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Abstract

The Bicoid morphogen is amongst the earliest triggers of differential spatial pattern of gene expression and subsequent cell
fate determination in the embryonic development of Drosophila. This maternally deposited morphogen is thought to
diffuse in the embryo, establishing a concentration gradient which is sensed by downstream genes. In most model based
analyses of this process, the translation of the bicoid mRNA is thought to take place at a fixed rate from the anterior pole of
the embryo and a supply of the resulting protein at a constant rate is assumed. Is this process of morphogen generation a
passive one as assumed in the modelling literature so far, or would available data support an alternate hypothesis that the
stability of the mRNA is regulated by active processes? We introduce a model in which the stability of the maternal mRNA is
regulated by being held constant for a length of time, followed by rapid degradation. With this more realistic model of the
source, we have analysed three computational models of spatial morphogen propagation along the anterior-posterior axis:
(a) passive diffusion modelled as a deterministic differential equation, (b) diffusion enhanced by a cytoplasmic flow term;
and (c) diffusion modelled by stochastic simulation of the corresponding chemical reactions. Parameter estimation on these
models by matching to publicly available data on spatio-temporal Bicoid profiles suggests strong support for regulated
stability over either a constant supply rate or one where the maternal mRNA is permitted to degrade in a passive manner.
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Introduction

Differential cell fate determination in space, leading to

patterning in embryonic development, is mainly thought to be

caused by spatial concentration gradients of a class of molecules

known as morphogens. This view, put forward by Turing [1] over

60 years ago, is a computational model which predicted the

mechanism long before an example of it being discovered in the

real world. The idea that morphogen diffuses from a localized

source and provides different concentration thresholds to generate

positional information was formalized by Wolpert [2] as the

French flag model, which is in conjunction with an early

quantitative model proposed by Crick [3].

The most definitive example, the Bicoid transcription factor,

maternally deposited as mRNA molecules at the anterior pole of

Drosophila melanogaster embryos, is translated into protein and

propagates along the anterior-posterior axis, setting up a

concentration gradient [4–6]. This, in conjunction with other

similar transcription factors, regulates the establishment of the

segmental structure by precise activation of downstream gap genes

[7–9]. Many computational and experimental works have been

published towards an understanding of the precision with which

spatial boundaries are established and the scaling behaviour of the

concentration gradients have been analysed [10–18]. Several

computational models of Bicoid gradient formation have been

published over the last three decades (reviewed by Grimm [19]).

The most widely used one is the formulation of Wolpert [2] and

Crick [3] published before the discovery of the role of Bicoid, in

which a combination of protein synthesis, diffusion and degrada-

tion (SDD) is the underlying mechanism that derives a steady state

concentration gradient. Decoding differential concentrations from

such a gradient, which is spatially exponential in the steady state,

and robustness properties of it are discussed in [5,10]. Hecht et al.

[20] propose a model, based on an additional cytoplasmic flow

term, which is motivated by the argument that, with passive

diffusion, the quantitative properties of the morphogen profiles

establishment require higher values of diffusion constant than have

been experimentally measured [12,13].

In an alternate approach, focusing on the discrete nature of the

molecular system, Wu et al. [21] present a probabilistic formu-

lation, treating the embryo as a finite number of compartments,

and formulating the chemical master equation for molecules

making transitions between them. Because it is hard to obtain the

analytical solutions of reaction diffusion master equation, numer-

ical simulations based on Gillespie algorithm [22] are used for

inference in this model. An elegant approximate inference method

for such stochastic models is presented in Dewar et al. [23],

drawing on statistical physics literature. They propose a Bayesian

approach, based on formulating a Markov Jump Process, for

estimating parameters from observational data, along with

uncertainties in these estimates. While inference from such a

system is usually achieved via stochastic simulations, the authors
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use approximate inference to circumvent the associated compu-

tational complexities.

Alternatives to passive deterministic diffusion from a point

source at the anterior end has been considered by some recent

authors. Coppey et al. in [24,25] propose such a mechanism for

Bicoid gradient establishment based on the idea of nuclear

trapping. Their model explicitly accommodates the growth in the

number of nuclei in the embryo, and the shuttling of Bicoid

molecules in and out of nuclei at each cycle. This mechanism, in

essence, serves as a substitute for degradation of the morphogen

molecules assumed in other models. A more recent model due to

Kavousanakis et al. [26] considers an arrangement of periodic

components representing nuclei, modelling very much the same

nuclear trapping aspect studied by Coppey et al.. Spirov et al. [27]

propose a totally different perspective of the existence of an

mRNA gradient along the A-P axis. We take some points from this

particular work later in this paper. Cheung et al. [28] have

considered Bicoid production rate as a variable, i.e. the quantity of

maternally deposited mRNA being a function of the size of the

embryo, as an explanation of morphogen gradient scaling.

While most work on the subject focuses only on the steady state

properties of the exponential profile, Bergmann et al. [29] suggest

that much of the desirable properties of this profile is also available

in the pre-steady state stages of morphogen diffusion. They also

provide some experimental evidence in support of this hypothesis.

Quantitative models of decoding following the establishment of

a steady state profile have been considered by researchers. The

complex expression of gap genes that drive segmentation along the

A-P axis is studied in [30–34] by the construction of a gene circuit

model. This body of work, closely associated with the literature on

artificial neural networks, shows how dynamical properties of a

nonliear network of interacting transcription factors achieves

segmentation along the A-P axis by differential expressions.

Remarkably, the models are able to exhibit dynamical shifts of

gap gene expression peaks from posterior towards anterior. These

authors mostly assume Bicoid to have a sustained exponential

steady state profile throughout the analysis intervals they consider,

a questionable assumption since it is precisely during this time

interval that the morphogen degrades rapidly. Computational

complexities of parameter estimation for such gene circuits, and

the use of sophisticated evolutionary algorithms, are considered in

[35].

To the best of our knowledge, all computational models

mentioned above assume that the translation of maternal mRNA

takes place at a constant rate at the anterior end, resulting in a

constant supply of morphogen to diffuse in the system. Although

mathematically convenient, in that it leads to easy closed-form

solutions, this is an unrealistic assumption, for there is no need for

the embryo to continue to maintain a constant supply of

morphogen beyond what is needed for downstream decoding.

A particular view on this subject, supported by experimental

findings, is advanced by Surdej and Jacobs-Lorena [36] who argue

that the stability of the bicoid mRNA is regulated during

development; the mRNA being held stable during the first two

hours of development and rapidly killed off thereafter. Spirov et al.

[27]’s work, proposing an mRNA spatial distribution for bicoid also

contains further experimental evidence pointing in this direction.

By fluorescence in situ hybridization (FISH) method and confocal

microscopy, these authors confirm that bicoid mRNA disappears

below detectable levels around 16 min after the onset of nuclear

cycle 14 with complete mRNA degradation taking place over a

time interval of 15{20 min.

In this paper, we pursue these observations of the regulation of

stability, leading to a model of morphogen propagation in which

the source supply is assumed to consist of a constant part during

early development, followed by an exponential decay.

We integrate such a source model into three different models of

morphogen propagation and match the resulting spatio-temporal

profiles to measurements published by the FlyEx database [37,38].

By matching the model output to FlyEx measurements, using a

least squares fitting method, we infer optimal parameters of each

of the models, including the time at which mRNA stability is

destroyed. We also quantify the uncertainties in these estimates by

constructing bootstrapped sample paths through different individ-

ual fly measurements, taken at different developmental stages. Our

results show that the estimated parameters all lie in sensible ranges

of values, and the decay onset time inferred from data coincides

well with the experimental observations in [27,36]. While the

control of stability and translation during development have been

discussed by other authors (e.g. see review by Cooperstock and

Lipshitz [39]), these have not been included in computational

models.

As such, ours is the first in-silico study that incorporates a novel

mechanism of developmental regulation by which a morphogen

gradient is established when needed, and killed off by some active

processes once its task is accomplished. This is something one

would naturally expect, but is ignored in three decades of

modelling work on the subject.

Results and Discussion

bicoid mRNA Regulation
We implemented bicoid mRNA stability regulation in Bicoid

reaction diffusion systems with different computational models.

Figure 1 shows various spatio-temporal profiles of Bicoid concen-

trations along the time and A-P axes of the embryo. Figure 1A is the

profile, over the entire timescale since egg-laying in which an

exponential profile is achieved and maintained as a steady state.

Figure 1B is a zoomed-in version of this during nuclear cleavage

cycles 11{14A, which corresponds in time to the measurements

from FlyEx shown in Figure 1F. Clearly, we do not see the post-peak

decay of morphogen in the embryo because it has not been

modelled. Results of our novel computational diffusion model in

which the source supply incorporates regulated stability are shown

in Figure 1C and E, at the full and post-peak time windows

respectively. We observe that the decay seen in the database is

faithfully captured in Figure 1E. The corresponding source

functions, inferred from data are shown in Figure 1D for all four

models (including the model without mRNA regulation) considered.

We see that the decay onset and the rate at which the source is

rapidly decayed are in agreement for all three models considered.

Equivalent results of spatio-temporal Bicoid distribution for the

stochastic simulation model and the cytoplasmic flow model are

given in Figures S1 and S2.

We see from Figure 1D that the modelling process correctly

recovers a source function consistent with the hypothesis of

regulated mRNA stability as noted from the experimental work of

Surdej and Jacobs-Lorena [36]. Further support for this observation

can also be found in the work of Salles et al. [40]. By using

polymerase chain reaction (PCR) - based assay, they showed that

the poly(A) tail of bicoid mRNA dynamically increases during the

first 1:5 hours of development and subsequently rapidly decreases in

length. As the poly(A) tail has the feature of protecting mRNA for

degradation, this may be the mechanism by which stability

regulation is achieved.

With mRNA regulation, the degrading Bicoid could have a

contribution to the dynamic shifts in the position of gap gene

expression domains which are the particular aspects of the gene

bicoid mRNA Stability Regulation in Development
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regulation circuit model [20]. Bicoid as an external input in this

circuit is implemented as a constant exponential function along the

embryo. It is likely that the degrading Bicoid will also have a

contribution towards the P-A shift of expression peaks observed by

the authors.

Parameter Estimation
For the deterministic diffusion and stochastic models, there are

four parameters (diffusion constant D, protein half life tp, source

mRNA half life tm and decay onset time t0). For Hecht et al. [20]’s

flow model, there is an additional parameter, the flow velocity V .

Please refer to Materials and Methods for details of model

specifications and the data fitting procedure, which include

exhaustive search on a grid of feasible parameter values (Table

S1) for the unknowns and a closed form solution for the overall

source amplitude.

Values of estimated parameters for the different models are

shown in Table 1, for the regulated stability model and a model in

which source mRNA is permitted to decay from time zero

(unregulated). We note that parameter values estimated by the

fitting procedure are in sensible ranges used by previous authors.

As already seen in Figure 1, for the regulated stability estimates,

there is strong agreement across the three different models with

respect to the onset of source decay (t0), and the speed at which it

is decayed (tm), the main focus of our investigation. As noted in the

Introduction, these observations confirm the experimental findings

in [36] and [27]. Surdej and Jacobs-Lorena [36] argue that the

mRNA is developmentally regulated, i.e. being held stable for up

Figure 1. Spatio-temporal profiles of Bicoid and regulated anterior mRNA profiles inferred using three different computational
models. (A) & (B) spatio-temporal profiles for a conventional model that assumes a constant source (drawn over two timescales). Inferred source
profiles are in shown in (D), for deterministic diffusion (blue), cytoplasmic flow (red) and the stochastic (green) models. They differ in the source
amplitudes required to fit the data, but the estimated decay onset times are very close. The corresponding spatio-temporal profile is shown in (C)
over the full time and space axes. (E) and (F): model output and FlyEx data in the space-time range over which optimization was carried out. Profile
shown in (E) is only for the deterministic diffusion model for clarity.
doi:10.1371/journal.pone.0024896.g001
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to the first two hours and then rapidly killed off in the next 30 min.

Spirov et al. [27] also suggest that the rapid degradation takes place

over a 15{20 min interval. The rapid decay of mRNA suggested

in both these papers is consistent with half-lives of 9, 9 and

7 minutes inferred from our models.

We note that the diffusion constant estimated for Hecht et al.

[20]’s cytoplasmic flow model is smaller than the other two. This is

to be expected since the motivation of this model is to use

cytoplasmic flow as an additional trafficking mechanism that

offsets a low diffusion constant. The value we estimated for flow

velocity (0:04 mm=s) is close to what was used in [20] (0:08 mm=s),

who take this estimate from observed nuclear motions. They note

a 20-fold large range of possible values for this parameter, and use

an average value. It is encouraging that the parameter obtained by

fitting to FlyEx happens to be quite close.

The rightmost three columns of Table 1, show the parameter

estimation for an unregulated source which allows for mRNA decay

from time zero. This possibility is a natural expectation we need to

explore, since mRNA molecules are inherently unstable. In order to

match the measurements in the post-peak region, it turns out that

this model not only has to amplify the source (S0) to almost ten times

of the other models but also has to retain the protein in the medium

for much longer period (tp~250&156 min). These values of protein

half life are significantly higher than what is thought to be the half

lives of Bicoid proteins [5]. Further, the source amplitude being so

high is inconsistent with the observation that Bicoid protein is often

undetectable during the very early stages of development ([5,19]).

Thus, it is reasonable to conclude that the source supply is regulated

as suggested by Surdej et al., rather than either kept constant

throughout or be subject to natural decay.

Figure 2 shows cross sections of the error function at the

optimum point found by grid search. We have shown this with

respect to all parameter combinations, taken pair-wise, setting the

parameters not shown to their optimum values. The unimodal

form of these error functions, shown here for the deterministic

diffusion model, confirms that the optimization strategy we chose

was adequate for this purpose. Similar error surface plots for the

other two models are given in Figures S3, S4 and S5.

We note that previous authors working on Bicoid profiles have

used a range of different values for diffusion and protein half-life

parameters. For the diffusion constant, for example, values of, 0:3
[13], 7:0 [41–43] and 17 mm2=sec [11,29] have been used. With

our models, we explored the effect of fixing one or more of the

parameters at a value used by previous authors and optimizing the

remaining parameters. We found the dominant effect is one of the

diffusion term compensating for the protein half-life, with the

decay onset time and transcript half lives we compute showing far

less variation.

We have further quantified the uncertainties in our estimates of t0

and tm by fitting the models to individual embryo measurements in

FlyEx rather than their average profiles. We achieved this by

constructing 50 reference datasets by uniformly bootstrapping from

each temporal class in FlyEx. Figure 3 shows these uncertainties as

box plots and confirms the fact that the estimated onset and decay

rates are consistent across all three models.

Figure 4 shows how the models achieve a reduction of almost a

factor two, in the mean squared error between model outputs and

FlyEx measurements in the post-peak region of nuclear cleavage

cycles 11{14A. This comparison between modelling errors, with

and without our regulated source, confirms the merits of explicitly

modelling the destruction of maternally deposited mRNA.

Our models permit the exploration of other published

hypotheses about potential mRNA regulation. For example, Salles

et al. [40], treating the poly(A) tail length of bicoid mRNA as proxy

for its translational competence, suggest that protein production

may be restricted in time, peaking between 1 to 1:5 hours in

development. We have simulated this by implementing the source

as a rectangular function between 60 min and cycle 14A, and

computing the resulting Bicoid profile (included as Figure S6). We

found the corresponding modelling error to be significantly higher,

caused mainly by forcing the decay to be instantaneous. While

other, similar, explorations are possible with our approach (e.g.

polysomal translation and translational bursting [44]), we believe

the coarse nature of available data would mean one may have to

be cautious about applying models of greater sophistication.

The results for Bicoid stochastic reaction diffusion in one run of

stochastic simulation based on Gillespie algorithm Direct Method

(Algorithm 1) is shown in Figure 5. This model provides a more

detailed understanding of the protein distribution, partitioned in

compartments along A-P axis. We note that such a stochastic

model characterizes a detailed view arising from molecular level

variabilities. Our implementation in deriving the main results for

the stochastic model in Table 1, following the technique of Erban

et al. [45], via simultaneous ordinary differential equations

corresponding to discrete bins along the spatial axis (see Materials

and Methods), captures average behaviour. Asymptotically (i.e.

with increasing number of bins), this is the equivalent of averaging

a large number of Gillespie simulations, and should also give the

same solution as the deterministic differential equation. To

estimate the effect of molecular level variation, we matched

Table 1. Parameter estimation.

Regulated Stability Unregulated mRNA Decay

Estimated Parameters Diffusion Stochastic Flow Diffusion Stochastic Flow

Diffusion constant D (mm2=s) 3 3 0.9 1.1 1.1 0.4

mRNA decaying onset time t0 (min) 143 144 142 N/A N/A N/A

Bicoid proteins half-life tp (min) 87 86 42 250 250 156

bicoid mRNA half-life tm (min) 9 9 7 38 37 13

Flow velocity V (mm=s) N/A N/A 0.04 N/A N/A 0.01

Source intensity S0 352 72 104 901 188 980

Parameter values estimated by matching model outputs to observed data from FlyEx. Least squares fitting of model outputs to FlyEx with exhaustive search for the best
combination of parameters on a regular grid suggests sensible values for the mRNA decay onset time, t0 , in all three models. Regulated stability corresponds to an
optimized period in time during which the mRNA is held stable and translated at a constant rate, followed by rapid decay. Unregulated stability is where the mRNA is
allowed to decay from the very beginning; these parameters were estimated by forcing t0~0:01s in the optimization loop.
doi:10.1371/journal.pone.0024896.t001

bicoid mRNA Stability Regulation in Development

PLoS ONE | www.plosone.org 4 September 2011 | Volume 6 | Issue 9 | e24896



profiles generated by individual Gillespie simulations to bootstrap

samples of Bicoid profiles from FlyEx (the same data used to derive

uncertainties in Figure 3). As this process is computationally

demanding, we restricted ourselves to estimating the variability in

mRNA decay onset time only, with the remaining parameters

fixed to their optimal values given in Table 1. Matching such

 

 
 

 
 

  

 
 

 
  

 
 

 

 

 

Figure 2. Cross sections through the error function between model output and measurements. Figures show the error function with
respect to parameters taken pairwise, with those not shown held constant at their optimum values given in Table 1. Over the parameter ranges
considered for the search, the error surface turns out to be unimodal for all three models. Deterministic diffusion model is shown above. Also see
Figures S3, S4, S5 for other models considered.
doi:10.1371/journal.pone.0024896.g002

Figure 3. Uncertainty estimation. Uncertainty estimates of mRNA decay onset time t0 in (A) and degradation time tm in (B) by fitting the models
to 50 bootstrap samples of individual embryo measurements from FlyEx.
doi:10.1371/journal.pone.0024896.g003
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individual simulations to data resulted in an increase in the

standard deviation of estimation from 3:9 min to 5:5 min. While

this increase suggests the variability at the molecular level may be

captured by stochastic simulations, as in the study of Wu et al., the

resulting estimation uncertainties in both cases are still small for

the mRNA decay onset.

Spatially Distributed bicoid mRNA
While nearly all modelling work on Bicoid assume a spatial

point source for bicoid mRNA, as noted earlier, Spirov et al. [27]

suggest that the bicoid mRNA may have spatial distribution which

alone explains the morphogen gradient at the protein level. They

argue for an active transport mechanism along a cortical

microtubular network. This proposal is questioned by Little et al.

[41] who show experimental evidence that a distributed spatial

gradient of mRNA is not sufficient to achieve the required

morphogen profile. Since computational modelling of active

transport hypothesized by Spirov et al. [27] is outside the scope

of this study, we instead follow Dilão et al. [46] who have

postulated an mRNA diffusion model to achieve an effect similar

to that of Spirov et al. [27] (see Materials and Methods).

Figure 6 shows protein intensities with a spatial distribution for

bicoid mRNA. Figure 6A is profile obtained with only spatially

distributed mRNA, while Figure 6B is results obtained with spatial

distribution and temporal regulation and the post peak decay is

clearly observed. Thus, even with simulated spatial distribution of

maternal mRNA, our model finds a set of feasible parameter

values that account for observed profiles in FlyEx. The

corresponding parameter estimates are shown in Table S2. We

find that the differences are in directions we would naturally

expect: i.e. a spatially distributed maternal mRNA is compensated

primarily by faster protein degradation. But it is encouraging to

see that the onset of decay (t0) changes only slightly.

Materials and Methods

Deterministic Diffusion and Flow Model
The reaction diffusion equation used to model morphogen

establishment is given by:

L
Lt

M(x,t)~D
L2

Lx2
M(x,t){t{1

p M(x,t)zS(x,t), ð1Þ

where, M(x,t) is the morphogen concentration as a spatio-

temporal function, D, the diffusion constant, tp, the half-life of the

morphogen protein and S(x,t), the source at the anterior pole of

embryo.

The flow model with one dimension fluid velocity V is defined

by:

L
Lt

M(x,t)~D
L2

Lx2
M(x,t){t{1

p M(x,t)

{V
L
Lx

M(x,t)zS(x,t):

ð2Þ

In the original formulation of this model, the flow term was

permitted to be active only for a short duration in time: nuclear

cleavage cycles 4 to 6 depending on the motion of the nuclei in the

viscous cytoplasm. In our implementation, we allowed this term to

be present throughout the developmental time period considered,

to increase its difference from the standard diffusion model.

The usual assumption in solving these models is that the source

is constant: Scon~S0d(x)H(t), where S0 is the production rate,

d(x) is the Kronecker delta function and H(t) is Heaviside step

function. The source model we propose here, incorporating

regulated mRNA stability is given by:

Figure 4. Reduction in squared error between model outputs and FlyEx measurements. In all three models, nearly a factor two reduction
is achieved by the improved source whose parameters are optimized. Blue bars represent modelling errors for a constant source model and the red
bars correspond to the regulated mRNA model.
doi:10.1371/journal.pone.0024896.g004
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Scon{dec~S0d(x) H(t){H(t{t0)ð Þ

zS0d(x)H(t{t0)exp {
t{t0

tm

� �
:

ð3Þ

We use numerical methods available in the MATLAB PDE

solver pdepe to solve these reaction diffusion models.

Stochastic Simulation Model
Closely following Wu et al. [21] and Erban et al. [45], the

stochastic Bicoid protein reaction diffusion system we implement-

ed simulates 100 compartments along the A-P axis, each with

length h~5 mm, which is approximately the average size of one

nucleus.

The three chemical reactions involved in this description are:

Bcd1 '
d

d
. . .'

d

d
Bcdi '

d

d
. . .'

d

d
BcdN , for i~1,2, . . . ,N ð4Þ

Bcdi

t{1
p

6O, for i~1,2, . . . ,N ð5Þ

6O
S(t)

Bcdi, for i~1 ð6Þ

 

 

 

 

Figure 5. One realization of stochastic simulation by Gillespie algorithm. Blue histogram, (A), shows the numbers of Bicoid molecules along
anterior and posterior axis in embryo at a particular time point: cycle 14A class 5. Average of several such simulations is used as model output to
match against measurements. (B) shows the realization jointly in space and time.
doi:10.1371/journal.pone.0024896.g005

 

 

 

 

Figure 6. The effect of bicoid mRNA spatial gradient. (A) protein intensity without mRNA temporal regulation; (B) Bicoid profile with mRNA
temporal regulation.
doi:10.1371/journal.pone.0024896.g006
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The first of these, Equation (4) describes diffusion between

neighbouring sub-volumes, allowed to take place in both

directions, at a rate d, related to the diffusion constant of a

deterministic model by d~D=h2. The second, Equation (5),

describes protein degradation, and the final, Equation (6), the

source. Translation only takes place in the first bin, for i~1.

Our implementation of Gillespie algorithm for stochastic

simulation of the master equation closely follows that of Erban

et al. [45] and is given in pseudo-code format in Algorithm 1.

Essentially, this process consists of the generation of two random

numbers to select the time at which a reaction occurs, and which

one that is. The probability that j-th chemical reaction taking

place is given by: aj=a0, where a0 is a total propensity function,

computed in step 2 (Algorithm 1).

Algorithm 1 Bicoid reaction diffusion stochastic simulation.

Output: Vector of Bicoid molecular numbers, M

Initialization: M/0, t/0

while timevfinal time do

1. Generate two random numbers which are uniformly distrib-

uted in (0,1): r(1) and r(2).

2. Compute propensity functions for all of the reactions:

a0~a1za2za3za4.

3. Compute the time when next reaction occurs: tzt, where

t~1=a0 ln(1=r(1)).

4. Decide which reaction occurs at tzt: find j[R such that:Xj{1

j~1
aj=a0ƒr(2)v

Xj

j~1
aj=a0.

5. Update numbers of reactants and products in j-th reaction and

set t/tzt.

end while

With vector M, containing the number of molecules along the

N~100 bins, Equations (4)–(6), define a total of R~3N{1
reactions. The propensity functions for the reactions are:

Bcd1

d
. . .

d
BcdN : a1~

XN{1

i~1

dM(i) ð7Þ

Bcd1

d
. . .

d
BcdN : a2~

XN

i~2

dM(i) ð8Þ

Bcdi

t{1
p

6O : a3~
XN

i~1

t{1
p M(i) ð9Þ

In order to estimate parameters used in the stochastic model,

Gillespie realizations are averaged. Erban et al. derive the following

system of ODEs for the different compartments to extract the

ensemble average directly (see [45] for details):

L
Lt

M1~d(M2{M1){t
{1
p M1zS(t), i~1 ð10Þ

L
Lt

Mi~d(Miz1zMi{1{2Mi){t
{1
p Mi, i~2, . . . ,N{1ð11Þ

L
Lt

MN~d(MN{1{MN ){t{1
p MN , i~N ð12Þ

Equations (10)–(12) are solved using MATLAB.

Matching Models to Data in Joint Space
We use experimental measurements of Bicoid concentrations

published in FlyEx database [37,38] for parameter estimation.

FlyEx, providing high resolution quantitative gene expression data

by confocal scanning microscopy of fixed embryos, is the best

available public domain dataset for this analysis. Measurements

published in FlyEx are nuclear concentrations of Bicoid. The

models we use, however, correspond to the total Bicoid. We make

the assumption that the two concentrations are proportional across

the developmental cycles. In recent work, Gregor et al. [13] have

published some measurements of nuclear and cytoplasmic Bicoid

concentrations, showing the dynamical balance between the two

during cycles of nuclear division. Their data is suggestive that the

use of nuclear concentrations as proxy for total concentrations is

reasonable. Once we assume the two are proportional, parameters

we infer by matching model outputs and data are unaffected, as

any discrepancy will be absorbed by the source amplitude term S0,

computed by Equation 15.

The spatio-temporal data for Bicoid we use, spans 100 points

uniformly spaced along the A-P axis, and covers 11 points in time.

The temporal range of measurements starts from nuclear cleavage

cycle 11 to the end of cycle 14A. Cycle 14A is of specific interest,

because it is during this period, cellularization sets in and the

established Bicoid profile begins to decay due to the decaying bicoid

mRNA. While there is some variability in how these develop-

mental stages map onto real time, on average, cycle 14A (temporal

classes 1{8) lasts for around 50 min [47]. Cycle 11 starts around

100 min from fertilization, and the three cycles 11, 12 and 13 last

an average of 10 min each. In FlyEx, Bicoid data is available for

the 11 temporal classes from cycle 11 to 14A.

The squared error between model output and measured

intensities is

E~
XT2

t~T1

XL

x~1

S0M x,tð Þ{Md x,tð Þf g2
, ð13Þ

h~arg min
h[H

(E(h)), ð14Þ

where M(x,t) is the model output while Md (x,t) denotes the

measured intensities from FlyEx. T1 and T2 are the boundaries of

cleavage cycle 11{14A. h in Equation (14) represents a vector of

all unknown model parameters and H is the space over which we

search for optimum values.

Because the model output is linear in the source amplitude S0

and is independent of the other parameters used in the three

models, we calculate it in closed form rather than searching for an

optimum in a grid. In order to minimise error E in Equation (13),

we differentiate it with respect to S0 and equate it to zero. Then

we have S0 as following:

S0~

XT2

t~T1

XL

x~1
M(x,t)Md (x,t)

XT2

t~T1

XL

x~1
M(x,t)2

: ð15Þ
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bicoid mRNA Spatial Distribution
For mRNA spatial distribution, we follow Dilão et al.’s work in

[46], but do not incorporate a term for natural mRNA decay.

Thus instead of a diffusion equation, we restrict ourselves to the

heat equation given by:

LR

Lt
~Dr

L2R

Lx2
, ð16Þ

where Dr is mRNA diffusion constant. This is justified because our

model for the temporal regulation of bicoid mRNA is one which

holds it stable up to t0 followed by an active degradation.

Supporting Information

Figure S1 Spatio-temporal intensity profiles of mor-
phogen concentrations in four different models. (Ai),

solution to deterministic differential equation driven by a constant

source (Aii); (Bi), (Ci) and (Di), solutions to deterministic diffusion,

stochastic and cytoplasmic flow models, driven by the new source

model incorporating regulated mRNA stability, and whose

parameters are optimized.

(EPS)

Figure S2 Spatio-temporal profiles of model outputs
and FlyEx data in the regions where model outputs were
matched to measured data (nuclear cleavage cycles 11 to
14A. (A), deterministic model driven by a constant source; Models

driven by regulated source (C), (D) and (E), are deterministic

diffusion, stochastic and cytoplasmic flow respectively. When

mRNA regulation is included, all three models faithfully reproduce

the temporal decay of the morphogen in the post-peak region.

(EPS)

Figure S3 Modelling error displayed as functions of
parameters taken pairwise. Stochastic simulation model.

(EPS)

Figure S4 Modelling error displayed as functions of
parameters taken pairwise: Cytoplasmic flow model.

(EPS)

Figure S5 Modelling error surface for the cytoplasmic
flow model as functions of flow velocity parameter and
each of the other parameters.
(EPS)

Figure S6 Spatio temporal Bicoid profiles with source
regulation as a step function, with constant rate of
translation between 60 min and onset of cycle 14A
(implementing [40]).
(EPS)

Table S1 Parameter optimization on a regular grid.
Table S1 shows the search spaces used in optimising the

parameters of the three models considered. We used a coarse

grid in the first round to get a rough estimate of the sensible range

of parameters and followed it with a second round of search with a

higher resolution and a reduced search range. Such a strategy is

feasible, given we have only five parameters to estimate. Further,

given the noisy nature of available data, searching over a finer grid

to optimize parameters to a higher level of numerical precision

does not make sense. If data of higher quality becomes available in

the future, a scheme based on simulated annealing or population

based optimisation needs to be considered. With the grid sizes we

chose, shown in Table S1, it was possible to do least squares fitting

of all three models on a desktop PC, with at most three days of wall

clock time.

(PDF)

Table S2 Parameter estimation for stochastic model
with bicoid mRNA regulation and spatial distribution.
(PDF)
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