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The folliculin/Fnip complex has been demonstrated to play a crucial role in

the mechanisms underlying Birt–Hogg–Dubé (BHD) syndrome, a rare

inherited cancer syndrome. Lst4 has been previously proposed to be the

Fnip1/2 orthologue in yeast and therefore a member of the DENN family.

In order to confirm this, we solved the crystal structure of the N-terminal

region of Lst4 from Kluyveromyces lactis and show it contains a longin

domain, the first domain of the full DENN module. Furthermore, we

demonstrate that Lst4 through its DENN domain interacts with Lst7, the

yeast folliculin orthologue. Like its human counterpart, the Lst7/Lst4

complex relocates to the vacuolar membrane in response to nutrient star-

vation, most notably in carbon starvation. Finally, we express and purify

the recombinant Lst7/Lst4 complex and show that it exists as a 1 : 1 hetero-

dimer in solution. This work confirms the membership of Lst4 and the Fnip

proteins in the DENN family, and provides a basis for using the Lst7/Lst4

complex to understand the molecular function of folliculin and its role in

the pathogenesis of BHD syndrome.
1. Introduction
Birt–Hogg–Dubé (BHD) syndrome is a rare autosomal-dominantly inherited dis-

order which predisposes patients to benign tumours of the hair follicle

(fibrofolliculomas), lung cysts that give rise to pneumothoraces and kidney tumours

[1]. This disorder arises from germline mutations in the FLCN gene [2], and much

effort over the past decade has gone into unravelling the molecular function of its

protein product, folliculin (Flcn). Flcn has been shown to be involved in numerous

signalling pathways, including the mechanistic target of rapamycin complex 1

(mTORC1) pathway [3–5], energy sensing through AMP-activated protein kinase

(AMPK) [3,6], the transforming growth factor b pathway [7], autophagy regulation

[8,9] and Wnt signalling [10] among others, though a precise understanding of its

role at the molecular level remains to be achieved. Flcn is also known to have two

paralogous binding partners, the Flcn interacting partners Fnip1 and Fnip2,

which interact independently with Flcn [3,11,12]. This Flcn/Fnip (either Flcn/

Fnip1 or Flcn/Fnip2) complex has been recently reported to be involved in amino

acid sensing through regulation of the Rag GTPases at the lysosomal membrane

and therefore controlling signalling through mTORC1 [13,14].

We previously determined the structure of the C-terminal domain of Flcn

[15], which provided the first insights into the potential molecular function of

the protein. This structure revealed that Flcn is homologous to the differentially

expressed in normal and neoplastic (DENN) tissue family of proteins, with which

it shares low sequence similarity. The core DENN family proteins are known to

be GTP-exchange factors (GEFs) for the Rab family of GTPases [16], with the

members of each DENN subfamily regulating a single Rab GTPase at a different

cellular location. Based on the known association between Rabs and DENN
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Figure 1. Predicted architecture of the human Flcn and Fnip1/2 proteins and
the yeast Lst7 and Lst4 proteins. The yellow triangles indicate the putative zinc-
binding cysteine and histidine residues conserved in both Flcn and Lst7. Both
Fnip1/2 and Lst4 are predicted to have large unstructured insertions within
the globular longin and DENN domains.
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family proteins, we previously showed that the Flcn C-term-

inal domain has in vitro GEF activity, in particular towards

Rab35 however, while this domain does possess GEF activity,

Rab35 may not be its in vivo target [15]. More recently, conflict-

ing reports have emerged about the mode of GTPase

interaction of the Flcn/Fnip complex, with both GEF and

GTPase activating protein (GAP) activity proposed towards

Rag A/B and Rag C/D, respectively [13,14].

The complete DENN module found in the DENN family of

proteins comprises an N-terminal longin domain, commonly

found in a variety of trafficking proteins [17], and a C-terminal

DENN domain. Bioinformatics analysis of DENN revealed that

the family is larger than previously thought. While the core

members are reasonably well conserved at the sequence level,

the wider family is much more divergent and could only be

detected by a more sensitive fold-recognition approach [18,19].

These studies proposed that Fnip1 and Fnip2 were also divergent

DENN family proteins, albeit with large unstructured insertions

within the globular longin and DENN domains (figure 1).

The conservation of Flcn throughout the eukaryotic

lineage implies an important functional role of this protein.

Interestingly, Saccharomyces cerevisiae has a shorter form of

Flcn, Lst7, which is homologous with the putative zinc-finger

and longin domain of the Flcn N-terminal region (figure 1).

The LST7 gene was originally identified in a screen for genes

that are synthetic lethal with a temperature-sensitive allele of

SEC13 [20]. Sec13 is a multitasking protein being part of the

nuclear pore complex [21], the COPII vesicle coat [22] and

the Seh1-associated complex [23]. It was shown that Lst7 is

involved in trafficking of the general amino acid permease

(Gap1p) to the cell surface, when cells are grown on a poor

nitrogen source. Yeast lacking Lst7 can grow on certain toxic

amino acid analogues owing to the absence of Gap1p at the

cell surface [20].

With the motivation to understand more about the Flcn/

Fnip complex, we sought to investigate their putative yeast

orthologues Lst7 and Lst4. We solved the structure of the

Lst4 longin domain, thereby confirming it as a bona fide

member of the DENN family. Additionally, we show that

Lst4 interacts with Lst7, not through its longin domain but

through its DENN domain, and we demonstrate that the

Lst7/Lst4 complex exists as a 1 : 1 heterodimer. In an analo-

gous fashion to the Flcn/Fnip complex, Lst7/Lst4 localizes to

the vacuolar membrane, which is particularly pronounced

when the cells are starved of carbon and to a lesser extent

nitrogen. This work provides a further piece in the puzzle

towards understanding the molecular architecture of the

Flcn/Fnip complex and provides a foundation for studying

this complicated disease-associated protein complex in yeast.
2. Results and discussion
2.1. Structure of the Lst4 longin domain
In order to confirm that Lst4 and therefore Fnip1/2

belong to the DENN family, we decided to pursue structure

determination of this protein. We chose the N-terminal

region of the putative yeast orthologue Lst4 for crystallization

as this proposed longin domain is not disrupted by long inser-

tions that are predicted to be unstructured, as is the DENN

domain and the Fnip1/2 longin domain (figure 1). Initial crys-

tals of the Lst4 longin domain (aa 103–292) from S. cerevisiae
were obtained however, although they diffracted well, these

crystals were not reproducible. Analysis with PHENIX.XTRIAGE

of the native data indicated that they were perfectly twinned,

and derivative preparation proved unfeasible. In order to over-

come this, the Lst4 longin domain from Kluyveromyces lactis, a

closely related budding yeast, was expressed, purified and

crystallized. The domains share 33% sequence identity

(figure 2a) and as can be seen from the alignment, the

K. lactis longin domain is more compact than that found in

S. cerevisiae.

The K. lactis longin domain (aa 58–226) crystallized in the

P42212 space group with four molecules in the asymmetric

unit (AU). Phases for structure solution were obtained from

a SAD experiment on a single gold derivative crystal pre-

pared by soaking the native crystals overnight in 1 mM

KAu(CN)2. The final structure was determined at 2.14 Å

resolution by molecular replacement of a higher resolution

native dataset. Several loops were missing in the electron

density, between b1–b2, b2–a1 and a1–b3, in addition

to nine residues at the N-terminus and 13 residues at the

C-terminus, most likely owing to their inherent flexibility.

Superposition of the four molecules within the AU using

BATON [24] showed that there was very little difference

between the chains, with the RMSD across the Ca backbone

relative to chain D for chains A, B and C being 0.646, 0.883

and 0.883 Å, respectively. For analysis/figure purposes,

chain D was chosen as a representative, given the similarity

of all four chains in the AU.

The structure reveals the classical architecture of a longin

domain, which is the first domain of the complete DENN

module (figure 2b). The domain is made up of a core five-

strand b-sheet, with one short a-helix (a1) traversing the

face of the concave side and the longer a2 and a3 packed

against the convex side. As mentioned previously, both

Fnip1 and Fnip2 have two additional large unstructured

insertions within this domain [19] (figure 2b, highlighted in

orange). These lie between b2 and a1 and between b4 and

b5, with lengths of 61 and 162 amino acids, respectively.

The function of these regions is at present unknown;

however, given the large number of serine/threonine resi-

dues in these insertions, it may be that they are involved in

the regulation of the complex by phosphorylation.

The packing interfaces within the Lst4 longin crystals

include a local dyad axis between the chains C and B, and

D and A (electronic supplementary material, figure S1a).

The residues that are in this crystal-packing interface

mainly lie on b3 and form hydrophobic interactions. This



12 345

a1

a2

a3

(a)

(b)

α2 α3

α2

α1

α2*β5β4β3

β5β1

N C

90°

P2

P1

90°

(c)

Figure 2. X-ray crystal structure of the longin domain from K. lactis Lst4. (a) Sequence alignment of S. cerevisiae and K. lactis Lst4 longin domain sequences,
coloured in Clustal colours with secondary structure elements annotated. Black stars indicate conserved surface residues. (b) The crystal structure of the
K. lactis Lst4 longin domain has the classical longin domain fold. Dashed lines indicate the loop regions that were not visible in the electron density and
loops coloured orange indicate the equivalent regions in fnip1/2, which have large unstructured insertions. (c) CONSURF analysis of the Lst4 longin domain structure
identified two conserved surface patches P1 and P2, which are conserved in other longin domains.
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may be explained by the fact that it is this region that

interfaces with the DENN domain in the DENN1B structure

[25], and in a structure of the whole protein this region would

probably be buried in the interface with the C-terminal

DENN domain. The four molecules seen in the crystal struc-

ture do not represent a biologically relevant assembly, as an

analytical ultracentrifugation experiment indicated that the

protein was monomeric in solution (electronic supplementary

material, figure S1b).

Interestingly, a DALI search [26] of the Lst4 longin

domain gave as the top hit human synbindin (Protein Data

Bank (PDB) ID: 2zmv), which has an insertion within the

longin domain in the same position as the first insertion

in Fnip1/2 (b2–a1). This insertion in synbindin folds into

an atypical PDZ domain [27], which indicates it is not un-

precedented for the longin domains to be split with other

functional regions inserted in them. There are at present,

however, no experimental longin domain structures that con-

tain insertions within the second Fnip1/2 insertion region,

b4–b5. As secondary structure predications indicate that

these regions are likely to be disordered, their analysis by

X-ray crystallography seems unlikely.

Comparison of this longin domain with other members of

the longin family reveals some interesting features. It would

be expected that this longin domain would be most similar

to that of the DENN1B, given that this is the only structure

of a longin domain from a DENN protein that has been deter-

mined. While the domains superimpose reasonably well with

a RMSD across the Ca backbone of 2.99 Å (electronic sup-

plementary material, figure S2), there are various extensions

in loop regions relative to one another. An entirely novel fea-

ture, which is not present in any other previously determined

longin domain structure, is the kinked helical extension to a2.

A recently published longin domain structure of the yeast

TRAPP III associated protein Tca17 [28] has an extension in

this region like Lst4, however it does not form such a

well-defined helix.

CONSURF [29] analysis of the structure identified two con-

served surface regions of the Lst4 longin domain, which were

mapped onto a surface representation of the Lst4 longin

structure (figure 2c). The first patch (P1) mainly comprises

residues from a1 and several that lie on the loop that pre-

cedes b3. This conservation is seen in other longin domains

and has previously been called the ‘A region’, which is

responsible for intra- and inter-molecular interactions in a

variety of longin domain proteins [17]. The second smaller

patch, P2, comprises residues in the b1–b2 loop.

2.2. Lst7 interacts with the DENN domain of Lst4
We sought to demonstrate the interaction of Lst4 with Lst7,

to validate its designation as a true orthologue of the Flcn/

Fnip complex and to investigate the regions responsible for

interaction. This was approached using a yeast two-hybrid

methodology. In the absence of a positive control, we also

tested the interaction of Lst7 with the COPII vesicle coat pro-

teins, as Lst7 was shown in a high-throughput study to

interact with Sec24 [30]. Lst7 interacts strongly with Lst4 and

also displays a weak interaction with Sec23 and Sec24

(figure 3a). Beta-galactosidase assays of the transformed strains

further corroborated these findings (figure 3b). It has previously

been reported that it is the C-terminal domain (DENN domain)

of Flcn that interacts with Fnip1 [3]. As there is no C-terminal
DENN domain in Lst7 (figure 1), our demonstration that Lst7

exists in a complex with the putative yeast Fnip orthologue

Lst4 suggests that the interaction between Flcn and Fnip1/2

may not involve the Flcn DENN domain.

We confirmed the yeast two-hybrid results by generating

C-terminal protein A (Pr-A) genomically tagged strains of

LST7 and LST4 and performing immunoprecipitations with

IgG-coated magnetic beads, in buffers of varying stringency.

Consistently, MALDI mass spectrometry analysis confirmed

that Lst7-PrA co-immunoprecipitated with Lst4 (figure 3c).

The interaction was observed even under stringent conditions

such as 0.5 M NaCl (electronic supplementary material,

figure 3a), suggesting a strong interaction between the two

proteins. In the reciprocal immunoprecipitation, Lst4-PrA

co-immunoprecipitated with Lst7, although the band was

not as distinctly visible as that of Lst4 in the Lst7 immuno-

precipitation high peptide counts and SPECTRUM Mi11

score for Lst7 were obtained (electronic supplementary

material, figure 3b).

In order to narrow down the region of Lst4 that interacts

with Lst7, we made several constructs of truncated Lst4

based on the putative domain boundaries (figure 1) and

tested for interaction using the yeast two-hybrid method. We

hypothesized that this interaction would be mediated through

the dimerization of the longin domains found in both Lst7 and

Lst4 [19,31]. However, we observed that it is the DENN domain

region of Lst4 that mediates the interaction with Lst7

(figure 3d ). This is corroborated by Baba et al. [3], who

showed that residues 300–1166 of Fnip1 are required for bind-

ing to Flcn. This truncation comprises the full DENN domain

(residues 498–1066) of Fnip1 [19] and was the only truncation

of Fnip1 tested that showed any interaction with Flcn.
2.3. Lst4 and Lst7 localize to the vacuole in response
to nutrient starvation

To investigate the cellular location of Lst4 and Lst7, plasmids

containing GFP-LST4 and GFP-LST7 under the control of

their endogenous promoters were transformed into the

BY4741 haploid strains lacking the endogenous protein (i.e.

lst4D and lst7D). The GFP-tagged proteins were localized dif-

fusely throughout the cytoplasm when the cells were in log

phase, with a small proportion of cells showing weak vacuo-

lar targeting. The vacuolar targeting became much clearer

upon starvation of the cells for glucose (figure 4a). It was

observed that this localization was not uniform but, instead,

there was punctate staining around the vacuolar limiting mem-

brane. In addition, other nutrient stresses, such as nitrogen

starvation and rapamycin treatment, also increased vacuolar

targeting but not as strongly as carbon starvation. Both GFP-

Lst4 and GFP-Lst7 showed similar localization in response to

each stimulus as would be expected from proteins that exist as

a complex. Interestingly, when either GFP-Lst4 or GFP-Lst7

was expressed in the absence of the other, no GFP signal

above background or distinct localization pattern was observed,

even when the cells were carbon starved (figure 4b). This

suggests that in the absence of each other the individual proteins

are no longer stable and are degraded, consistent with them

forming an obligate complex. Encouragingly, these experiments

replicate in yeast what has been seen in a mammalian system

with Flcn/Fnip localizing to the lysosome, although the predo-

minant signal tested for the latter has been amino acid starvation
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[13,14]. These localization experiments indicate that in response

to nutrient stress there is regulated recruitment of the Lst7/4

complex to the vacuolar membrane, a site where many Lst4

and Lst7 potential downstream protein interaction partners

(EGO complex, TORC1) also localize.

2.4. Lst7 and Lst4 form a 1 : 1 heterodimer
The yeast two-hybrid experiments, immunoprecipitations and

localization studies indicated that Lst4 and Lst7 displayed a

strong interaction that is likely to be constitutive. To further

investigate the complex, as with our crystal structure, we

again used the K. lactis orthologues, as they proved to be

more stable than their S. cerevisiae counterparts. We co-

expressed Lst4 and Lst7 constructs in Escherichia coli. In order

to facilitate expression we engineered the DENN domain of

Lst4 to remove the 200 residue unstructured insertion, and

we were able to purify the complex (figure 5a). This engineered

Lst4 was still able to interact with Lst7, showing that this region

has not evolved to mediate the interaction with Lst4, but must

have other functions. One possibility is that the long insertion
within the DENN domain may play a role in regulating the

function of the Lst7/Lst4 complex. The large number of

serine residues within this region suggests that modification

by phosphorylation may be possible and this is something

we have previously observed upon overexpression of the

native complex in S. cerevisiae (2013, unpublished data).

The recombinant complex was investigated by size-exclusion

multiangle X-ray scattering and analytical ultracentrifuga-

tion, and this demonstrated that the Lst7/Lst4 complex exists

as a 1 : 1 heterodimer comprising two longin domains and one

DENN domain (figure 5b,c).

In considering the implications of the longin domain

structure in the context of the heterodimeric Lst7/Lst4

complex, we looked to the Denn1B : Rab35 structure where

the longin domain is involved only in minimal contacts at

the interface with the GTPase [25] with the majority of inter-

face residues lying within the C-terminal DENN domain. It is

the b3–b4 loop and several residues that lie on a1 of the

longin domain of Denn1B that are within 5 Å of Rab35, and

this overlaps with the previously described ‘A region’.

It has been observed that this binding region differs from
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that observed in other longin–GTPase protein complexes

[25]. In other cases of longin domain : GTPase interactions,

it was proposed that the mechanism of activity relied on

the b1–b2 loop, which in Lst4 seems to show some degree

of conservation (P2 in figure 2c) [17,32]. This raises an intri-

guing possibility; given that in the Lst7/Lst4 complex we

have shown that the Lst7 longin domain interacts with the

Lst4 DENN domain, it is possible that both proteins are

required to make a ‘complete’ DENN module. That would

leave the Lst4 longin domain available to interact with

other as yet undiscovered binding partners. It has been pre-

viously hypothesized that in the case of Rab GTPases [33],

cascades of signalling can occur in which one Rab can bind

the cognate GEF of the downstream Rab, and this leads to

the recruitment of the downstream Rab and the signalling

cascade proceeds. This scenario could be envisaged for the

Lst4/Lst7 complex, in which the longin domain of Lst4

could bind an upstream GTPase, whereas it is the complete

DENN module made up of the domains from both proteins,

which interact with another GTPase, that could be the target

of activity. Another possibility is that the longin domain of
Lst4 could be involved in interacting with Snf1, the yeast

AMPK orthologue, as Fnip1 has been reported to bind

AMPK [3].

An alternative hypothesis regarding GTPase interaction

modes is possible, which is that the binding of Lst7 to

the Lst4 DENN domain occludes the putative GTPase

binding surface regions (if Lst4 was superimposed on the

Denn1B : Rab35 structure). It has previously been proposed

that the Flcn/Fnip complex is able to act as a GAP towards

Rag C/D [14]. This runs counter to the notion that DENN

family proteins are GTPase exchange factors. However, if

the binding of Lst7 to Lst4 somehow prevents it from

acting as a conventional DENN family protein, then the

idea that the complex is in fact a GAP may be more likely.

2.5. Concluding remarks
Previously reported bioinformatics predictions had shown

that Lst7 is the yeast Flcn orthologue, given the evident sequence

homology, and had suggested that there might be a sequence

relationship between Lst4 and Fnip1/2 [31]. These studies also
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predicted that Fnip1/2 and therefore Lst4 were members of the

DENN family. In order to confirm this, we solved the structure

of the N-terminal region of Lst4 and showed it contains a longin

domain. To confirm the orthologous relationship of Lst7/Lst4

with Flcn/Fnip we demonstrated that Lst4 interacts with Lst7

through its putative DENN domain, thus provid-

ing experimental evidence supporting the role of Lst4 as the

Fnip1/2 orthologue. The Flcn/Fnip complex has been shown

previously to relocate to the lysosome [13,14,34] in response to

amino acid starvation. Similarly, we have shown that Lst7 and

Lst4 are targeted to the vacuole when the cells are starved
of carbon, and to a lesser extent nitrogen. Therefore, this repli-

cates and expands upon what has previously been seen in a

mammalian system.

While this manuscript was under review, Péli-Gulli et al.
[35] published a study of the Lst7/Lst4 complex, which

demonstrated similar findings regarding the vacuolar localiz-

ation of the complex in response to amino acid starvation and

rapamycin treatment. Their data confirmed the existence of

the Lst7/Lst4 complex, which is orthologous to the Flcn/

Fnip complex, and also demonstrated that in order to see

the vacuolar relocalization upon nutrient stress the partner
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Figure 6. Proposed model of the organization of the Lst7/Lst4 complex and by homology the Flcn/Fnip complex. Lst7 interacts with the split DENN domain of Lst4,
therefore we propose that the Flcn-N terminal (NT) longin domain is involved in the interaction with the split-DENN domain of Fnip1/2. The longin domain of Fnip1/2 has
been modelled on the Lst4 longin domain structure determined in this study (PDB ID: 4ZY8). The dashed orange lines indicate the unstructured insertions present within
the Fnip1/2 longin domain. The Flcn-C-terminal (CT) DENN domain was determined previously (PDB ID: 3V42), and this domain is absent in the yeast orthologue Lst7.
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protein had to be present, further reinforcing our hypothesis

that Lst7/Lst4 form an obligate complex. They also showed that

the complex has GAP activity towards Gtr2, as has been pre-

viously proposed for the Flcn/Fnip2 complex towards Rag

C/D, the Gtr2 human orthologues [14]. It will require further

research to understand the mechanisms behind this activity,

given that DENN family proteins are commonly found to pos-

sess GEF activity. A crystal structure of the intact Lst7/Lst4

complex and the possibility of seeing how these domains are

arranged spatially may inform whether the DENN fold of

Lst4 can act as a GEF in the same way as Denn1B or could

explain the molecular basis of the GAP activity.

Finding a targeted treatment for BHD syndrome rests on

understanding the precise molecular function of the Flcn/

Fnip complex. The confirmation that Lst4 and therefore

Fnip1/2 is a DENN family protein means that the Flcn/Fnip

complex is unique in its composition of two DENN family pro-

teins, an arrangement that has not been reported for other

members of this protein family. This complex is involved in

the cellular response to nutrient status, and we propose a

model by which these proteins interact in both yeast and

human systems (figure 6). Understanding how the two

DENN modules are arranged and how this could impact their

function will shed further light on their role in BHD. The

work presented here demonstrates that with regards to these

proteins the similarity between yeast and humans is closer

than previously thought. This opens up the opportunity to

study Lst7/Lst4 both structurally and biologically in a lower

eukaryote, in order to draw inferences about the Flcn/Fnip com-

plex. This avenue of research could provide the insights required
to address some of the questions posed by the aforementioned

conflicting studies.
3. Material and methods
3.1. Lst4 longin domain protein expression, purification

and analytical ultracentrifugation
The Lst4 longin (L4L) domain from K. lactis (aa58–226) was

cloned into pHat5 [36] and expressed with a C-terminal His6-

tag in BL21 (DE3) Star cells (Life Technologies). Cells were

grown up at 378C to an OD600 of 0.6, and protein expression

was induced at 188C for 16 h with 0.5 mM IPTG (final con-

centration). Cells were harvested by centrifugation and

resuspended in 20 mM Tris pH 8.0, 500 mM NaCl and 5 mM

b-mercaptoethanol before lysis using an Emulsiflex cell dis-

ruptor (Avestin). Cell lysate was clarified by centrifugation

and the supernatant applied to a His-select affinity column

(Sigma). The protein was eluted with 20 mM Tris pH 8.0,

500 mM NaCl, 5 mM b-mercaptoethanol and 300 mM imida-

zole, and was dialysed overnight into the lysis buffer. Size-

exclusion chromatography was performed on a Superdex 75

16/60 column with a final buffer of 20 mM Tris pH 8.0,

500 mM NaCl, 2.5 mM TCEP. Following this, the protein was

concentrated to 12 mg ml21 (K. lactis) using VivaSpin 20

10 kDa MWCO centrifugal concentrators (Sartorius) for

crystallization.

Analytical ultracentrifugation experiments were per-

formed on a Beckman–Coulter XL-1 ultracentrifuge. Samples
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were spun at 40 000 rcf at 208C, and 300 absorbance scans of the

protein sample were taken. The data were analysed and fitted

using SEDFIT [37].

3.2. Crystallization of the K. lactis Lst4 longin domain
The L4 L domain from K. lactis was crystallized in 4 ml hang-

ing drops in a 1 : 1 ratio with 100 mM Bis–Tris, pH 5.8, 3.1 M

NaCl, 1.1% butan-1-ol; crystals appeared after 48 h and grew

to full size within one week. Crystals were cryoprotected in

reservoir solution containing 4 M NaCl, before freezing.

Data were collected on native crystals at diamond light

source (DLS) beamline I02.

Gold derivative crystals were prepared by soaking the

native crystals in reservoir solution containing 1 mM

KAu(CN)2 overnight. Crystals were backsoaked in reservoir

solution for 2 h before cryoprotection and freezing. Derivative

data collection was performed at DLS on beamline I03.

3.3. Determining the K. lactis Lst4 longin domain
structure

Phases were obtained for the K. lactis L4L structure using a

single gold derivative crystal, from which a single wavelength

anomalous diffraction (SAD) dataset at a wavelength of 1.04 Å

was collected. The resulting diffraction images were autopro-

cessed with XDS [38] and scaled with AIMLESS (CCP4). [39].

The calculated Matthews coefficient [40] of 2.09 indicated

that the crystal solvent content was 41.1% and there were

four molecules in the AU. Using the AutoSol wizard of

PHENIX [41], 15 Au atoms were located and the figure of merit

after density modification was 0.41. The resulting map was

submitted to the AutoBuild wizard of PHENIX, which built a

large proportion of the four chains. At this stage chain C was

deemed to be the most complete, so this was manually refined

in COOT [42], and the single chain was used as a probe for mol-

ecular replacement using the higher resolution native data set

at 2.14 Å. Molecular replacement was performed using

Phaser within PHENIX followed by iterative rounds of refine-

ment using Phenix.refine and manual refinement in COOT.

After refinement, the values for Rwork and Rfree were 0.2106

and 0.2522, respectively. The final model contains 99% residues

in the preferred regions, 1% in the allowed regions and there

are no outlier residues. All figure preparation and structural

analysis was done using COOT [42] and PYMOL (Schrodinger).

For crystallographic statistics, see the electronic supplementary

material, tables S1 and S2. The structure has been deposited in

the PDB with ID: 4ZY8.

3.4. Yeast two-hybrid assays
The LST7 gene was cloned into pACT2 (Clontech), which con-

tains the GAL activation domain. The LST4 and COPII coat

genes were cloned into pLexPD (based on pLexM), which con-

tains the LexA DNA binding domain. Both bait and prey

plasmids were transformed into the L40 reporter strain, exploit-

ing the Trp and Leu auxotrophy. Transformants were replated

onto fresh plates, and then serial dilutions were performed fol-

lowed by spotting onto plates with and without histidine.

To validate the interaction, the second reporter gene of the

L40 strain LacZ was used in a standard beta-galactosidase

assay, following a previously described protocol [43].
3.5. Lst4 and Lst7 protein-A immunoprecipitations
Lst4 and Lst7 were genomically tagged with Staphylococcus
aureus protein A as described previously [44]. Yeast strains

were grown in Wickerham media (0.3% Bacto malt extract

(BD Biosciences), 0.3% yeast extract, 0.5% peptone (both Forme-

dium) and 1% D-glucose (Sigma)) to early log phase. Cells were

harvested, washed twice with water and once with buffer con-

taining 20 mM K-HEPES (pH 7.4), 1.2% polyvinylpyrrolidone,

1 mM DTT, 1 : 200 of protease inhibitor cocktail (PIC solution,

Sigma) and harvested by centrifugation. Cell lysis was achieved

by cryogenic grinding as previously described [45].

Immunoprecipitations were performed using a protocol

developed by Alber et al. [45]. The following buffers were used

for extraction of protein complexes: electronic supplemen-

tary material figure S1e—1 M ammonium acetate pH 7.0,

1 mM DTT, 1% Triton X-100, 1 : 100 solution P (0.04% pepsta-

tin A, 2% phenylmethanesulfonyl fluoride in absolute

ethanol), 1 : 100 protease inhibitor cocktail (PIC solution,

Sigma P8340); electronic supplementary material, figure S3a—

20 mM K/HEPES pH 7.4, 110 mM potassium acetate, 2 mM

MgCl2, 1 mM DTT, 0.1% Tween-20, 1% Triton-X100,

75–500 mM NaCl, 1 : 100 solution P, 1 : 100 PIC; electronic

supplementary material, figure S3b—TC250 (40 mM Tris pH

8.0, 250 mM sodium citrate, 150 mM NaCl, 2 mM EDTA,

0.1% Tween-20, 1% Triton-X100, 1 : 100 solution P, 1 : 100

PIC). Immunoprecipitated proteins were eluted with 0.5 M

ammonium hydroxide and 0.5 mM EDTA, and the elution frac-

tions were dried overnight in a Speedvac. The resulting dried

pellets were resuspended in loading dye and run on 4–12%

Bis–Tris gels (Life Technologies). Protein bands were identified

by MALDI-fingerprinting or LC–MS/MS by the PNAC facility

of the Department of Biochemistry, University of Cambridge,

and the Proteomic Platform of Institut Gustave Roussy

(Villejuif, France).
3.6. Fluorescence microscopy
GFP-LST4 and GFP-LST7 were cloned into the CEN/URA3
plasmid pRS416. To ensure expression at endogenous levels,

the promoters of both genes were cloned from yeast genomic

DNA and inserted upstream of the LST4 and LST7 genes. The

resulting constructs were individually transformed into haploid

BY4741 strains lacking the endogenous LST4 and LST7 genes,

i.e. lst4D and lst7D or both genes lst4Dlst7D. The transformed

strains were grown to mid-log phase in SC—URA media

(0.17% YNB with ammonium sulfateþ casamino acids þ
tryptophan þ 2% glucose). For glucose starvation, the cells

were spun down and after washing twice with C-starvation

media (SC–URA–glucose); they were resuspended again

in C-starvation media and incubated for 1 h at 308C. For

N-starvation, yeast nitrogen base without amino acids and

ammonium sulfate was prepared þ 2% glucose, but with

addition of amino acids required for auxotrophic growth.

As for the N-starved cells, they were washed twice with

N-starvation media and were grown for 1 h. For rapamycin

treatment, cells were grown up in SC þ 2% glucose–URA

and treated with rapamycin 200 ng ml21 for 1 h. Live cells

were imaged by confocal microscopy (AOBS SP2; Leica)

at room temperature (63� NA 1.4 objective) using LCS

software (Leica) for acquisition. Images were handled in

PHOTOSHOP (Adobe), and equivalent adjustments were applied
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to all images. All yeast strains are listed in the electronic

supplementary material, table S3.

3.7. Expression, purification and oligomeric state
analysis of the Lst7/Lst4 complex

The genes for wt LST7 and LST4 from K. lactis were synthe-

sized as codon-optimized genes (for E. coli expression) by

Life Technologies. Full-length wt Lst7 (K. lactis) was cloned

into pHat5 with a C-terminal Strep tag included in the

reverse primer. Lst4 (K. lactis) with the boundaries aa58–

714 and a deletion of the intra-DENN loop (aa 388–534)

was cloned into pOPINS with an N-terminal His6-SUMO

tag. The two plasmids were expressed in BL21 (DE3) Star

cells (Life Technologies) and grown at 378C until OD600 ¼

0.6–0.8. Cells were cooled to 188C, and protein expression

was induced with 0.5 mM IPTG. The cells were grown over-

night, then harvested by centrifugation at 4200 rcf;

resuspended in 20 mM Tris pH 7.5, 500 mM NaCl, 5 mM

b-mercaptoethanol, and lysed by three passes through an

Avestin Emulsiflex cell disruptor. The lysate was clarified

by centrifugation at 30 000 rcf for 30 min. The resulting super-

natant was loaded onto a 4 ml Steptactin (IBA) column

pre-equilibrated with lysis buffer, and washed with 20 ml

lysis buffer. Bound protein was eluted as 10 � 2 ml fractions

with lysis buffer þ 2.5 mM D-desthiobiotin. Elution fractions

were pooled and loaded onto a 2 ml nickel affinity column

(Sigma), and nickel purification was performed as described

previously. In order to remove the SUMO affinity tag the

nickel elution pool was dialysed overnight into 20 mM Tris,

500 mM NaCl, 5 mM b-mercaptoethanol with the addition

of Ulp1 protease. The cleaved protein complex was
concentrated and injected onto a Superdex 200 13/30 size-

exclusion column (GE) pre-equilibrated with 20 mM Tris

pH 7.5, 500 mM NaCl, 2.5 mM TCEP. All elution fractions

were snap frozen in liquid nitrogen and stored at 2808C.

AUC was performed as above, but owing to the lower protein

concentration available (0.15 mg ml21), interference data

were collected and used for SEDFIT analysis of

the sedimentation velocity in order to calculate the predicted

molecular weight. SEC-MALS analysis was performed to

determine the experimental molecular weight of the Lst7/

Lst4 complex as previously described [46,47]. The complex

(50 mg in 50 ml) was run on a Tosoh TSKgel SuperSW2000

4.6 � 300 mm column equilibrated in PBS at a flow rate of

0.35 ml min21 using a Shimadzu LC-20AD isocratic HPLC

coupled to a Dawn Heleos MALS detector and an Optilab

T-rEX refractive index detector (Wyatt Technology). The mol-

ecular weight was determined using ASTRA 5 software

(Wyatt Technologies).
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diagnosis and management. Lancet. Oncol. 10,
1199 – 1206. (doi:10.1016/S1470-2045(09)70188-3)

2. Nickerson ML et al. 2002 Mutations in a novel gene
lead to kidney tumors, lung wall defects, and
benign tumors of the hair follicle in patients with
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