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Abstract
This study explores the potential application of hyperspectral imaging (HSI; 430–
1,010 nm) coupled with different linear and nonlinear models for rapid nondestruc-
tive evaluation of thiobarbituric acid‐reactive substances (TBARS) value in rainbow 
trout (Oncorhynchus mykiss) fillets during 12 days of cold storage (4 ± 2°C). HSI data 
and TBARS value of fillets were obtained in the laboratory. The primary prediction 
models were established based on linear partial least squares regression (PLSR) and 
least squares support vector machine (LS‐SVM). In full spectral range, the prediction 
capability of LS‐SVM (R2

P
 = 0.829; RMSEP = 0.128 mg malondialdehyde [MDA]/kg) 

was better than PLSR (R2
P
 = 0.748; RMSEP = 0.155 mg MDA/kg) model and LS‐SVM 

model exhibited satisfactory prediction performance (R2
P
 > 0.82). To simplify the cali-

bration models, a combination of uninformative variable elimination and backward 
regression (UB) was used as variable selection. Nine wavelengths were selected. 
Various chemometric analysis methods including linear PLSR and multiple linear re-
gression and nonlinear LS‐SVM and back‐propagation artificial neural network (BP‐
ANN) were compared. The simplified models showed better capability than those 
were built based on the whole dataset in prediction of TBARS values. Moreover, the 
nonlinear models were preferred over linear models. Among the four chemometric 
algorithms, the best and weakest models were LS‐SVM and PLSR model, respec-
tively. UB‐LS‐SVM model was the optimal models for predicting TBARS value in rain-
bow trout fillets (R2

P
 = 0.831; RMSEP = 0.125 mg MDA/kg). The establishing of 

lipid‐oxidation prediction model in rainbow trout fish was complicated, due to the 
fluctuations of TBARS values during storage. Therefore, further researches are 
needed to improve the prediction results and applicability of HIS technique for pre-
diction of TBARS value in rainbow trout fish.
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1  | INTRODUC TION

Fresh fish is a very perishable food due to various reasons such as 
large amounts of unsaturated fatty acids, high content of free amino 
acids and volatile nitrogen bases, and consequently high final pH 
(Ashie, Smith, Simpson, & Haard, 1996; Barkhori‐Mehni, Khanzadi, 
Hashemi, & Azizzadeh, 2017). Rainbow trout (Oncorhynchus mykiss) 
is a kind of popular aquaculture species in the world which is recog-
nized as a fatty fish species (Rezaei & Hosseini, 2008; Venugopal & 
Shahidi, 1996). Therefore, it is highly susceptible to lipid oxidation 
during storage (Xu, Riccioli, & Sun, 2016). Lipid oxidation is a major 
quality problem resulting in oxidative rancidity (off‐odors and off‐fla-
vor) in fatty foods (Rezaei & Hosseini, 2008; Sedaghat, Mohammad 
Hosseini, Khoshnoudi‐nia, Najafi, & Koocheki, 2015). Thiobarbituric 
acid‐reactive substances (TBARS) are the most commonly used in-
dicator for monitoring overall lipid peroxidation (Nichi et al., 2006).

Thiobarbituric acid‐reactive substances test is based on spectro-
photometric measurement of the colored malondialdehyde (MDA)–
TBA complex evaluating amount of MDA in samples. Although TBARS 
test shows relatively exact result, this method is time‐, labor‐, and 
chemical solvent‐consuming and destructive. Hyperspectral imaging 
(HSI) techniqueby integrating the advantages of two important nonde-
structive methods, spectroscopy and computer vision, into one system 
has become a promising tool to determine and evaluate food quality 
and safety in a nondestructive and rapid manner (ElMasry, Barbin, Sun, 
& Allen, 2012; Kamal & Karoui, 2015; Naganathan et al., 2008; Pu, 
Liu, Wang, & Sun, 2016; Wang et al., 2015; Wu & Sun, 2013a, 2013b; 
Xiong, Sun, Xie, Han, & Wang, 2015). In this regard, several exploratory 
studies were established about using HSI coupled with the appropriate 
linear and/or nonlinear chemometric multivariate analyses to evaluate 
quality and safety of fish and other seafood based on various import-
ant parameters such as sensory parameters (Cheng & Sun, 2015a; Ma, 
Sun, Qu, & Pu, 2017; Wu, Sun, & He, 2012), TVB‐N (Cheng, Sun, & 
Wei, 2017; Cheng, Sun, Zeng, & Pu, 2014), TVC (Cheng & Sun, 2015b; 
Khoshnoudi‐Nia, Moosavi‐Nasab, Nassiri, & Azimifar, 2018; Wu & Sun, 
2013c), K‐value (Cheng, Sun, Pu, & Zhu, 2015; Cheng et al., 2016), and 
TBARS (Cheng, Sun, Pu, Wang, & Chen, 2015; Cheng et al., 2016; Xu et 
al., 2016). The results of these researches have shown the good poten-
tial of HSI system for quality assessment of seafood. However, to the 
best of our knowledge, up to now, no investigation on determination 
of TBARS value in rainbow trout fillet using HSI technique has been 
reported. Moreover, previous studies investigating the application of 
HSI technique for rapid determination of TBARS value in grass carp 
and salmon fillets were based on linear calibration model. To improve 
the prediction performance of TBARS values, more analysis strategies 
should be investigated and compared. Therefore, the purpose of this 
study was to (a) investigate the suitability of using HSI (400–1,000 nm) 
for nondestructive evaluation of TBARS value in rainbow trout fish 
fillets; (b) compare the prediction performance of four chemometric 
methods (linear: partial least squares regression [PLSR] and multiple 
linear regression [MLR]; nonlinear: back‐propagation artificial neural 
network [BP‐ANN] and least squares support vector machine [LS‐
SVM] models); (c) select the most informative wavelengths linked to 

TBARS prediction by a novel combination of uninformative variable 
elimination (UVE) and backward regression (UB), and (d) development 
the simplified model with potential of on/inline evaluation of TBARS 
value in rainbow trout fillets.

2  | MATERIAL S AND METHODS

2.1 | Sample preparation and storage condition

Forty aquaculture rainbow trout (average weight and length 700–
1200 g and 35–45 cm, respectively) were purchased from a local 
aquaculture farm located at Baja (Shiraz, Fars, Iran). Fish samples 
were harvested in December 2017 and slaughtered by keeping 
away from water. After that, whole rainbow trout fishes immediately 
transported to the Seafood Processing Research Group laboratory, 
Shiraz University, Iran, in insulated ice boxes. After rigor mortis 
was passed, the fish samples were beheaded, gutted, filleted, and 
washed with cold water. Fish fillets were cut into a rectangular shape 
(length × width ×thickness: 8.0 × 4.0 × 1.0 cm), and 147 subsamples 
were obtained (calibration set: 98 subsamples and prediction set: 49 
samples). Fillets were randomly divided into seven groups, labeled, 
packaged into plastic bags, and subjected to cold storage (4 ± 2°C) 
for 0, 2, 4, 6, 8, 10, and 12 days.

2.2 | Hyperspectral image system

A HSI system in the reflectance mode was assembled to acquire 
hyperspectral images of fish fillets. The system consisted of an im-
aging spectrograph (Hyper Spectral Imaging 1000; Opt Co.), an il-
lumination system, a mobile platform, and computer control system. 
This system covered the wavelength range of 400–1,160 nm. The 
detailed description of the system is available in Khoshnoudi‐Nia et 
al. (2018) manuscript.

2.3 | Image acquisition and calibration

For every cold storage period, each of the subsamples was placed on 
the mobile platform and scanned by the HSI system. When the sam-
ple was scanned, a corresponding three‐dimensional image (hyper-
cube) with one spectral dimension (z) and two spatial dimensions (x, 
y) was acquired storing in a raw format. Besides, the CCD detector 
of HSI systems computed the raw data with signal intensity (not with 
spectral reflectance). Therefore, the raw images should be calibrated 
by images of white Teflon tile (99% reflectance) and the dark image 
(0% reflectance) to eliminate the impacts of the illumination (Wu & 
Sun, 2013a).

2.4 | Measurement TBA values

For each cold storage period, subsamples were first scanned by the 
HSI system and then TBARS values of them were measured using tra-
ditional methods describing by Sun, Faustman, Senecal, Wilkinson, 
and Furr (2001) and presented as mg MDA/kg (Sun et al., 2001).
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2.5 | Regions of interest identification and average 
spectra extraction

After the acquisition and calibration of hyperspectral images, the 
regions of interest (ROIs) with rectangle shapes were selected. 
The average spectra of all pixels within each region were ex-
tracted by ROI tool in ENVI v5.4 software (ITT Visual Information 
Solutions; Research Systems Inc.) (Cheng, Sun, Pu, Wang, et al., 
2015).

2.6 | Spectral preprocessing

In order to align the undesired noises of the extracted average 
spectra and better predicting performance, Savitzky–Golay (S‐G) 
technique was applied as preprocessing of spectral data. The S‐G 
operation was carried out by Unscrambler software (version 10.4; 
CAMO).

2.7 | Chemometric modeling

In this study, PLSR and MLR models as the most widely applied and 
robust linear regression methods were used to establish calibration 
models between the spectral data of fish fillets samples and their 
reference TBARS content. However, the spectra extraction from 
HSI technology may be polluted by some uncertain and nonlinear 
parameters such as stray light (Zhang et al., 2018). Therefore, LS‐
SVM and BP‐ANN methods as nonlinear calibration models were 
also established for comparison. Establishing PLSR and MLR mod-
els were carried out in Unscrambler 10.4x software (CAMO), and 
LS‐SVM and BP‐ANN models were built in MATLAB R2016a (The 
Mathworks Inc.).

2.8 | Important wavelength selection

Hyperspectral image systems consisted of a large degree of spectral 
data; in which, most of them are redundant. The data with weakly 
influence in prediction increase the calculation load and time. In ad-
dition, the high collinearity among whole wavebands has negative 
influence on accuracy and robustness of models. Therefore, remov-
ing these redundant variables has a significant effect on improving 
data processing and accuracy of predictive models (Dai, Cheng, Sun, 
& Zeng, 2015). In the current study, a combination of UVE and back-
ward regressing (BR) was employed to select the most informative 
wavelengths. UVE is a wavelength selection method based on re-
gression coefficients of PLSR model by setting a threshold which 
eliminates variables with no or little information. However, the 
wavelengths selected by UVE is still large (Wu, Wu, Cai, Huang, 
& He, 2009). Therefore, in current study, BR was carried out after 
UVE to decrease data volume and select the informative but without 
collinearity variables. BR method eliminates variables one by one, 
according to a specific exit threshold (Gauchi & Chagnon, 2001). 
The procedure of UVE and BR was conducted in MATLAB R2016a 
software.

2.9 | Model evaluation

The full spectrum and the spectral data selected by the combination 
of UVE and BR (UB) method were considered as input of linear and 
nonlinear models, and the predictive capability of these four models 
was compared. The assessment factors include the adjusted deter-
mination coefficient (R2

C(adj)
, R2

CV(adj)
, and R2

P(adj)
), the root‐mean‐square 

error of them (RMSEC, RMSECV, and RMSEP), and bias. R2
(adj)
s and 

RMSEs were calculated by following equations:

R2, coefficients of determination; R2
(adj)
, adjusted determination 

coefficient; yi,pred, the predicted value of TBARS; yi,act, the actual 
value of TBARS; m, the number of samples and p, the number of 
wavelengths.

Generally, a suitable prediction model should have higher values 
of R2

C
, R2

CV
, and R2

P
 (R2 < 0.82: poor model; 0.82 ≤ R2 ≤ 0.9: good model; 

and R2 > 0.9: excellent model) and lower values of RMSEs as well as a 
small difference between them (Cheng & Sun, 2015c).

3  | RESULTS AND DISCUSSION

3.1 | Lipid oxidation of fish fillets

The range of TBARS content was 0.134–1.36 mg MDA/kg, with 
mean and standard deviation of 0.646 and 0.325 MDA/kg (Table 1). 
The broad ranges of TBARS values showed that the samples can 
be represented by the actual possible range of TBARS content. It 
was helpful to establish the robust predictive models (Yang, Sun, 
& Cheng, 2017). Moreover, the status of lipid oxidation, regarding 
TBARS content, in fish fillets is presented in Figure 1. The TBARS 
content of samples significantly increased with storage time from 
0 to 10 days of storage (p < 0.05), while afterward, the decreasing 
trend was observed in lipid oxidation status of samples. Similar be-
havior of TBARS values was also observed by previous researchers 
on rainbow trout fish fillet (Jouki, Yazdi, Mortazavi, Koocheki, & 

(1)R2=1−

∑

(yi,pred−yi,act)
2

∑

(yi,pred− ȳ)2
,

(2)R2
Adj

=1− (1−R2)
(m−1)

m−p−1
,

(3)RMSE=

√

√

√

√

1

m

m
∑

i=1

(yi,pred−yi,act)
2,

TA B L E  1  Descriptive statistics for thiobarbituric acid‐reactive 
substances value for rainbow trout samples measured by the 
conventional methods during 12 days of storage at 4 ± 2°C

Set N Mean SD Max Min Range

Calibration 98 0.651 0.332 1.36 0.134 1.23

Prediction 49 0.636 0.314 1.23 0.138 1.092

All 147 0.646 0.325 1.36 0.134 1.23

Abbreviation: SD, standard division.
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Khazaei, 2014; Rezaei & Hosseini, 2008). The decrease in TBARS 
values could be related to the reaction of MDA with amino acids, 
carbohydrates, and other different fish composition (Tsoukalas, 
Katsanidis, Marantidou, & Bloukas, 2011). Overall, time/tem-
perature histories are the most important factors that can affect 
the freshness, safety, and quality of the food products (Abbas, 
Mohamed, Jamilah, & Ebrahimian, 2008). The values of the Pearson 
correlation coefficient revealed a good relationship between time 
and TBARS content (R = 0.916; p < 0.0001). This shows that TBARS 
can be a suitable indicator to evaluate freshness of rainbow trout 
fish samples.

3.2 | Spectral features analysis

The mean spectra of the rainbow trout images during different 
cold storage days within the spectral range of 430–1,010 nm are 
presented in Figure 2. The spectral reflectance curves of samples 
showed almost similar trend. But, it was obvious that the magni-
tudes of the curves tend to increase progressively with storage 
time, which mainly attributed to physical variations and decom-
posed chemical compound of fish muscle inducing by microbial 
and oxidative spoilage and enzyme activity over time (Xiong, Sun, 
Pu, et al., 2015; Xu et al., 2016). Therefore, the curves with lower 
reflectance were observers for fresh samples with low TBARS val-
ues and the higher ones were found in the spoiled samples (days 
10 and 12).

Overall, absorption bands around visible spectral range (430–
700 nm) can be explained by the absorption of pigments in fish 
fillets and absorption bands positioned in the NIR region (700–
1,000 nm) are due to the overtone and vibrations of the molecular 
chemical bonds, such as C–O, O–H, C–H, S–H, and N–H (Cheng, 
Sun, Pu, Wang, et al., 2015; Cheng, Sun, Pu, & Zhu, 2015; Garini, 
Young, & McNamara, 2006; Iqbal, Sun, & Allen, 2013; Klaypradit, 
Kerdpiboon, & Singh, 2011; Sun et al., 2001; Xiong, Sun, Pu, et 
al., 2015; Zhu, Zhang, He, Liu, & Sun, 2013). Figure 3 shows the 
several obvious absorption bands and some possible explanations 
for them.

3.3 | Prediction of TBARS content based on full 
wavelengths

In general, when a large number of samples are analyzed, the in-
terpretation changes of the spectral profiles and establishing the 
relation between these changes and spoilage indicators are compli-
cated. On the other hands, the spectral data can contain the hidden 
information relating to freshness indicator (such as TBARS value). 
Therefore, the use of chemometric analysis make it feasible to mine 
detailed information and extract the useful data from spectral plot 
of samples for prediction of TBARS value (Cheng & Sun, 2015c; 
Khoshnoudi‐Nia et al., 2018).

In current study, first one linear (PLSR) and one nonlinear (LS‐
SVM) calibration models based on whole wavelengths (281 vari-
ables) were established to predict TBARS value. The performance 
of both PLSR and LS‐SVM models in the calibration, cross‐vali-
dation, and prediction sets were summarized in Table 2. From a 
comparison of the linear and nonlinear models, it is evident that 
the LS‐SVM model provided superior results than PLSR model 
(R2

P(adj)
 = 0.748, RMSEP = 0.155 mg MDA/kg vs R2

P(adj)
 = 0.829, 

RMSEP = 0.128 mg MDA/kg). Therefore, prediction power of LS‐
SVM for evaluating TBARS was good (R2

P
 > 0.82). Unlike spectros-

copy technique, data of HSI system may be suffered by stray light 
which are nonlinear factors (Zhang et al., 2018). Moreover, the 
oxidative spoilage process in food is a complex phenomenon and 
various interactions between fish composition and oxidation prod-
ucts during storage time causing several variations in TBARS values. 
Thus, relationship between TBARS values and the hypercube data 
can be tended to the nonlinearity. Similarly, several previous studies 
reported that the superior of nonlinear regression models over lin-
ear models for predicting various food quality and safety indicators 
(Cheng & Sun, 2015b; Cheng, Sun, Pu, & Zhu, 2015; Cheng et al., 
2017; Lee, Kim, Lee, & Cho, 2018).

3.4 | Selection of optimal wavelengths

Although LS‐SVM model based on the full wavelengths could obtain a 
good performance for prediction of the TBARS values in rainbow trout 
fish fillets, it was still difficult to develop a real‐time detection system 
based on 281 variables. Therefore, to minimize computation time, 
hardware requirements, and dimensionality of the data for calibration, 
elimination of redundant wavebands from the spectral dataset seems 
an important step (Liu, Sun, & Zeng, 2014). In this study, a combina-
tion of UVE and BR methods was used to select the most effective 
wavelength variables carrying the valuable information related to the 
TBARS value of rainbow trout fillets from the whole spectral region. 
As the result, nine wavelength variables (452, 515, 552, 605, 629, 
702, 768, 837, and 947 nm) were chosen as the optimal wavelengths. 
Figure 4 shows these wavebands on the second derivative spectra plot. 
Second derivative analysis was effective in making obvious some hid-
den information and peak absorption at original spectra plot (Cheng, 
Sun, Pu, & Wei, 2018). These wavelengths almost covered the whole 
spectral range, and they were mainly located on the visible region 

F I G U R E  1  Reference measurement values of thiobarbituric 
acid‐reactive substances (TBARS) in rainbow trout fillets during 
cold storage time
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(such as 452, 515, 552, 605, 629, and 702 nm). The possible reasons 
were allied to the variations of color during storage which can be due 
to the chemical, microbial, and enzymatic reaction in fish fillets cor-
related with changes of TBARS content (Cheng, Sun, Pu, & Zhu, 2015; 
Hu et al., 2012). Among the peaks, those of 452, 515, 552, and 605 nm 
correspond to pigments that decompose during storage and show a 

lower reflectance (Khoshnoudi‐Nia & Moosavi‐Nasab, 2019), and that 
around 630 nm corresponded to sulfo‐myoglobin which increase dur-
ing storage time and affect the shape of peak around this waveband. 
Moreover, those peaks about 750 and 950 nm reflected the third and 
second overtone O–H of water, respectively. The peak around 850 nm 
was usually assigned to the stretching overtones of C–H band of MDA 

F I G U R E  2  The mean spectral features of rainbow trout fillets at different cold storage days

F I G U R E  3   Important peak absorbtion 
of the rainbow trout fillets
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and N–H bonds of protein and other organic compositions (Howard & 
Kjaergaard, 2006). These assignments showed that UVE–BR method 
was effective in wavelength selecting.

3.5 | Prediction of TBARS content based on optimal 
wavelengths

After selecting optimal wavebands by UVE–BR method, these 
selection variables were applied to establish simplified predic-
tion model. The performance of simplified linear (UB‐PLSR and 
UB‐MLR) and nonlinear (UB‐LS‐SVM and UB‐BP‐ANN) models for 
evaluation of TBARS values is summarized in Table 2. By comparing 

the models built using the whole dataset, the accuracy of the sim-
plified models obtained comparable or even better results suggest-
ing that the combination of UVE and BR method was successful 
in selection variable procedure. The simplified models have lower 
dimensionality which could be beneficial to develop a real‐time de-
tection system (Xiong, Sun, Pu, et al., 2015). Since, in similar condi-
tion, the linear models were preferred over nonlinear models, for 
online and real‐time evaluation of the freshness indicator, the com-
parison between linear and nonlinear model is important to find the 
optimum model for rapid evaluation of quality properties (Wu & 
Sun, 2013c). As shown in Table 2, the prediction capability of non-
linear models was better than those of linear regression models. 

Model n LVs

TBARS (mg MDA/kg)

Calibration Cross‐validation Prediction

R2

C(adj)
RSMEC R2

CV(adj)
RSMECV R2

P(adj)
RSMEP

PLSR 281 10 0.787 0.152 0.743 0.167 0.748 0.155

LS‐SVM 281 – 0.852 0.130 0.834 0.138 0.829 0.128

UB‐PLSR 9 7 0.837 0.133 0.781 0.157 0.752 0.152

UB‐LS‐SVM 9 – 0.854 0.129 0.836 0.137 0.831 0.125

UB‐MLR 9 – 0.837 0.141 0.792 0.151 0.767 0.158

UB‐BP‐ANN 9 – 0.848 0.130 0.821 0.144 0.805 0.131

Abbreviations: BP‐ANN, back‐propagation artificial neural network; LS‐SVM, least squares support 
vector machine; LV, latent variable; MLR, multiple linear regression; PLSR, partial least squares 
regression; R2

C(adj)
, adjusted determination coefficient of calibration; R2

CV(adj)
, adjusted determination 

coefficient of cross‐validation; R2
P(adj)

, adjusted determination coefficient of prediction; RMSEC, 
root‐mean‐square errors estimated by calibration; RMSECV, root‐mean‐square errors estimated by 
cross‐validation; RMSEP, root‐mean‐square errors estimated by prediction; TBARS, thiobarbituric 
acid‐reactive substances; UB, a combination of uninformative variable elimination and backward 
regression.

TA B L E  2  Model performance for 
prediction of TBARS values in rainbow 
trout fillet during cold storage by 
hyperspectral imaging method

F I G U R E  4  Exhibition of optimal wavebands on second derivative spectra plot
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Among simplified models, only the UB‐LS‐SVM model yielded ac-
ceptable results with R2

P
 of 0.831 and RMSEP of 0.125 mg MDA/

kg (0.82 ≤ R2 ≤ 0.9). The results of current study were weaker than 
those reported by Cheng, Sun, Pu, Wang, et al. (2015) who se-
lected the optimal wavelength by regression coefficient (RC) and 
revealed that RC‐MLR (R2

P
 = 0.839 and RMSEP = 0.115) had a bet-

ter performance than RC‐PLSR (R2
P
 = 0.832 and RMSEP = 0.117) for 

prediction of TBA value in grass carp fillet (Cheng, Sun, Pu, Wang, 
et al., 2015). However, the results acquired by Xiong, Sun, Xie, et 
al. (2015) for prediction of TBARS value in chicken meat using SPA‐
PLSR were poor with R2

P
 of 0.641 and RMSEP of 0.157 (Xiong, Sun, 

Pu, et al., 2015). Therefore, besides type of calibration model and 
selection variable method, type and number of samples can also be 
effective on quality prediction performance.

During storage of fish, MDA was involved in various interactions 
with different compositions of sample (such as amino acids, proteins, 
and glucose). Therefore, this factor subjected to several fluctuations 
(Fernández, Pérez‐Álvarez, & Fernández‐López, 1997; Rezaei & 
Hosseini, 2008). This makes the prediction of TBARS values more 
complex in rainbow trout.

4  | CONCLUSIONS

A HSI technique system (432–1,010 nm) coupled with linear and non-
linear chemometric analysis was applied to evaluate TBARS content, as 
an important freshness factor, in rainbow trout fish fillet. To minimize 
computation load and make suitable model for real‐time TBARS evalu-
ation, a combination of UVE and BR method was used to select the 
most effective wavelength variables and nine wavelength variables 
(452, 515, 552, 605, 629, 702, 768, 837, and 947 nm) were selected. 
Four simplified models based on MLR, PLSR, BP‐ANN, and LS‐SVM 
model were established and compared to find the optimal TBARS 
value prediction model. The results showed that the nonlinear model 
has superior over linear model. However, only LS‐SVM model yielded 
acceptable results with R2

P
 of 0.831 and RMSEP of 0.125 mg MDA/kg. 

Although, the results of this study demonstrated the potential of HSI 
system, as a replacement for traditional methods, for direct and nonin-
vasive measurement of TBARS values in rainbow trout fillets. But, the 
establishing of lipid‐oxidation prediction model in rainbow trout fish 
was complicated, due to the fluctuations of TBARS values during stor-
age. Therefore, further researches are needed to improve the predic-
tion results and applicability of HSI technique for prediction of TBARS 
value in rainbow trout fish and the predictive power and applicability 
of the models by investigating and developing the new chemometric 
algorithms (such as deep learning models). To acquire the better evalu-
ation of freshness of fish samples, the TBARS value can be determined 
simultaneously with the other freshness indicator.
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