input to the
workflow,M, was varied between one and 10, and the
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number of averaged frames, N, was varied between
one andM. For this second study, theM frames input
to the algorithm for each subject were selected from
the 10 acquired frames in the chronologic order in
which they were acquired.

Effect of Multiple Frame Acquisition and
Averaging on FAZ Segmentation and
Quantification

For each of the 19 subjects, the FAZ region was
manually segmented by three masked, expert readers,
with manual segmentation performed on the image
resulting from registering and averaging the five
frames with highest mean gradient magnitude. We
selected the average of the five highest quality frames
as the reference image for ground-truth segmentation
because averaging additional lower-quality frames
could degrade the resulting image quality when
combined with potential registration errors. Two
metrics were analyzed to evaluate the agreement
between readers. The Dice coefficient30 of similarity
was calculated between the FAZ regions segmented
by all pairs of readers for each subject. The coefficient
of variation (CV) of the segmented FAZ area was also
calculated across readers for each subject. The
average Dice coefficient of similarity between readers
was 0.986 6 0.01, with a minimum Dice coefficient of
0.946. The average CV across readers was 1% (95%
confidence interval ¼ 0.55%–1.34%). The high agree-

ment between readers suggest that the manual FAZ
segmentations provide a reasonable ground truth for
assessing the impact of averaging on the image
metrics. The three manually segmented regions were
processed by the Simultaneous Truth and Perfor-
mance Level Estimation algorithm31 to produce the
final ground-truth FAZ region as all pixels with
greater than 90% probability of being in the FAZ
region.

For each case of the number of frames averaged
and acquired, the averaged frame was input to a
custom FAZ segmentation algorithm, which is
described in the Appendix. A custom FAZ segmen-
tation algorithm was developed because commercial
algorithms are not available for offline processing of
the resulting averaged image. To investigate the
effects of frame averaging on FAZ metrics, the
agreement between the algorithm-generated FAZ
segmentation and ground-truth FAZ segmentation
was quantified by Dice coefficient.30 The area,
perimeter, and centroid of the FAZ regions were
calculated as FAZ metrics using previously described
methods and a custom MATLAB script.32 All FAZ
region metrics were corrected for axial length, as
previously described.32 Errors in the FAZ region
metrics were calculated as the difference between the
values estimated using the algorithm-segmented
FAZ and the values estimated using the ground-
truth FAZ.

Figure 1. Overview of OCTA frame averaging workflow. The figure shows the example where M¼ 5 acquired frames were input to the
algorithm and sorted by mean gradient magnitude. The N¼3 frames with highest mean gradient magnitude were registered and averaged.
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Effect of Multiple Frame Acquisition and
Averaging on Parafoveal Intercapillary Area
(PICA)

Additional analysis was performed to quantify the
PICA on the averaged OCTA images. This analysis
required the segmented FAZ region identified by the
automated algorithm. The input OCTA image and
FAZ region were magnified by a factor of six to
increase sensitivity. The average PICA within 500 lm
of the FAZ was computed using a previously
described, custom MATLAB script33 along with the
standard deviation of the average PICA. The effect of
frame averaging on the precision of the estimated
PICA was evaluated by calculating the CV as the
ratio of the standard deviation of the average PICA to
the average PICA.

Effect of Multiple Frame Acquisition and
Averaging on FIJI AnalyzeSkeleton Metrics

Vessel morphology was assessed by processing
each image using the AnalyzeSkeleton 2D/3D34 Fiji
plugin.35 The total number of endpoints, average
vessel length (pixels), and longest vessel length (pixels)
were extracted as quantitative metrics. The change in
the metrics with respect to the number of averaged
frames was analyzed with 10 acquired frames input

for processing, and with the number of input frames
varied between one and 10.

Results

Results of FAZ Segmentation Algorithm for
Ten Acquired Frames and Varying Number
of Averaged Frames

Figure 2 displays the results of the automated FAZ
segmentation algorithm for varying numbers of
averaged frames for three example subjects. Subject
JC_0480 represents a case of excellent agreement
between the algorithm and expert-segmented FAZ
regions, with negligible improvements when averaging
more than two frames. For subject JC_0617, the
algorithm underestimated the FAZ region by exclud-
ing a small protrusion. For this subject, averaging
additional frames did not improve the segmentation
accuracy. Subject JC_10586 represents a case where
averaging multiple frames improved the accuracy of
the algorithm-segmented FAZ region, with the
average of five frames required for accurate segmen-
tation.

Figure 3 plots the Dice coefficient between the
algorithm-segmented FAZ region and the ground-
truth FAZ region for the case where 10 frames were
input into the algorithm and the number of averaged

Figure 2. FAZ segmentation results for three subjects for which ten OCTA frames were acquired. The reference image on the left is the
average of the five frames identified with highest mean gradient magnitude. The reference image was used to obtain the ground truth
reader FAZ segmentations. For each subject, the average of one to five OCTA frames identified with highest image quality is presented,
with the ground-truth FAZ segmentation in the red contour and algorithm-generated FAZ segmentation in the yellow contour. The result
of averaging all 10 acquired frames is displayed on the right.
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frames varied between one and 10. A Dice coefficient
of one signifies perfect agreement between the
algorithm and expert FAZ regions, while a Dice
coefficient of zero signifies no overlap between the
two segmented regions. The median Dice coefficient
increased with the number of averaged frames. Figure
3 also plots the distribution across all subjects of the
percent error in FAZ area, error in FAZ centroid, and
percent error in FAZ perimeter for the algorithm-
segmented FAZ region relative to the ground-truth
FAZ region. Increasing the number of averaged
frames reduced the range of FAZ centroid error but
did not systematically affect the error in FAZ area or
perimeter, with the interquartile range between �3%
to 2% for the area error and �10% to 7% for the
perimeter error.

One subject presented with an ambiguous FAZ
region, as detailed in the Appendix. The data from

this subject are included in Figure 3 but were excluded
from further analysis of the effects of frame averaging
on FAZ metrics. Table 1 presents the FAZ segmen-
tation accuracy metrics (Dice coefficient, absolute and
percent error in FAZ area, absolute and percent error
in FAZ perimeter, and FAZ centroid error). Statis-
tical significance of the effect of averaging five frames
compared with one frame was tested with the
Wilcoxon signed rank test for each metric, as was
the significance of the effect of averaging 10 frames
compared with one frame. The Dice coefficients when
averaging five (0.964) and 10 frames (0.964) were each
significantly higher than when using one frame
(0.948), although this improvement was small in
magnitude. Averaging multiple frames did not signif-
icantly affect the other segmentation accuracy metrics
in this study, for which 10 frames were input to the
algorithm for all subjects.

Figure 3. FAZ segmentation accuracy metrics of (a) Dice coefficient between algorithm and ground-truth FAZ segmentations, (b)
percent error in FAZ area, (c) error in FAZ centroid location, and (d) percent error in FAZ area for different numbers of averaged frames.
Ten OCTA frames were input to the algorithm for all cases. These results include the subject with ambiguous FAZ displayed in Figure 10.
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Effect of the Number of Acquired Frames on
FAZ Segmentation

This section presents the results of the algorithm
when the number of frames input to the algorithm
was varied between one and 10, with the frames input
in the same sequence as they were acquired. This
study demonstrates the effects of acquiring multiple
frames and selecting the best frame, compared with
acquiring multiple frames and averaging the N highest
quality multiple frames. Figure 4a plots the mean
absolute error in FAZ area obtained with the
automated FAZ segmentation algorithm as the
number of acquired frames was varied from one to
10. Figure 4b similarly plots the mean absolute
percent error in FAZ perimeter. In both plots, the
blue data result from segmenting the FAZ in the one
frame identified with highest image quality from the

acquired frames. The yellow data result from seg-
menting the FAZ in the average of up to five frames
with highest image quality (i.e., average all frames if
the number of frames is �5, otherwise average 5
frames). The number of averaged frames was limited
to five, as the results in the previous section suggest
minimal benefit when averaging more than five
frames. Analysis of Dice coefficient and centroid
location was not possible for this portion of the study,
as the frame to which the ground-truth FAZ
segmentation was registered was not necessarily input
to the algorithm.

Figure 4 demonstrates that the error in FAZ area
and perimeter was reduced when multiple frames were
acquired and the FAZ was segmented using the frame
with highest image quality (without frame averaging).
For example, the mean absolute error in FAZ area

Table 1. FAZ Segmentation Accuracy Metrics Compared for Segmenting 1 Frame, the Average of 5 Frames,
and the Average of 10 Frames, Where 10 Frames Were Input to the Algorithm

FAZ Accuracy Metric

1 Frame
With Highest
Image Quality

Average of 5 Frames
With Highest
Image Quality

Average of 10 Frames
With Highest
Image Quality

Dice coefficient
Mean 6 standard deviation 0.948 6 0.039 0.964 6 0.036 0.964 6 0.036
Range 0.824–0.976 0.823–0.983 0.825–0.986
P value (compared with 1 frame) n/a 0.005 0.0004

Absolute error in FAZ area, mm2

Mean 6 standard deviation 0.0091 6 0.0089 0.0057 6 0.0036 0.0064 6 0.0042
Range 0.0008–0.0382 0.0007–0.0134 0.0004–0.0147
P value (compared with 1 frame) n/a 0.170 0.286

Absolute percent error in FAZ area
Mean 6 standard deviation 4.42 6 5.41 2.92 6 4.12 3.54 6 5.58
Range 0.30–21.15 0.54–18.74 0.18–25.05
P value (compared with 1 frame) n/a 0.145 0.446

Absolute error in FAZ perimeter, mm
Mean 6 standard deviation 0.1452 6 0.1105 0.1198 6 0.1134 0.1226 6 0.1148
Range 0.0022–0.3850 0.0101–0.3631 0.0032–0.3745
P value (compared with one frame) n/a 0.372 0.249

Absolute percent error in FAZ perimeter
Mean 6 standard deviation 7.44 6 6.97 5.98 6 6.70 6.24 6 7.22
Range 0.09–25.44 0.44–26.28 0.16–29.40
P value (compared with one frame) n/a 0.679 0.372

Error in FAZ centroid, mm
Mean 6 standard deviation 0.0132 6 0.0109 0.0095 6 0.0054 0.0092 6 0.0053
Range 0.0024–0.0447 0.0039–0.0286 0.0025–0.0271
P value (compared with one frame) n/a 0.349 0.170

The outlier case (JC_11068) of ambiguous FAZ shown in Figure 10 was not included in this analysis. Significance in
difference in error between acquiring one frame and acquiring 5 or 10 frames was tested with the Wilcoxon Signed-Rank Test.
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decreased from 0.026 mm2 (1 acquired frame) to 0.024
(2 acquired frames) to 0.010 (5 acquired frames),
without frame averaging. However, the reduction in
error in FAZ area due to acquiring multiple frames
(without averaging) was statistically significant only
when nine or more frames were acquired (P , 0.05,
Wilcoxon signed rank test), while the reduction in
error in FAZ perimeter was not significant for any
number of acquired frames (P . 0.1).

Frame averaging further reduced the error in FAZ
area and perimeter, as seen in Figure 4. When five
frames were acquired, the mean absolute error in
FAZ area decreased from 0.009 to 0.006 mm2 when
the five frames were averaged prior to segmentation
compared to using the one frame with highest image
quality. The results in Figure 4 suggest minimal
benefit in acquiring more than five frames. The
reduction in FAZ error when acquiring and averaging
multiple frames compared with acquiring one frame
was statistically significant when the number of
acquired frames was greater than two (P , 0.047).
Table 2 presents additional evaluation of the FAZ
segmentation accuracy metrics, comparing the acqui-
sition of 1, 5, and 10 frames. In Table 1, the results for
one frame correspond to segmenting the FAZ on the
frame with highest image quality of the 10 acquired
frames. In Table 2, the results for one frame
correspond to segmenting the FAZ on the first
acquired frame, which may not be of high quality.
For all error metrics, acquiring five and 10 frames and
averaging five frames resulted in a significantly more
accurate FAZ region than acquiring one frame (P ,

0.025, Wilcoxon signed-rank test). There was no
significant difference in FAZ segmentation error
obtained by acquiring five and 10 frames.

Figure 5 displays an example comparing the FAZ
region segmented by the algorithm from one frame
(the first acquired frame) and the FAZ region
segmented by the algorithm from the average of the
first five acquired frames. The FAZ region is over-
segmented when using a single frame. Averaging five
frames strengthened the weak vessel edges, resulting
in more accurate FAZ segmentation.

Effect of Multiple Frame Acquisition and
Averaging on Parafoveal Intercapillary Area

Figure 6a displays the normalized average PICA
for each subject for the study of 10 acquired frames
with the number of averaged frames varied between
one and 10. The area was normalized relative to the
value obtained from one frame in order to better
visualize the change in this metric with the number of
averaged frames. Figure 6b displays the normalized
average PICA when the number of acquired frames,
M, was varied between one and 10. For this second
study, the number of averaged frames was equal to
the lesser of number of acquired frames or five (i.e., a
maximum of 5 frames were averaged). The results
suggest that the average PICA was unaffected by
frame averaging.

Figure 7 plots the CV of the average PICA for
different numbers of averaged frames. The range of
CV values across the subjects decreased when five or
more frames were averaged, regardless of the number

Figure 4. The mean absolute percent error in FAZ (a) area and (b) perimeter plotted with the number of acquired frames varied
between one and 10. The blue data result from segmenting the FAZ in the one frame identified with highest-image quality from the
acquired frames. The yellow data result from segmenting the FAZ in the average of up to five frames with highest image quality. The
subject with ambiguous FAZ, shown in Figure 10, was not included in this analysis.
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of acquired frames. This reduction in CV suggests
that frame averaging improves the precision of the
average PICA estimates.

Effect of Multiple Frame Acquisition and
Averaging on FIJI AnalyzeSkeleton Metrics

Figure 8 plots the skeletonized vessel metrics for
varying numbers of acquired and averaged frames. To
better visualize the effect of frame averaging, all
metrics are displayed normalized to value calculated
from one frame. Increasing the number of averaged
frames exponentially decreased the number of end-
points. For the study with 10 acquired frames,
averaging five frames reduced the estimated number
of endpoints by 32%, averaged across all subjects,

relative to the value estimated from one frame.
Averaging 10 frames reduced the number of end-
points by an average of 37%, relative to the value
estimated at one frame. Similar results were obtained
when the number of acquired frames was varied, with
32% reduction in the number of endpoints when
acquiring and averaging five frames relative to one
frame, and 36% reduction when acquiring 10 frames
and averaging five frames. Averaging five frames
estimated the number of endpoints to within 8% and
5% of the asymptote of the fitted exponential curve
for the case of acquiring five and 10 frames,
respectively.

As seen in Figures 8c and 8d, frame averaging
increased the estimated average vessel length. The

Table 2. FAZ Segmentation Accuracy Metrics Compared for Acquiring 1 Frame, Acquiring and Averaging 5
Frames, and Acquiring 10 Frames While Averaging 5 Frames

FAZ Accuracy Metric 1 Frame Acquired
5 Frames Acquired

(5 Averaged)
10 Frames Acquired

(5 Averaged)

Absolute error in FAZ area, mm2

Mean 6 standard deviation 0.0257 6 0.0339 0.0045 6 0.0051 0.0048 6 0.0044
Range 0.0024–0.1436 0.0002–0.0205 0.0003–0.0170
P value (compared with 1 frame) n/a 0.004 0.003

Percent error in FAZ area
Mean 6 standard deviation 9.90 6 12.04 1.96 6 2.01 2.36 6 3.10
Range 0.74–50.97 0.12–6.39 0.07–13.17
P value (compared with 1 frame) n/a 0.018 0.020

Absolute error in FAZ perimeter, mm
Mean 6 standard deviation 0.2237 6 0.2010 0.1106 6 0.0978 0.1071 6 0.0950
Range 0.1143–0.7082 0.0040–0.3287 0.0045–0.3006
P value (compared with 1 frame) n/a 0.014 0.025

Percent error in FAZ perimeter
Mean 6 standard deviation 10.73 6 8.92 5.67 6 6.64 5.14 6 4.77
Range 0.09–28.20 0.26–27.91 0.20–14.92
P value (compared with 1 frame) n/a 0.018 0.010

The outlier case of ambiguous FAZ shown in Figure 4 (JC_11068) was not included in this analysis. The FAZ area and
perimeter were significantly reduced when acquiring 5 and 10 frames. Significance in difference in error between acquiring
1 frame and acquiring 5 or 10 frames was tested with the Wilcoxon signed-rank test.

Figure 5. (a) OCTA image resulting from acquiring one frame, with algorithm-segmented FAZ shown in (b). (c) OCTA image resulting
from acquiring and averaging five frames. (d) The algorithm-segmented FAZ for the average of five frames.
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average vessel length increased by an average of 14%

when averaging five frames compared with one

frame and increased by an average of 17% when

averaging 10 frames. Similar trends were seen when

the number of acquired frames was varied between

one and 10. Averaging five frames estimated the

number of endpoints to within 4% and 3% of the

asymptote of the fitted exponential curve for the case

of acquiring five and 10 frames, respectively. As seen

in Figures 8e and 8f, the longest vessel length varied

as the number of averaged frames was varied but did

not increase or decrease as the number of averaged

frames increased.

Discussion

The proposed workflow of acquiring multiple
OCTA images, ranking the images by a gradient
magnitude-based image quality metric, and averaging
multiple frames improved the accuracy of the auto-
mated FAZ segmentation algorithm and affected the
vessel morphology and perfusion metrics. This study
builds upon an existing body of work that supports the
benefits of OCTA frame averaging. For example,
frame averaging was shown in previous studies to
improve subjective image quality in the parafovea,26

increase signal-to-noise ratio in the peripapillary

Figure 6. (a) The normalized average PICA calculated for different numbers of averaged frames of 10 total acquired frames, where the
values are normalized relative to the value obtained from one frame. (b) The normalized average PICA calculated for different numbers of
acquired frames, with the number of averaged frames equal to the lesser of the number of acquired frames or five. In plots (a) and (b)
each colored line represents one subject, with the average across subjects represented by the thick black line.

Figure 7. (a) The CV of the average PICA for different numbers of averaged frames of 10 total acquired frames. (b) The CV of the average
PICA for different numbers of acquired frames with the number of averaged frames equal to the lesser of the number of acquired frames
or five. The boxplots in (a) and (b) represent the distribution across the 19 subjects.

9 TVST j 2019 j Vol. 8 j No. 1 j Article 10

Schmidt et al.



region,24 and improve the visualization of the chorio-

capillaries.25 Frame averaging was found to affect

metrics of vessel density, vessel length density, vessel

diameter index, and fractal dimension in the parafoveal

region26 as well as metrics of vessel length density,

intercapillary distance, mean segment length, and

number of endpoints in the peripapillary region.24

This current study adds to the body of previous work

by quantifying the effects of frame averaging on FAZ

segmentation, FAZ metrics as well as estimation of the

Figure 8. The left column (a, c, e), displays the effects of frame averaging on the calculated skeleton metrics for the study that acquired
10 frames and averaged a varying number of frames. The right column (b, d, f) displays results of the study in which the number of
acquired frames was varied between one and 10 and the number of averaged frames was equal to the lesser of the number of acquired
frames or five. In all plots, each colored line represents the results from one subject. The thick black line represents the mean across all
subjects. Graphs (a, b) plot the number of endpoints, normalized by the number calculated from one frame. Graphs (c, d) plot the
normalized average vessel length, and (e, f) plot the longest vessel length, normalized by the value calculated from one frame. Data in
plots (a–d) were fit to exponential functions using cftool in MATLAB.

10 TVST j 2019 j Vol. 8 j No. 1 j Article 10

Schmidt et al.



number of endpoints, average vessel length, longest
vessel length, and average PICA.

It is important to note that acquiring multiple
OCTA volumes and averaging multiple en face
images, as was performed in this study, provides
additional benefit for the overall en face image
compared with acquiring and averaging multiple B-
scans at each retinal location. Acquiring additional
B-scans improves the estimation of the flow signal by
OCTA algorithms at one retinal location. By
acquiring multiple OCTA volumes, each volume
provides information about more retinal locations
than simply the number of B-scans in one volume,
due to eye motion resulting in slightly different
retinal locations being sampled across the different
volumes. Thus, each en face image contains slightly
different flow information at slightly different
locations along the vessel. The vessel definition and
continuity are therefore improved when averaging
multiple en face images.

Whereas previous studies registered the acquired
OCTA frames to a subjectively selected reference
frame,24–26 this study proposes the novel use of an
image quality metric to rank the acquired frames
prior to registration and averaging. A method to
automatically select the reference frame will be
important for translation into clinical practice. In
this study, the mean gradient magnitude of the
OCTA frame was used as the metric of image quality
for ranking the acquired frames. This metric is
designed to provide high scores to frames with high-
contrast and sharp edges. However, the mean
gradient magnitude may be sensitive to frames with
high noise. Also, while the mean gradient magnitude
metric is appropriate for ranking image quality of
frames from the same subject, the metric is limited in
quantifying absolute image quality across subjects,
due to changes in vessel density. An absolute metric
of OCTA image quality could be used in the future
to only select high-quality frames for averaging and
FAZ segmentation. Another limitation of the
gradient magnitude metric is that it decreases with
the number of averaged frames because averaging
introduces smoothing and decreases the gradient.
Therefore, the gradient magnitude metric cannot be
used to determine when to stop including additional
frames for averaging. Overall, development of
improved OCTA image quality metrics to guide
frame averaging would be an area of interesting
future study.

In general, the results suggest limited benefit in
acquiring and averaging more than five frames, which

was also demonstrated in a previous study of frame
averaging in the superficial layer of the parafovea.26 A
previous study of OCTA frame averaging in the
peripapillary region determined that the optimal
number of averaged frames varied with quantitative
metric and region of interest location relative to the
optic disk.24 For example, metrics of skeletonized
vessel morphology required five to seven frames
depending on location, which is similar to the results
determined in this current study. Both the current
study and the previous study demonstrated similar
trends of an exponential decrease in the estimated
number of endpoints and exponential increase in the
average vessel length with an increasing number of
averaged frames.24 These results demonstrate that
frame averaging increases the integrity of the vessel
segments, which thus reduces endpoints and increases
mean vessel length.

Acquiring and averaging multiple OCTA frames
did not affect the average PICA estimated for each
patient but did improve the precision of the estimate
when more than five frames were averaged. The
results of the skeleton analysis demonstrate that
frame averaging increases the number of intact
vessels. While the intact vessels may alter the area of
parafoveal intercapillary subregions, the average
PICA may be unaffected. The reduction in noise
due to frame averaging may also cause a slight
increase in the PICA and may cause the improved
precision in the PICA estimates.

Acquiring multiple frames may pose challenges in
practice due to the added acquisition time. The
presented results enable evaluating the difference
between OCTA metrics obtained with varying
numbers of frames to determine the correct operat-
ing point for specific applications. Understanding
which metrics are most affected by frame averaging,
such as FAZ area (Fig. 4), number of endpoints (Fig.
8), and average vessel length (Fig. 8), may help point
clinicians toward metrics that may be more robust
and of greater utility when averaging is not possible.
If the goal is to use these metrics to detect small
changes over time, the results suggest using averaged
images where possible to increase the sensitivity of
the longitudinal comparisons. Sometimes multiple
OCTA volumes are acquired in practice while
attempting to obtain a single volume with minimal
motion artifacts. The results of this and previous
OCTA averaging studies24–26 suggest that it may be
beneficial to average the portions of the volumes
devoid of visible motion artifacts rather than
discarding those that are not ‘‘perfect’’ in the eyes
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of the operator. Even if multiple frames are acquired,
new workflow and software capabilities to rank,
select, and average frames are needed within
commercial OCTA systems to achieve the benefits
of frame averaging.

One limitation of this study is the relatively small
number of subjects, though the observed effects were
fairly robust. The study was further limited to subjects
without known retinal or vascular disease, and the
effect of acquiring and averaging multiple OCTA
frames in subjects with pathology requires future
study. A further limitation of this study is the
relatively narrow age range of the subjects (23–49),
as vascular biomarkers may change with age.36,37 The
FAZ results in this study are also limited to the
specific implemented FAZ segmentation algorithm
developed in this work and a single OCTA device
(Optovue). Frame averaging is expected to improve
FAZ segmentation accuracy for other segmentation
approaches; however, future studies are required to
investigate frame averaging combined with commer-
cial FAZ segmentation algorithms and deep learning
segmentation algorithms that have recently been
developed.38,39 Likewise, there are differences in
image quality across commercial OCTA devices,40–42

due in part to different algorithms (e.g., OMAG,
SSADA) and different scan parameters (e.g., scan
density, motion correction). The benefit of frame
averaging may be greater or lesser when using images
obtained from other devices.

Conclusions

Acquiring and averaging multiple OCTA frames
reduced the error in automated FAZ segmentation
and improved the robustness of OCTA skeleton and
perfusion metrics. The results demonstrate significant
reduction in the error of the segmented FAZ region
when acquiring and averaging more than two frames.
The study determined limited benefit in acquiring and
averaging more than five frames.
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Appendix: Automated FAZ

Segmentation Algorithm

Methods

While automated and semiautomated algorithms
for segmenting the FAZ are available on commercial
OCTA systems, these algorithms are not generally
accessible for offline research purposes. Therefore, we
developed an automated FAZ segmentation algo-
rithm for use in this study (MATLAB v2017a). The
developed automated FAZ segmentation algorithm,
illustrated in Figure 9, is based on finding the largest
nonvessel region in the OCTA image. The algorithm
first identifies the vessel edge regions. The Canny edge
detection method43 was investigated for this purpose
but was found to be insufficiently sensitive to weak
edges. Therefore, a modified edge detection algorithm
was developed that is based on the Canny edge
detector but excludes the initial smoothing operation
and nonmaxima suppression steps, which were found
to remove weaker edges. The averaged OCTA image
was first filtered with the Sobel filter to enhance the
contrast of vessel edges. The Sobel-filtered image was
then thresholded using a hysteresis thresholding
method, with two thresholds values selected for
creating a mask of strong edges (pixels . Tstrong)
and a mask of weak edges (pixels . Tweak), where
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Tstrong . Tweak. The thresholds were calculated
adaptively as proportional to the most common
intensity in the Sobel-filtered image (i.e., the intensity
corresponding to the peak of the histogram of the
Sobel-filtered image). A sensitivity study found that a
low threshold setting between 0.5 and 0.6 of the
histogram peak and a high thresholding setting
between 0.8 and 1.3 of the histogram peak returned
similar segmentation results (Dice coefficient . 0.95).
Thresholds settings of 0.5 (Tweak) and 1.0 (Tstrong) of
the histogram peak were selected for all further
analyses. The final vessel edge mask included all
identified strong edges and all identified weak edges
that were connected to a strong edge. The comple-
ment of the edge mask is a mask of nonvessel-edge
regions. The connected components of this nonvessel
mask were identified assuming four-neighbor connec-
tivity. The FAZ region was selected as the component
with the largest area and whose centroid was within
25 pixels of the image center, which assumes that the
FAZ is generally near the center of the acquired image
frame. The following morphologic processing was
performed to refine the identified FAZ region. The
image was closed with a 3 3 3-pixel cross-structuring
element to fill small gaps and then dilated by a 53 5-
pixel square structuring element so that the region
extended to the centerlines of the bordering vessels,
followed by a hole filling step.

Results and Discussion

The FAZ segmentation algorithm correctly iden-
tified the FAZ region in 18 of 19 subjects. Figure 10
displays the results of the subject for which the
algorithm failed to identify the ground-truth FAZ
region. The expert readers selected the most central

avascular region for this subject, while the proposed
algorithm, as part of the morphologic processing
criteria, selected the largest avascular region near the
center of the image. Because the FAZ for this subject
was ambiguous, an additional segmentation was
performed with a commercial algorithm (Optovue
AngioAnalytics). The commercial FAZ segmentation
selected the union of the FAZ regions selected by the
readers and the proposed algorithm.

A previous study of a different FAZ segmentation
algorithm operating on a single frame estimated a
FAZ area error of 0.0240 6 0.0259 mm2, percent
error in FAZ area ranging from 2.2% to 54.4%, and
an absolute maximum error of 0.145 mm2.32 The
performance of the algorithm proposed in this paper
for the case of one acquired frame is similar to the
previously studied algorithm (mean absolute error:
0.0257 6 0.0339 mm2, error range: 0.74%–50.97%,
maximum error: 0.1436 mm2), suggesting that the
proposed algorithm has comparable segmentation
performance.

As seen in Figure 10, the error in FAZ identifica-
tion for one subject was caused by the criteria used to
select the FAZ from the candidate avascular regions,
rather than an error in segmenting avascular regions.
In the future, the proposed algorithm could use
alternate criteria and additional OCT features to
identify the FAZ region among the possible central
avascular regions.
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38. Prentašic P, Heisler M, Mammo Z, et al.
Segmentation of the foveal microvasculature
using deep learning networks. J Biomed Opt.
2016;21:075008.

39. Guo Y, Camino A, Wang J, Huang D, Hwang
TS, Jia Y. MEDnet, a neural network for
automated detection of avascular area in OCT
angiography. Biomed Opt Express. 2018;9:5147.

40. Munk MR, Giannakaki-Zimmermann H, Berger
L, et al. OCT-angiography: a qualitative and
quantitative comparison of 4 OCT-A devices.
PLoS One. 2017;12:e0177059.

41. Pilotto E, Frizziero L, Crepaldi A, et al.
Repeatability and reproducibility of foveal avas-
cular zone area measurement on normal eyes by
different optical coherence tomography angiog-
raphy instruments. Ophthalmic Res. 2018;59:206–
211.

42. Shiihara H, Sakamoto T, Yamashita T, et al.
Reproducibility and differences in area of foveal
avascular zone measured by three different
optical coherence tomographic angiography in-
struments. Sci Rep. 2017;7:9853.

43. Canny J. A computational approach to edge
detection. IEEE Transactions on Pattern Analysis
and Machine Intelligence. 1986;6:679–698.

15 TVST j 2019 j Vol. 8 j No. 1 j Article 10

Schmidt et al.


	Introduction
	Methods
	f01
	Results
	f02
	f03
	t01
	f04
	t02
	f05
	Discussion
	f06
	f07
	f08
	n102
	Appendix: Automated FAZ Segmentation Algorithm
	b01
	b02
	f10
	f09
	b03
	b04
	b05
	b06
	b07
	b08
	b09
	b10
	b11
	b12
	b13
	b14
	b15
	b16
	b17
	b18
	b19
	b20
	b21
	b22
	b23
	b24
	b25
	b26
	b27
	b28
	b29
	b30
	b31
	b32
	b33
	b34
	b35
	b36
	b37
	b38
	b39
	b40
	b41
	b42
	b43

