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ABSTRACT With over 3.5 billion people at risk and approximately 390 million human infections per year, dengue virus (DENV)
disease strains health care resources worldwide. Previously, we and others established models for DENV pathogenesis in mice
that completely lack subunits of the receptors (Ifnar and Ifngr) for type I and type II interferon (IFN) signaling; however, the
utility of these models is limited by the pleotropic effect of these cytokines on innate and adaptive immune system development
and function. Here, we demonstrate that the specific deletion of Ifnar expression on subsets of murine myeloid cells (LysM Cre�

Ifnarflox/flox [denoted as Ifnarf/f herein]) resulted in enhanced DENV replication in vivo. The administration of subneutralizing
amounts of cross-reactive anti-DENV monoclonal antibodies to LysM Cre� Ifnarf/f mice prior to infection with DENV serotype 2
or 3 resulted in antibody-dependent enhancement (ADE) of infection with many of the characteristics associated with severe
DENV disease in humans, including plasma leakage, hypercytokinemia, liver injury, hemoconcentration, and thrombocytope-
nia. Notably, the pathogenesis of severe DENV-2 or DENV-3 infection in LysM Cre� Ifnarf/f mice was blocked by pre- or postex-
posure administration of a bispecific dual-affinity retargeting molecule (DART) or an optimized RIG-I receptor agonist that
stimulates innate immune responses. Our findings establish a more immunocompetent animal model of ADE of infection with
multiple DENV serotypes in which disease is inhibited by treatment with broad-spectrum antibody derivatives or innate im-
mune stimulatory agents.

IMPORTANCE Although dengue virus (DENV) infects hundreds of millions of people annually and results in morbidity and mor-
tality on a global scale, there are no approved antiviral treatments or vaccines. Part of the difficulty in evaluating therapeutic
candidates is the lack of small animal models that are permissive to DENV and recapitulate the clinical features of severe human
disease. Using animals lacking the type I interferon receptor only on myeloid cell subsets, we developed a more immunocompe-
tent mouse model of severe DENV infection with characteristics of the human disease, including vascular leakage, hemoconcen-
tration, thrombocytopenia, and liver injury. Using this model, we demonstrate that pathogenesis by two different DENV sero-
types is inhibited by therapeutic administration of a genetically modified antibody or a RIG-I receptor agonist that stimulates
innate immunity.
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Dengue virus (DENV) is a mosquito-transmitted, enveloped,
positive-sense RNA virus and member of the flavivirus genus

of the Flaviviridae family, which includes several other viruses
(e.g., West Nile virus [WNV], Japanese encephalitis virus [JEV],
and yellow fever virus [YFV]) that cause disease globally. Infection
by any of four serologically distinct viruses (DENV serotype 1
[DENV-1], DENV-2, DENV-3, and DENV-4) causes dengue fe-
ver (DF), an acute self-limiting febrile illness, or severe dengue,
which manifests as a potentially fatal hemorrhagic fever and vas-
cular leakage syndrome. Epidemiological studies suggest that two

populations are at highest risk for severe dengue infection: infants
born to dengue-immune mothers who are infected for the first
time (infant dengue hemorrhagic fever) and children or adults
who experience a second infection with a different DENV serotype
(1–3).

DENV has a 10.7-kb, positive-sense RNA genome with 5= and
3= untranslated regions flanking a polyprotein that encodes three
structural (C, prM/M, and E) and seven nonstructural (NS1,
NS2A, NS2B, NS3, NS4A, NS4B, and NS5) proteins. The E protein
is comprised of three domains, I (E-DI), II (E-DII), and III (E-
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DIII), with E-DII and E-DIII containing the fusion peptide and
putative viral receptor binding site(s), respectively (reviewed in
references 4 and 5). Among the structural proteins, prM and E are
primary antigenic targets of the humoral immune response (6–9).
The most potently neutralizing antibodies target sites on the lat-
eral ridge and A strand of E-DIII (10–16), quaternary epitopes on
adjacent E proteins near the E-DI-DII hinge region (17–20),
amino acids near the bc loop of E-DII (21), and a conserved
epitope at the E dimer interface (22).

One hypothesis as to why certain individuals are more vulner-
able to severe DENV infection is that preexisting, poorly neutral-
izing antibodies acquired passively (infants) or after primary in-
fection (children and adults) facilitate virus entry into Fc�
receptor (Fc�R)-bearing target cells, thereby increasing viral rep-
lication, cytokine levels, inflammation, and ultimately, disease se-
verity (reviewed in reference 23). Experimental evidence in mice
supports this idea. Initial studies showed that passive transfer of
subneutralizing concentrations of monoclonal antibody (MAb)
or polyclonal antibody (PAb) enhanced infection and disease
caused by DENV-2 in 129/Sv mice deficient in both alpha/beta
interferon (IFN-�/�) receptor (Ifnar) and IFN-� receptor (Ifngr)
(known as AG129) (24–26). Subsequent reports extended these
findings to other DENV serotypes in AG129 mice (DENV-1 [19],
DENV-3 [27], and DENV-4 [13, 28, 29]) or Ifnar�/� C57BL/6
mice. Ifnar�/� mice in either the 129/Sv or C57BL/6 background
develop a severe DENV-like disease when infected with very high
DENV-2 doses or in the presence of enhancing anti-DENV anti-
bodies (25, 30–33).

The utility of these highly immunocompromised mice to pro-
vide a mechanistic understanding of DENV pathogenesis and dis-
ease remains controversial. The use of laboratory or mouse-
adapted DENV-2 strains has been required to induce mortality or
neuroinvasive disease (34), and the latter is not commonly ob-
served in DENV-infected humans. Studies with DENV-2 indicate
that mice with deficiencies in innate immunity are needed to study
DENV pathogenesis because the viral NS3 and NS5 proteins in-
duce degradation of human but not mouse STING and STAT2,
respectively (35–38); STING and STAT2 are key components of
the IFN induction and signaling pathway. Thus, DENV generally
does not replicate to high titers or cause clinical signs of disease in
wild-type (WT) mice, in part because DENV nonstructural pro-
teins fail to antagonize host innate immune responses efficiently.
We recently demonstrated that WNV infection of the more im-
munocompetent LysM Cre� Ifnarflox/flox (denoted as Ifnarf/f

herein) or CD11c Cre� Ifnarf/f mice, which lack Ifnar expression
only on subsets of myeloid cells, resulted in a sepsis-like syndrome
that shared features of DENV disease in humans (39). Another
group recently used the LysM Cre� Ifnarf/f and CD11c Cre� If-
narf/f mice to generate a model of DENV-2 infection and study
adaptive immunity after immunization with a candidate vaccine
(40). Here, we administered enhancing amounts of anti-E and
anti-prM MAbs to LysM Cre� Ifnarf/f mice prior to infection with
either DENV-2 or DENV-3 and generated an antibody-dependent
enhancement (ADE) of infection model of disease that shared
many characteristics of severe dengue in humans. We used this
model to establish the therapeutic efficacy of an antibody-based
bispecific dual-affinity retargeting molecule (DART) that targets
epitopes on the A strand of E-DIII and the fusion loop in E-DII
and a novel sequence-optimized RIG-I receptor agonist that stim-
ulates antiviral innate immunity. These studies provide the first

demonstration of severe ADE-mediated DENV infection in LysM
Cre� Ifnarf/f mice and illustrate the utility of this model to evaluate
antibody- and innate immune-based antiviral therapies to limit
DENV pathogenesis.

RESULTS
Dengue virus infection in LysM Cre� Ifnarf/f mice. Prior analysis
established that myeloid cells are targets for human DENV infec-
tion in vivo (41). The relevance of Ifnar�/� mice in studying
DENV pathogenesis has been questioned because of the central
role of IFN signaling in priming innate and adaptive immune
responses (42–44). In an attempt to study DENV pathogenesis in
a more immunocompetent animal, we used LysM Cre� Ifnarf/f

mice that conditionally delete Ifnar only in subsets of myeloid
cells. In splenocytes, flow cytometric analysis revealed substan-
tially reduced Ifnar expression on the surface of CD11bhi CD11clo

macrophages from LysM Cre� Ifnarf/f mice compared to the re-
sults for WT mice. In contrast, the levels of Ifnar expression on
B220� B cells, CD3� T cells, CD11bhi CD11chi monocytes, and
CD11blo CD11chi dendritic cells from LysM Cre� Ifnarf/f mice
were comparable to the levels seen in WT mice (Fig. 1A).

Initially, we compared morbidity in DENV-infected WT,
LysM Cre� Ifnarf/f, and Ifnar�/� mice. Four-week-old mice lack-
ing Ifnar expression on all cells or only on myeloid cell subsets
rapidly developed disease within days of DENV-2 (strain D2S20,
1 � 106 focus-forming units [FFU]) or DENV-3 (strain C0360/94,
1 � 107 FFU) infection, as reflected by the development of weight
loss (Fig. 1B and C) ruffled fur, and hunched appearance (data not
shown). In comparison, and as expected, WT mice infected with
DENV-2 or DENV-3 did not develop signs of disease.

To define the basis for the DENV-induced disease in LysM
Cre� Ifnarf/f mice, we assessed viral burdens. WT, LysM Cre�

Ifnarf/f, and Ifnar�/� mice were inoculated intravenously with 1 �
106 FFU of DENV-2 or 1 � 107 FFU of DENV-3, and the levels of
viral RNA in the serum, kidney, spleen, and liver were determined
at 4 days after infection using quantitative reverse transcription-
PCR (qRT-PCR). DENV-2 or DENV-3 replication was markedly
enhanced (Fig. 1D to G) in LysM Cre� Ifnarf/f mice compared to
the levels of replication in WT mice. These values approached but
did not attain those observed in Ifnar�/� mice, which lack Ifnar
signaling in all cell types.

Antibody-enhanced DENV disease in LysM Cre� Ifnarf/f

mice. Given that LysM Cre� Ifnarf/f mice sustained infection and
disease after DENV inoculation, we evaluated whether more se-
vere disease would be observed if enhancing and cross-reactive
anti-prM (2H2) and anti-E (4G2) MAbs were administered. In-
deed, more severe disease was observed in LysM Cre� Ifnarf/f mice
that were treated with enhancing MAbs than in those treated with
an isotype control anti-Chikungunya virus MAb (CHK-152) (45)
prior to infection with 1 � 106 FFU of DENV-2 (Fig. 2A). How-
ever, no mortality was seen with the 1 � 106 FFU dose of DENV-2,
even in the presence of enhancing MAbs (data not shown). With a
higher dose of DENV-2 (1 � 107 FFU), we did observe increased
mortality under ADE conditions (55 versus 8 percent mortality;
P � 0.006) (Fig. 2B). As DENV infection in humans is predomi-
nantly a disease that does not cause lethality, we performed sub-
sequent experiments using the lower 1 � 106 FFU dose of
DENV-2.

To define the relevance of the LysM Cre� Ifnarf/f mouse model
of DENV-2 infection, we assessed the impact of ADE on labora-
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tory parameters that are linked to severe DENV disease in hu-
mans. Hemoconcentration (shown by elevated hematocrit
[HCT]), which reflects changes in vascular permeability, was ob-
served in DENV-infected LysM Cre� Ifnarf/f mice, and this phe-

notype was exacerbated in the presence of enhancing antibodies
(HCT was 42 � 2 for no virus, 46 � 4 for DENV-2 alone, and 51 �
5 for DENV-2 plus anti-prM and anti-E MAbs) (Fig. 2C). Throm-
bocytopenia (low platelet [PLT] counts) was also detected in

FIG 1 Dengue virus infection of LysM Cre� Ifnarf/f mice. (A) Ifnar expression on splenic B cells, T cells, class II MHC-negative cells, monocytes, dendritic cells,
and macrophages from WT, LysM Cre� Ifnarf/f, and Ifnar�/� mice was measured using flow cytometry. Cells were gated (example in top panels is from
DENV-2-infected LysM Cre� Ifnarf/f mice) using the following markers: B cells (B220�), T cells (B220� � CD3�), class II MHC-negative cells (B220� CD3�

class II MHC�), monocytes (B220� CD3� class II MHC� CD11bhi CD11chi), dendritic cells (B220� CD3� class II MHC� CD11blo CD11chi), and macrophages
(B220� CD3� class II MHC� CD11bhi CD11clo). Ifnar expression was measured using the MAR1-5A3 MAb. Data are representative of 4 mice from two
independent experiments. (B and C) Weight loss of 4-week-old WT, LysM Cre� Ifnarf/f, and Ifnar�/� mice after intravenous injection of 106 FFU of DENV-2
(D2S20) (B) or 107 FFU of DENV-3 (C0360/94) (C). Weight loss differences between WT and LysM Cre� Ifnarf/f or Ifnar�/� mice were statistically significant
on days 2, 3, and 4 after DENV-2 or DENV-3 infection in three independent experiments with 8 to 12 mice per group. (D to G) Viral burdens in LysM Cre�

Ifnarf/f, WT, and Ifnar�/� mice after DENV-2 (top) or DENV-3 (bottom) infection. Four-week-old mice were infected intravenously with 106 FFU of DENV-2
(D2S20) or 107 FFU of DENV-3 (C0360/94). Levels of viral RNA in (D) serum, (E) kidney, (F) spleen, and (G) liver samples harvested 4 days after infection were
determined using qRT-PCR. Data are shown as log10 DENV genome equivalents (GE) per 18S ribosomal RNA of tissue or per milliliter of serum for 8 to 9 mice
per group, from three independent experiments. The dotted line represents the limit of sensitivity of the assay. Asterisks indicate values that are statistically
significant (*, P � 0.05, **, P � 0.01; ***, P � 0.001; ****, P � 0.0001) as determined by using the Mann-Whitney test.
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DENV-infected LysM Cre� Ifnarf/f mice, although ADE did not
alter its magnitude (PLT count was 300 � 85 for no virus, 108 �
59 for DENV-2 alone, and 155 � 67 for DENV-2 plus anti-prM
and anti-E MAbs) (Fig. 2D). An elevated blood urea nitrogen
(BUN) level, which reflects renal damage, was measured only in
DENV-infected LysM Cre� Ifnarf/f mice treated with enhancing
antibodies (BUN was 15 � 4 for no virus, 16 � 4 for DENV-2
alone, and 68 � 21 for DENV-2 plus anti-prM and anti-E MAbs)
(Fig. 2E). Liver injury, as manifested by elevated aspartate amino-
transferase (AST) or alanine aminotransferase (ALT) levels in se-
rum, was also observed in DENV-infected LysM Cre� Ifnarf/f

mice, with greater damage present under conditions of ADE (AST
and ALT were 156 � 49 and 82 � 36, respectively, for no virus,
300 � 208 and 125 � 53 for DENV-2 alone, and 503 � 223 and
258 � 149 for DENV-2 plus anti-prM and anti-E MAbs) (Fig. 2F
and G). Overall, enhancing antibodies in the context of DENV
infection of LysM Cre� Ifnarf/f mice worsened many of the labo-
ratory parameters that are seen during cases of severe DENV in

humans (46). In comparison, in Ifnar�/� mice, the administra-
tion of enhancing antibodies resulted in an increased hematocrit
(44 � 3 for DENV-2 alone and 53 � 9 for DENV-2 plus anti-prM
and anti-E MAbs) but did not alter AST or ALT levels or platelet
counts beyond that seen with virus alone (data not shown).

To determine the basis for the exacerbated clinical disease in
LysM Cre� Ifnarf/f mice, we assessed the effects of enhancing an-
tibodies on the DENV-2 viral burden. At day 4 after infection, we
observed higher levels of DENV RNA in the sera of infected LysM
Cre� Ifnarf/f than in the sera of WT mice, with further increases
when animals were pretreated with enhancing MAbs (Fig. 3A).
Analogous results were observed in other tissues after DENV in-
fection and antibody treatment, including the kidney, spleen, and
liver (Fig. 3B to D).

We evaluated cytokine levels in serum and vascular leakage in
tissues, which are two features of severe DENV infection in hu-
mans (23, 47). Elevated levels of interleukin 1� (IL-1�) and IL-12
were observed in LysM Cre� Ifnarf/f mice compared to the levels in

FIG 2 Weight loss, survival, hematology, and blood chemistry of DENV-2-infected LysM Cre� Ifnarf/f mice under ADE conditions. (A and B) LysM Cre� Ifnarf/f

mice received passively transferred isotype control MAb (30 �g of CHK-152) or enhancing MAbs (15 �g of anti-prM MAb [2H2] and 15 �g anti-E MAb [4G2])
and then infected a day later with 106 (A) or 107 (B) FFU of DENV-2 (strain D2S20) via an intravenous route. Weight change and mortality were monitored; the
data reflect the results from three to four independent experiments with 3 to 8 mice per group per experiment. (C to G) LysM Cre� Ifnarf/f mice were either not
infected, infected with DENV-2 (106 FFU), or administered enhancing anti-prM and anti-E MAbs (as in the experiment whose results are shown in panel A) one
day before DENV-2 (106 FFU) infection. Whole blood was collected at day 4 after infection and evaluated. Hematocrit (C) and platelet levels (D) were analyzed
from whole blood. Clinical chemistry was performed on serum and included measurement of blood urea nitrogen (BUN) (E), aspartate amino transferase (AST)
(F), and alanine aminotransferase (ALT) (G) levels. Three independent experiments were completed, with 3 to 5 mice per group per experiment. Statistically
significant differences between individual groups were determined by using the Mann-Whitney test (*, P � 0.05; **, P � 0.01; ***, P � 0.001; ****, P � 0.0001;
ns, not significant).
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WT mice after DENV-2 infection (Fig. 3E and F). Moreover, in the
setting of ADE, the levels of several other proinflammatory cyto-
kines were substantially higher in LysM Cre� Ifnarf/f mice than
they were in the setting of DENV infection alone (Fig. 3G and H;
Table 1). Since previous studies in DENV-infected AG129 mice
demonstrated increased vascular permeability in the liver (24, 25,
27), as measured by extravasation of Evans blue dye, we per-
formed similar studies in LysM Cre� Ifnarf/f mice (Fig. 3I to L).
Leakage of Evans blue dye into the kidney and liver was observed
at day 4 after DENV infection in the context of ADE in LysM Cre�

Ifnarf/f mice, which parallels the enhanced capillary permeability
seen during severe DENV disease in humans (48). However, the
increased dye extravasation was tissue restricted and was not ob-
served in the spleen or small intestine of these mice.

To corroborate these findings, we performed analogous exper-
iments with enhancing MAbs in DENV-3-infected LysM Cre�

Ifnarf/f mice using a non-mouse-adapted DENV-3 human isolate
(strain C0360/94) (27). Although lethal infection was not ob-

served in this model at a dose of 1 � 107 FFU, some mortality
(~33%) was seen at a dose of 3 � 107 FFU in A129 mice (data not
shown). More severe DENV-3-induced disease occurred in LysM
Cre� Ifnarf/f but not WT mice when enhancing amounts of anti-E
MAb were present, as determined by greater weight loss (Fig. 4A;
also data not shown). The addition of the anti-prM MAb to the
anti-E MAb did not worsen clinical disease further after DENV-3
infection of LysM Cre� Ifnarf/f mice (data not shown), and thus, it
was not included in subsequent experiments.

Virologic and clinical laboratory studies were performed after
DENV-3 infection in WT and LysM Cre� Ifnarf/f mice. Higher
viral burdens at day 4 after DENV-3 infection were observed in
LysM Cre� Ifnarf/f mice only when enhancing anti-E MAb was
administered (Fig. 4B to E; also data not shown). Hemoconcen-
tration, lower platelet levels, enhanced liver enzymes (elevated
AST and ALT), and renal injury (elevated BUN) were also ob-
served in LysM Cre� Ifnarf/f mice after DENV-3 infection in the
presence of enhancing antibodies (Fig. 4F to J). Thus, the LysM

FIG 3 Viral burdens, cytokines, and vascular permeability following DENV-2 infection of LysM Cre� Ifnarf/f mice under ADE conditions. WT and LysM Cre�

Ifnarf/f mice were infected with DENV-2 (106 FFU) via an intravenous route. Some of the LysM Cre� Ifnarf/f mice were pretreated with an isotype control MAb
(CHK-152) or enhancing amounts of anti-prM and anti-E MAbs. (A to D) Levels of viral RNA in serum (A), kidney (B), spleen (C), and liver (D) samples
harvested 4 days after infection were determined using qRT-PCR. Data are shown as log10 DENV genome equivalents (GE) per 18S ribosomal RNA of tissue or
per milliliter of serum from 11 to 16 mice per condition. The dotted line represents the limit of sensitivity of the assay. Asterisks indicate values that are statistically
significant by the Mann-Whitney test compared to the values for isotype control MAb-treated mice. (E to H) Proinflammatory cytokine analysis. Cytokines
IL-1� (E), IL-12p70 (F), IFN-� (G), and TNF-� (H) were measured at day 4 after infection using a Bioplex instrument; the data reflect the results for 9 to 12 mice
per group. Data are pooled from three to four independent experiments (*, P � 0.05; **, P � 0.01; ***, P � 0.001; ****, P � 0.0001 [Mann-Whitney test]). (I to
L) Vascular permeability. Four days after infection, Evans blue dye was administered intravenously 20 min prior to sacrifice and tissue harvest. Levels of Evans
blue (ng/mg tissue) in kidney (I), spleen (J), liver (K), and small intestine (L) were determined. Data are shown as ng of Evans blue per mg of tissue for 9 to 12
mice per group. Data are pooled from three to four independent experiments (**, P � 0.01; ***, P � 0.001; ****, P � 0.0001 [Mann-Whitney test]).
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Cre� Ifnarf/f mouse model shows enhanced disease in the setting
of ADE of two different DENV serotypes.

A bispecific tetravalent Fc-DART protects against DENV in-
fection in LysM Cre� Ifnarf/f mice. Previously, we generated an
antibody-variable-region-based bispecific Ig-DART against
DENV that targeted two distinct epitopes (49). That DART used
WNV-E60, a cross-reactive neutralizing MAb that binds the fu-
sion loop on DII, and 4E11, a group-specific neutralizing MAb
that binds the A-strand epitope on DIII. Our subsequent studies
revealed that a second DII fusion loop antibody, WNV-E119 (50),
had superior inhibitory activity against other DENV serotypes
(13; also data not shown). Accordingly, we generated a new bispe-
cific tetravalent DART that contained the VH and VL regions of
humanized WNV-E119 (hE119) and humanized 4E11 (h4E11)
(Fig. 5A) (51, 52). This Fc-DART was engineered with the human
IgG Fc constant regions (CH1, CH2, and CH3) containing a point
mutation (N297Q) that prevents Fc�R engagement and ADE
(26). A nonbinding, bivalent DENV-4 type-specific IgG was de-
veloped as a negative control (Fig. 5A).

The initial studies confirmed the in vitro binding activity of
N297Q h4E11 plus hWNV-E119A against recombinant E protein
from prototype strains of all four DENV serotypes (data not
shown). We next investigated the neutralization potential of the
Fc-DART against the viruses we used for the in vivo studies and
compared it to that of the parental h4E11 and hWNV-E119 MAbs.
The h4E11 MAb efficiently neutralized DENV-2 (50% effective
concentration [EC50] of 20 ng/ml) and DENV-3 (EC50 of 29 ng/
ml) (Fig. 5B and C). In comparison, the hWNV-E119 MAb neu-
tralized DENV-2 (EC50 of 120 ng/ml) but not DENV-3 strain
C0360/94. The h4E11– hWNV-E119A N297Q bispecific Fc-
DART showed a neutralization profile that was consistent with the
inhibitory activity of h4E11.

To assess the utility of the LysM Cre� Ifnarf/f mouse model of
ADE and DENV pathogenesis, we performed protection studies
using the bispecific N297Q Fc-DART. Initially, prophylaxis stud-
ies were performed against DENV-2. One 25-�g dose of the bispe-
cific h4E11– hWNV-E119 N297Q Fc-DART administered one
day prior to DENV-2 inoculation and enhancing treatment with
anti-E plus anti-prM MAb completely protected LysM Cre� If-
narf/f mice against weight loss, viremia, thrombocytopenia, hemo-
concentration, and liver injury (data not shown). Subsequently,
LysM Cre� Ifnarf/f mice were administered a single 25-�g dose of
the bispecific N297Q Fc-DART 48 h after infection with DENV-2
or DENV-3 (Fig. 5D). The h4E11– hWNV-E119 Fc-DART was
active therapeutically, as judged by increased weight gain, reduced
viral burden, and improved laboratory test values at 4 days after
infection in the setting of ADE for either DENV-2 (Fig. 5E to J)
and DENV-3 (Fig. 5K to P).

A RIG-I receptor agonist protects against severe DENV infec-
tion in LysM Cre� Ifnarf/f but not Ifnar�/� mice. One of the
limitations of using Ifnar�/� or AG129 mice is that the complete
absence of IFNAR signaling does not permit the evaluation of
anti-DENV therapies that act by modulating the host innate im-
mune response. Recently, members of our group developed a 99-
nucleotide, uridine-rich hairpin 5=-ppp RNA (termed M8) RIG-I
agonist that can be delivered in vivo to stimulate protective anti-
viral responses against alphaviruses and orthomyxoviruses (53).
We tested the utility of the LysM Cre� Ifnarf/f model by adminis-
tering M8 5=-ppp RNA in parallel to LysM Cre� Ifnarf/f and If-
nar�/� mice prior to and after the addition of enhancing anti-prM
and -E MAbs and DENV-2 (Fig. 6A). Protection, as judged by the
absence of weight loss, was observed only in LysM Cre� Ifnarf/f

and not in Ifnar�/� mice (Fig. 6B). Associated with this clinical
improvement, at day 4, we observed decreased viremia (Fig. 6C),

TABLE 1 Cytokine levels in sera of DENV-2-infected WT and LysM Cre� Ifnarf/f mice under ADE conditions

Mouse
treatment

Amt of cytokine [pg/ml (mean � SD)] in sera of mice with indicated genotype and treatmenta

WT mice,
no MAb

LysM Cre� Ifnarf/f mice, isotype
MAb (P value vs WT)

LysM Cre� Ifnarf/f mice, prM and E MAbs
(P value vs WT; P value vs isotype MAb)

IL-1� 5 � 1 16 � 2 (�0.0001) 20 � 4 (�0.0001; NS)
IL-1� 134 � 23 262 � 13 (�0.0001) 609 � 45 (�0.0001; �0.0001)
IL-2 24 � 1 42 � 5 (0.01) 48 � 6 (0.01; NS)
IL-3 23 � 1 62 � 9 (0.01) 93 � 3 (�0.0001; 0.01)
IL-4 16 � 2 47 � 5 (�0.0001) 50 � 8 (0.001; NS)
IL-5 24 � 4 89 � 10 (�0.0001) 100 � 11 (�0.0001; NS)
IL-6 35 � 7 86 � 17 (0.01) 88 � 5 (�0.0001; NS)
IL-10 52 � 6 62 � 6 (NS) 80 � 10 (NS; NS)
IL-12(p40) 59 � 6 79 � 12 (NS) 215 � 49 (�0.0001; 0.00)
IL-12(p70) 50 � 6 71 � 4 (0.01) 196 � 22 (�0.0001; �0.0001)
IL-13 28 � 3 44 � 5 (0.04) 51 � 7 (0.0026; NS)
IL-17 18 � 1 40 � 6 (0.02) 60 � 4 (�0.0001; 0.007)
Eotaxin 592 � 35 595 � 101 (NS) 1,092 � 165 (NS; 0.008)
G-CSF 110 � 10 322 � 73 (0.0004) 3,081 � 745 (�0.0001; �0.0001)
GM-CSF 64 � 4 76 � 15 (NS) 214 � 7 (�0.0001; �0.0001)
IFN-� 14 � 1 17 � 3 (NS) 36 � 6 (�0.0001; 0.002)
KC 48 � 7 111 � 11 (�0.0001) 1,171 � 307 (�0.0001; �0.0001)
MCP-1 219 � 34 712 � 92 (�0.0001) 1,973 � 349 (�0.0001; �0.0001)
MIP-1� 5 � 0 8 � 1 (NS) 25 � 1 (�0.0001; �0.0001)
MIP-1� 41 � 9 74 � 6 (0.0014) 135 � 7 (�0.0001; �0.0001)
RANTES 7 � 1 20 � 8 (�0.0001) 323 � 113 (�0.0001; �0.0001)
TNF-� 480 � 81 609 � 50 (NS) 1,815 � 221 (�0.0001; �0.0001)
a Mice were pretreated with the indicated MAb(s) (none, isotype control anti-CHK-152, or enhancing anti-prM and anti-E MAbs) one day prior to infection with DENV-2. On day
4 after infection, sera were harvested and processed for cytokines and chemokines as described in Materials and Methods. Data from 9 to 12 mice per group in three or four
independent experiments were pooled. Statistical significance was assessed using the Mann-Whitney test. NS, not significant.
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normalized platelet counts (Fig. 6D), and decreased liver injury
(Fig. 6E and F) in M8-treated LysM Cre� Ifnarf/f mice but not in
M8-treated Ifnar�/� mice. An analogous improvement in clinical
and laboratory parameters was observed in M8 5=-ppp RNA-
pretreated LysM Cre� Ifnarf/f mice but not Ifnar�/� mice infected
with DENV-3 in the context of ADE (Fig. 6G to K). These exper-
iments confirm that 5=-ppp RNA uses Ifnar signaling in cells other
than macrophages to inhibit DENV infection in vivo, and thus,
establish an animal model for testing immunomodulatory agents
against DENV.

As a follow-up to these studies, we demonstrated the postex-
posure therapeutic efficacy of M8 5=-ppp RNA against DENV-2
and DENV-3 infection in LysM Cre� Ifnarf/f mice when the RIG-I
agonist was administered 2 days after infection in the setting of
ADE (Fig. 7A). Therapeutic administration of M8 5=-ppp RNA
after infection with DENV-2 or DENV-3 resulted in improved
weight gain in the M8-treated group, with a significant difference
in weight at 4 days postinfection compared to the results for the
control (Fig. 7B and G). Concurrently, there was a reduction in
viremia (Fig. 7C and H), a normalization of platelet levels (Fig. 7D
and I), and an improvement in liver function tests (Fig. 7E, F, J,
and K) associated with M8 treatment. These results suggest that
RIG-I activation is a potential therapeutic target during the course
of DENV infection.

DISCUSSION

DENV continues to emerge globally, with an estimated 390 mil-
lion infections per year (54). Infection by the four distinct sero-

types can cause several clinical syndromes, ranging from the de-
bilitating DF to life-threatening shock syndrome. Severe DENV
disease most often is associated with a second infection with a
heterologous DENV serotype, due to the presence of preexisting
and nonneutralizing, cross-reactive antibodies and/or T cells. Al-
though live-attenuated tetravalent prophylactic vaccines are in
advanced clinical evaluation (55–58), there is still a need for ther-
apeutics that can be utilized in DENV-infected individuals. Pre-
clinical testing has been hampered by the lack of small animal
models that support DENV replication and pathogenesis. Most
studies have used highly immunocompromised mice lacking in-
tact type I and type II IFN signaling pathways (59). Here, using
LysM Cre� Ifnarf/f mice that delete Ifnar expression only on a
subset of target myeloid cells, we established a more immunocom-
petent model of ADE, which shares many of the same clinical
features of severe DENV in humans. ADE of DENV-2 or DENV-3
infection in LysM Cre� Ifnarf/f mice resulted in plasma leakage,
elevated levels of proinflammatory and vasoactive cytokines in
blood, liver injury, hemoconcentration, and thrombocytopenia.
We used this more immunocompetent model to establish the
therapeutic activity against DENV of a bispecific antibody-based
Fc-DART and a RIG-I receptor immunomodulatory agonist.

A prior study showed that LysM Cre� Ifnarf/f mice were vul-
nerable to DENV-2 infection (40). Rather than try to augment
DENV disease using enhancing antibodies as was done in our
study, this group showed that an Ifnar deficiency on CD11c� den-
dritic cells or LysM� macrophages resulted in complete lethality

FIG 4 Weight loss, viral burdens, hematology, and blood chemistry for DENV-3-infected WT and LysM Cre� Ifnarf/f mice under ADE conditions. WT or LysM
Cre� Ifnarf/f mice received passively transferred isotype control MAb (10 �g of CHK-152) or enhancing MAb (10 �g of anti-E MAb [4G2]) and were infected a
day later with 107 FFU of DENV-3 (strain C0360/94) via an intravenous route. (A) Weight change was monitored daily in four independent experiments with 4
to 5 mice per group per experiment. (B to E) Levels of viral RNA in serum (B), spleen (C), liver (D), and kidney (E) samples harvested 4 days after infection were
determined using qRT-PCR. Data are shown as log10 DENV genome equivalents (GE) per 18S of tissue or per milliliter of serum from 9 to 12 mice per condition.
The dotted line represents the limit of sensitivity of the assay. Asterisks indicate values that are statistically significant compared to the values for isotype control
MAb-treated animals. (F to J) LysM Cre� Ifnarf/f mice were either not infected (naive, no virus) or were administered isotype control (anti-CHK 152) or
enhancing anti-E MAb one day before DENV-3 infection. Whole blood was collected at day 4 after infection, and hematocrit (F) and platelet counts (G) were
analyzed. Clinical chemistry analysis was performed on serum and included measurement of blood urea nitrogen (BUN) (H), aspartate amino transferase (AST)
(I), and alanine aminotransferase (ALT) (J) levels. Three independent experiments were completed with 3 to 5 mice per group per experiment. Statistically
significant differences between individual groups were determined by using the Mann-Whitney test (*, P � 0.05; **, P � 0.01; ***, P � 0.001).
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after infection with a 10-fold-higher dose of DENV-2. The mice
lacking Ifnar expression only on myeloid cell subsets developed a
robust DENV-specific CD8� T cell response, compared to a weak
response in Ifnar�/� mice, and sustained a protective immune
response to a candidate subunit vaccine. Our experiments con-
firm and extend these findings. First, in the direct DENV-2 infec-
tion model in LysM Cre� Ifnarf/f mice, we observed increased viral
infection, elevated levels of cytokines, and altered laboratory pa-
rameters without significant mortality, which is characteristic of
primary DENV infection in humans. These results confirm that
protection of mice from DENV infection depends on type I IFN
signaling in LysM-expressing myeloid cells. Second, we showed
greater DENV infection and disease in LysM Cre� Ifnarf/f mice
when preexisting enhancing anti-prM and anti-E antibodies were
present. This led to the development of a vascular leakage syn-
drome, which parallels that seen in severe DENV (60). Third, we
extended our findings in LysM Cre� Ifnarf/f mice to a second
DENV serotype, using a nonadapted DENV-3 isolate.

A criticism of existing Ifnar-deficient mouse models of DENV
is that the type I IFN receptor signaling pathway is required for
optimal antigen-specific T and B cell priming, expansion, and
memory formation (40). The LysM Cre� Ifnarf/f mouse model
overcomes these limitations and more closely recapitulates several
aspects of human disease. The deletion of Ifnar expression on
LysM� mouse myeloid cells overcomes the species immune an-
tagonism issues and enables higher levels of DENV infection and
inflammatory responses in myeloid cells, which are the natural
cellular targets in human disease (41). Although LysM Cre� If-
narf/f mice supported increased DENV replication, showed signs
of illness, and developed thrombocytopenia during primary infec-
tion, they did not develop hemoconcentration, vascular leakage,
or lethality when virus alone was administered. In comparison,
when enhancing antibodies against prM and E were provided, the
viral burden was greater, and this was associated with more severe
disease, including death, as is seen in the most severe cases of
dengue in humans.

FIG 5 Protection of LysM Cre� Ifnarf/f mice from antibody-enhanced disease using an Fc-DART. (A) Fc-DART diagram and description. (B and C)
Neutralization data. DENV-2 (B) or DENV-3 (C) was mixed with the indicated MAbs or Fc-DART prior to performing a focus reduction neutralization test. The
data are representative of three independent experiments performed in triplicate. (D) Scheme of Fc-DART therapeutic studies. LysM Cre� Ifnarf/f mice were
treated with 15 �g each of anti-E and anti-prM MAbs or 10 �g of anti-E MAb. One day, later, mice were infected with 106 FFU of DENV-2 D2S20 or 107 FFU
of DENV-3 C0360/94 by intravenous injection. Two days later, animals were administered 25 �g of anti-DENV Fc-DART (h4E11–WNV-hE119 N297Q) or
control antibody (DENV-4 hE88 N297Q). Weight loss was monitored (E and K), and serum titers (F and L), platelet counts (G and M), hematocrit (H and N),
and AST (I and O) and ALT (J and P) levels in blood and serum samples obtained 4 days after infection were analyzed. Two independent experiments were
completed, with 3 to 4 mice per group per experiment. Statistically significant differences between individual groups were determined by using the Mann-
Whitney test (*, P � 0.05; **, P � 0.01; ***, P � 0.001).
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Another limitation of DENV infection experiments in If-
nar�/� or AG129 mice is that most agonists that modulate innate
immune responses cannot be evaluated. There is increasing inter-
est in the development of molecules that can stimulate IRF3
and/or type I IFN responses as means of controlling virus infec-
tion. Such agents may be important particularly in the context of
DENV, which can inhibit IRF3 and IFN induction by virtue of its
ability to antagonize STING-dependent responses (37, 38). How-
ever, such agents would not induce robust antiviral responses in
mice lacking type I IFN responses in all cells. Indeed, 5=-ppp RNA
moieties that activate RIG-I had no therapeutic effect against
DENV in Ifnar�/� mice. In comparison, administration of the M8
5=-ppp RNA pathogen-associated molecular pattern protected
LysM Cre� Ifnarf/f mice from severe DENV disease. These exper-
iments establish the utility of the conditional LysM Cre� Ifnarf/f

mouse model for testing possible novel immunomodulatory ther-
apies against DENV.

We previously generated a bispecific tetravalent Ig-DART (E60
and 4E11) and showed protective activity against DENV in AG129
mice (49). In the current study, we used a different cross-reactive
DII fusion loop MAb (E119) and a sequence-optimized version of
a group-specific MAb (4E11) (52) to create a new bispecific tet-
ravalent Fc-DART with an N297Q modified Fc region that cannot
promote ADE in vitro or in vivo. This Fc-DART showed marked

protective activity against DENV-2 and DENV-3 in LysM Cre�

Ifnarf/f mice and prevented clinical disease and laboratory param-
eter abnormalities. These experiments confirm the utility of Fc-
modified-antibody-based therapeutics against DENV (24, 26).

In summary, we established LysM Cre� Ifnarf/f mice as a more
immunocompetent model of antibody-enhanced DENV infec-
tion in vivo. We demonstrated the utility of this model by admin-
istering antibody- or innate immune-based therapeutic agents
against two different DENV serotypes, including a non-mouse-
adapted DENV-3 strain. Future studies are planned to evaluate
the pathogenesis of the remaining two DENV serotypes (DENV-1
and DENV-4) and assess whether disease occurs in LysM Cre�

Ifnarf/f mice using circulating, contemporary, and other non-
mouse-adapted isolates.

MATERIALS AND METHODS
Ethics statement. This study was carried out in accordance with the rec-
ommendations in the Guide for the Care and Use of Laboratory Animals
of the National Institutes of Health. The protocols were approved by the
Institutional Animal Care and Use Committee at the Washington Univer-
sity School of Medicine (assurance number A3381-01). Dissections and
injections were performed under anesthesia that was induced with ket-
amine hydrochloride and xylazine.

Viruses and cells. DENV-2 strain D2S20 is a mouse-adapted strain
and has been described previously (33). The DENV-3 strain is a non-

FIG 6 Pretreatment with a RIG-I receptor agonist protects LysM Cre� Ifnarf/f but not Ifnar�/� mice against DENV-2 and DENV-3 infection and disease. (A)
Scheme of treatment and infection. LysM Cre� Ifnarf/f or Ifnar�/� mice were treated with 5 �g of 5=-ppp M8 RNA or control RNA immediately before injection
with 15 �g of anti-prM MAb (DENV-2 only) and anti-E MAb (DENV-2 and DENV-3). Animals were infected one day later with 106 FFU of DENV-2 D2S20 (B
to F) or 107 FFU of DENV-3 C0360/94 (G to K). A second dose of 5=-ppp M8 RNA or control RNA was given 2 days after DENV infection. (B and G) Weight loss
was monitored for 4 days. Laboratory parameters, including viremia (C and H), platelet counts (D and I), and levels of liver enzymes AST (E and J) and ALT (F
and K) in serum were monitored as described in the legend to Fig. 5. Two to three independent experiments were performed, with 3 to 5 mice per group per
experiment. Statistically significant differences between individual groups were determined by using the Mann-Whitney test (*, P � 0.05; **, P � 0.01; ***, P �
0.001).
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mouse-adapted DENV-3 Thai human isolate (strain C0360/94) (27). All
viruses were passaged in C6/36 Aedes albopictus cells and ultracentrifuged
(30,000 RPM for 3 h in an SW32 rotor [110,500 � g]) through a 25%
glycerol cushion. Pelleted virus was resuspended in 10 mM Tris, pH 8.0,
150 mM NaCl, and 1 mM EDTA, and stored at �80°C. The titers of virus
stocks were determined by a focus-forming assay on Vero cells (49).

Mice. WT C57BL/6 mice were purchased commercially (Jackson Lab-
oratories). Ifnar�/� mice (61) were backcrossed for 10 generations onto
the C57BL/6 background. LysM Cre� Ifnarf/f mice were obtained from R.
Schreiber (St. Louis, MO) and U. Kalinke (Hannover, Germany). The
Ifnarf/f (62) and LysM Cre� mice were backcrossed using speed congenic
analysis to 99% C57BL/6 as judged by microsatellite analysis. Mice (4 to 5
weeks old) were inoculated intravenously with DENV-2 (D2S20) or
DENV-3 (C0360/94).

Analysis of Ifnar expression. Blood was obtained by intracardiac
heart puncture, and spleens were recovered. Live cells were stained with
MAbs specific for CD11c, CD3, class II major histocompatibility complex
(MHC), CD11b, B220, and Ifnar (BioLegend) to define cell types and
determine Ifnar expression. All samples were processed on an LSRII or
Fortessa flow cytometer (BD Biosciences). The resulting data were ana-
lyzed using FlowJo (Treestar).

Fc-DART generation. To humanize WNV-E119 antibody (50), the
complementarity-determining regions (CDRs) from VH and VL were
grafted onto the most homologous human germline antibody framework
sequences, VH3-48/VH3-23 and V�-A30/V�-L15, respectively. For hu-
manization of the 4E11 antibody (52), the CDRs from VH and VL were
grafted onto the human germline antibody framework sequences VH1-46

and V�-B3, respectively. Necessary framework back mutations were en-
gineered to rescue the antibody binding affinity. The Fc-DART was pro-
duced from plasmids that coexpressed two polypeptide chains: chain 1,
with the humanized VL domain of WNV-E119 linked to the humanized
VH domain of 4E11, followed by a K coil sequence, and chain 2, with the
humanized VL of 4E11 linked to the humanized VH of WNV-E119, fol-
lowed by an E coil sequence and the CH2 and CH3 of the human �1
constant region, containing an N297Q point mutation that abolishes C1q
and Fc�R interactions (63). The oppositely charged E coil and K coil
promote the heterodimerization of chain 1 and chain 2, and this assembly
is stabilized further by an interchain disulfide bond within the E-coil/K-
coil domain. The Fc-DART was expressed in CHO-S cells and purified
from supernatants by serial protein A affinity and Superdex 200 size ex-
clusion chromatography to generate purified recombinant material.

Animal treatments. (i) ADE studies. To induce ADE, mice were
treated via the intravenous route with the flavivirus cross-reactive anti-
body 4G2 (64) (10 �g/mouse) for DENV-3 or with the combination of
dengue complex-specific anti-prM antibody 2H2 (64) and 4G2 (15 �g of
each MAb per mouse) for DENV-2 one day prior to infection.

(ii) Fc-DART therapy. Mice were treated via an intraperitoneal route
with 25 �g/mouse of h4E11–WNV-hE119 N297Q Fc-DART or negative-
control recombinant (type-specific DENV-4 hE88 N297Q [13]) IgG ei-
ther one day prior to infection or at 48 h after infection.

(iii) RIG-I agonist treatment. Mice were treated with a single dose
(5 �g/mouse) of a 99-nucleotide, uridine-rich hairpin 5=-ppp RNA
termed M8 (53, 65) or a synthetic RNA control lacking 5=-ppp control

FIG 7 Postexposure therapy with a RIG-I receptor agonist controls DENV-2 and DENV-3 infection and disease in LysM Cre� Ifnarf/f mice. (A) Scheme of
treatment and infection. LysM Cre� Ifnarf/f mice were injected with 15 �g of anti-prM MAb (DENV-2 only) and anti-E MAb (DENV-2 and DENV-3) and
infected one day later with 106 FFU of DENV-2 D2S20 (B to F) or 107 FFU of DENV-3 C0360/94 (G to K). Two days after DENV infection, mice were treated with
5 �g of 5=-ppp M8 RNA or control RNA. Weight loss was monitored for 4 days (B and G). Laboratory parameters, including viremia (C and H), platelet counts
(D and I), and levels of liver enzymes AST (E and J) and ALT (F and K) in serum were monitored as in described in the legend to Fig. 5. Two independent
experiments were performed, with 3 mice per group per experiment. Statistically significant differences between individual groups were determined by using the
Mann-Whitney test (*, P � 0.05; **, P � 0.01; ***, P � 0.001).
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combined with jetPEI transfection reagent (Polyplus) via intravenous in-
jection before and after infection.

qRT-PCR analysis of viral burden. Fluorogenic quantitative RT-PCR
(qRT-PCR) was used to measure viral genome copy number. Total RNA
from organs or serum of infected animals was isolated using the Qiagen
RNeasy kit or the Qiagen viral RNA isolation kit. DENV viral RNA was
determined using the pan-DENV primer probe set (66), which recognizes
a conserved sequence in the 3= untranslated region of all DENV serotypes.
Viral copy number was determined using a defined positive single-
stranded RNA generated in vitro using T7 polymerase containing the
DENV target sequences.

Neutralization assay. Focus-forming reduction neutralization assays
(FRNTs) were performed as described previously (49) to determine the
50% inhibitory concentrations of MAbs and Fc-DARTs against the virus
isolates used to infect mice. Infected foci were enumerated by counting
using a CTL-Immunospot S6 (Cellular Technology Limited).

Clinical hematology and chemistry analysis. At specified times after
DENV infection of mice, blood was collected by intracardiac heart punc-
ture. Blood for clinical hematology analysis was collected into EDTA-
coated tubes (Becton Dickinson), and analyzed using a ProCyte DX ma-
chine (IDEXX). Serum was collected for clinical chemistry analysis of
alanine transaminase (ALT), aspartate amino transferase (AST), and
blood urea nitrogen (BUN) using the ProCyte DX machine.

Cytokine and chemokine measurements. The BioPlex Pro assay
(Bio-Rad) was performed according to the manufacturer’s protocol on
serum isolated at day 4 postinfection. The cytokine screen included IL-1�,
IL-1�, IL-2, IL-3 IL-4, IL-5, IL-6, IL-9, IL-10, IL-12p40, IL-12p70, IL-13,
IL-17, Eotaxin, granulocyte colony-stimulating factor (G-CSF),
granulocyte-macrophage colony-stimulating factor (GM-CSF), IFN-�,
KC, monocyte chemoattractant protein 1 (MCP-1), macrophage inflam-
matory protein 1� (MIP-1�), MIP-1�, RANTES (CCL5), and tumor ne-
crosis factor alpha (TNF-�).

Vascular permeability analysis. Two hundred microliters of sterile
filtered Evans blue solution (0.5% [wt/vol]) in phosphate-buffered saline
(PBS) was injected intravenously. After 20 min, mice were sacrificed and
perfused with 40 ml of PBS. Livers, spleens, small intestines, and kidneys
were collected into tubes containing formamide (Fisher Scientific), ho-
mogenized, weighed, and incubated overnight at 25°C. The following day,
samples were centrifuged at 14,000 � g and 100 �l of supernatant was
quantified at 610 nm against a standard curve generated by serial dilutions
of a stock Evans blue solution.

Statistical analysis. All data were analyzed using Prism software
(GraphPad, San Diego, CA). Kaplan-Meier survival curves were analyzed
by the log rank test. Differences in results for viral burden, clinical chem-
istry and hematology, cytokine levels, and Evans blue staining were ana-
lyzed by the Mann-Whitney test.
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