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ABSTRACT: Finding transition paths for chemical reactions
can be computationally costly owing to the level of quantum-
chemical theory needed for accuracy. Here, we show that a
multilevel preconditioning scheme that was recently intro-
duced (Tempkin et al. J. Chem. Phys. 2014, 140, 184114) can
be used to accelerate quantum-chemical string calculations. We
demonstrate the method by finding minimum-energy paths for
two well-characterized reactions: tautomerization of malonal-
dehyde and Claissen rearrangement of chorismate to
prephanate. For these reactions, we show that preconditioning
density functional theory (DFT) with a semiempirical method
reduces the computational cost for reaching a converged path that is an optimum under DFT by several fold. The approach also
shows promise for free energy calculations when thermal noise can be controlled.

■ INTRODUCTION

A central goal of quantum chemistry is to elucidate mechanisms
and energetics of reactions. Both can be obtained from mini-
mum (free) energy paths connecting reactants to products.1

Methods such as conjugate peak refinement,2 the nudged
elastic band,3,4 the string method,5−7 and transition path sam-
pling8 refine a guess for the reaction path iteratively. These
methods have yielded important insights in quantum chemical
contexts9−11 but are very computationally demanding because
the energies and forces must be evaluated many times. While
less expensive electronic-structure methods can often be used
to generate reasonable reactant and product structures for
single-point energy calculations, they are less reliable for
intermediates and transition states and can lead to qualitatively
incorrect results when searching for reaction paths.12 Thus,
methods for accelerating reaction path calculations while
maintaining a desired level of theory are needed.
Recently, we proposed a multilevel (ML) preconditioning

approach for accelerating the convergence of iterative molecular
calculations and demonstrated its use for coupling fine-grained
(FG) and coarse-grained (CG) models.13 Preconditioning is a
standard technique in numerical optimization; it can be viewed
as a variable transformation that enables a root finding
algorithm to converge in fewer steps.14 In practice, the variable
transformation is implicit. In our ML scheme, we perform a
nested iteration that enables us to evaluate a CG model
repeatedly to search for an optimum while always enforcing
that it be a stable solution of a FG model. This approach is
qualitatively different than one that combines the models
sequentially, which is not guaranteed to lead to convergence.
Previous studies15−18 have used preconditioning to couple

models with different resolutions but have employed schemes
that require linearizing the approximate model.
In this article, we explore an analogous procedure for quantum

chemical calculations. Here, a less computationally expensive,
presumably less accurate method plays the role of the CG model
and a more computationally expensive, presumably more accurate
model plays the role of the FG model. An advantage in this
context is that both models have the same number of degrees
of freedom, simplifying their coupling. Hence, throughout the
paper we refer to them as the reference (R) and preconditioning
(P) levels of theory. We first demonstrate that our multilevel
scheme accelerates refinement of the minimum energy paths of
two chemical reactions: tautomerization of malonaldehyde
(Figure 1) and Claissen rearrangement of chorismate to

prephanate (Figure 2). We choose these reactions because they
have served as prototypes for intrinsic reaction coordinate search
and the reaction progress can be readily traced via the chemical
bonds formed and broken.19,20 We then illustrate how the
approach can be extended to room-temperature free energy
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Figure 1. Reaction diagram for malonaldehyde tautomerization.
Arrows indicate the flow of electron pairs.
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simulations with a phosphate hydrolysis reaction. While our
approach is general, we specifically employ the string method for
finding reaction paths; our preconditioning couples density
functional theory (DFT) with semiempirical (SE) force fields. We
provide evidence that better correspondence between the models
leads to greater reduction in the number of iterations.

■ THEORY
Motivation. The theory behind nonlinear preconditioning

can be understood by considering the simpler, linear case, as
employed in Newton’s method. We begin by observing that
path refinement is mathematically equivalent to a multidimen-
sional root finding problem, such that at the stationary solution,
x*, the component of the force in the direction orthogonal to
the path vanishes:

* =f x( ) 0 (1)

Fixed-point iteration solves eq 1 using

= −+x x f x( )m m m1 (2)

For an initial state x0 chosen sufficiently close to x*, this
iteration converges quickly when f ′(x*) is nearly one (i.e., when
f(x) ≈ x + c) and slowly otherwise. Newton’s method
accelerates convergence to x* by using the solution to a linear
subproblem to define the next iterate xm+1 given the current
iterate xm. The linear subproblem can be written

=+g x( ) 0m 1 (3)

where

= + ′ −g x f x f x x x( ) ( ) ( )( )m m m (4)

which can be solved exactly at much lower cost than the
original root finding problem.
Defining y = g(x), we can write an alternative fixed-point

iteration:

= −+
−y y f g y( ( ))m m m1

1
(5)

or, in terms of the original variable,

− + =+g x g x f x( ) ( ) ( ) 0m m m1 (6)

For the g defined above in eq 4, (observing that g(xm) = f(xm)),
eq 6 reduces to Newton’s method. Newton’s method improves
convergence because the function f(g−1(y)) is closer to y
(ignoring addition by a constant) than f(x) was to x (ignoring
addition by a constant).
This same principle applies for more general choices of

g. Indeed, at convergence g(xm+1) = g(xm) and eq 6 becomes

f(xm) = 0. As long as g is a reasonable approximation of f, we
can expect the iteration in eq 6 to converge faster than fixed-
point iteration. Of course it is also essential that the equation
g(x) = y can be solved relatively cheaply. These observations
are the basis of the algorithms derived below.13

Formulation in Terms of the String Method. The string
method5−7 is a chain-of-states method in which the full system
configuration is projected onto a smaller subspace of collec-
tive variables (CVs) that are expected to include the slowest
varying degrees of freedom. The path is represented by discrete
instances of the system (images) that interpolate an arc
between two stable states. The goal is to gradually relax the
arc to the most likely minimum energy path based on the
local gradient. In the formulation that we employ,6,7 the
gradient is estimated by launching unbiased molecular dynamic
simulations from image points and following their trajectories.
The component of image displacement in the direction par-
allel to the string is removed by periodically modifying the
image positions so that they are nearly equidistant along
the string.
Switching our notation to string operators, we obtain suc-

cessively better reaction pathways φi via

φ φ=+ ( )m m1 R (7)

where R denotes the string operator for the reference model.
Here, R represents the collective impact of releasing free
dynamics trajectories from image points, averaging over the
CVs, smoothing, and reparametrizating the resulting arc (see
Computational Details). We seek a fixed-point solution φ* that
remains unaltered when R is applied to it, that is,

φ φ* = *( )R (8)

This equality is typically satisfied within thermal error
when φ* is in the vicinity of the minimum free energy path.
Notice that eq 7 is of the form of eq 2 with
φ φ φ= −f ( ) ( )R . As in our earlier development, we define

a change of variables ξ = g(φ):

φ φ= − Δg( ) P

The operator P is analogous to R but with the string
operations applied to a computationally inexpensive model
(the preconditioning model, denoted P). Following the same
steps as we did to write down eqs 5 and 6, we now obtain for
the string case

φ φ φ φ= Δ + − Δ+ +( ) ( ) ( )m m m m1 P 1 R P (9)

Figure 2. Claissen rearrangement of chorismate to prephanate. Red arrows indicate the distances that are used as CVs. Curved black arrows indicate
the flow of electron pairs.
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The parameter 0 < Δ < 1 is defined by the user and controls
the stability of the multilevel iterationwhen the value of Δ is
larger, the P model influences the iteration more strongly. For
the examples in this study, we use Δ = 1.0. Again, φ* remains
the solution of both eqs 8 and 9 because near convergence the
additional terms on the right-hand side of eq 9 cancel.
From the practical point of view, eq 9 is nontrivial to solve

because φm+1 appears on both sides of the equality. One can
approximate φm+1 by solving the recursive relation

φ φ φ φ= Δ + − Δ+
+

+( ) [ ( ) ( )]m
k

m
k

m m1
1

P 1 R P (10)

where k is a counter that runs up to a preset number K
(typically 5 or 10). Thus, there is a nested iteration. The
bracketed “correction” term on the right-hand side remains
constant throughout the inner loop iterations.
The final path from the inner loop is fed back to the outer

loop as the next guess for the solution:

φ φ=+ +m m
K

1 1 (11)

The reformulation in eq 10 has the convenient feature that it
only requires evaluations of the computationally inexpensive
P model. The computationally expensive model enters only in
the constant correction term, which is evaluated relatively few
times.

■ COMPUTATIONAL DETAILS
Molecular Dynamics (MD). Constant temperature MD

trajectories are performed using CP2K version 2.4, employ-
ing the QUICKSTEP module.21 Becke, Lee, Yang, and Parr
(BLYP)22,23 and Perdew, Burke, and Ernzerhof (PBE)24

exchange-correlation functionals are used in conjunction
with the DZVP basis set.25 Core electrons are represented
via GTH pseudopotentials.26 We use a plane wave cutoff of
300 Ry for the finest grid. Semiempirical force fields PM3,27

AM1,28 PM6,29 and SCC-DFTB,30 are as implemented in
CP2K. Equal integration timesteps are used for DFT and
SE dynamics (0.2 fs for malonaldehyde; 0.5 fs otherwise).
Constant temperature is maintained via stochastic velocity
rescaling.31 Stable states and saddle points are calculated at
the same levels of theory to verify string paths. In the cases of
the near-zero-temperature reactions, we further verify the
results by minimizing the energies of the end point structures of
the final string, and the structures with the highest energies
along the final strings are refined to obtain saddle points; the
saddle point of malonaldehyde is found via an intrinsic reaction
coordinate search, and that of chorismate is found via the dimer
method.32

Parallelization. Our parallelization is based on the Swift33

programming language, which abstracts various aspects of job
submission. One string iteration of each image (steps 3 through
6 below) represents a separate Swift task that is submitted once
its dependencies are ready. Swift initializes a Java script on the
login node that interacts with the job submission interface of
the computer. To reduce queue waiting times, Swift uses a
customized resource provisioning service (“coaster”)34 such
that compute node agents are not released back to the resource
pool as long as there are more tasks to execute and queue upper
limits permit doing so. The coaster script provides this feature
by recording port indices and submitting new tasks through
those channels. The current framework can be readily
distributed over a grid of heterogeneous resources, although
we did not pursue this option for the present work.

■ NEAR-ZERO-TEMPERATURE STRING
SIMULATIONS

ML String Protocol. We use the following sequence of
steps to execute the ML string equations in practice:

1. Generate an initial guess for the reaction path in the CV
space by linearly interpolating between the end points.
These end points are not required to be well-defined
basins, as the end points of the string naturally relax to
nearby minima.

2. Generate initial molecular configurations for the N
images (for the examples presented, N = 16) by dragging
the system (represented by the computationally inex-
pensive P model) from the reactant to the product basin
with steered molecular dynamics. During the dynamics, we
apply a harmonic restraint with a force constant of kdrag =
10 000 kcal/mol·Å−2) to each CV and shift its minimum
progressively from one image to the next over the course
of 500 MD steps at T = 1 K for a total of 7500 steps.

3. Perform one iteration of the string method for both the
R and P models separately, as follows.
(a) Quench the images to their current positions by

performing 50 MD steps at 0.01 K in the presence
of harmonic restraints kfreeze = 10 000 kcal/mol·Å−2.

(b) Randomize the swarm by performing 50 MD steps
at 1 K with a harmonic restraint with force constant
kloose = 100 kcal/mol·Å−2.

(c) Determine the displacement of each image by
propagating each image for 50 MD steps at 1 K.
The final resulting CV point is the average CV
taken over all MD trajectory steps.

(d) Smooth and reparametrize the resulting arcs such
that image points are equidistant from each other
along the CV hypersurface. Smoothing is
performed as in refs 35 and 36 with a smoothing
coefficient of κ = 0.1. The first and last image
points are held fixed during this step.

4. Calculate the difference between R and P string updates
from step 3c. The result is a vector in the CV space that
has the same units and dimension as the string vector.
This is the correction term that is added to each P update
in the inner loop.

5. Iterate the inner loop, evaluating only the computation-
ally inexpensive P model:
(a) Generate an initial point by dragging each image

for 250 steps at 1 K to the new CV points obtained
from the R part of 3c.

(b) Perform an iteration of the string method (fol-
lowing the protocol in steps 3a−d) for only the P
model. Add the correction term each iteration and
drag the P system to the resulting point. Repeat for
K = 5 times.

6. For both models, drag the systems to the final point from
the inner loop (step 5b) via 250 steps at 1 K.

7. Return to step 3a until convergence.

■ EXAMPLES
We first test our multilevel preconditioning scheme by applying
it to two well-characterized reactions: the tautomerization of
malonaldehyde and the Claissen rearrangement of chorismate
to prephanate. For each system, we use a DFT method as the
reference model and compare different preconditioning models
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to determine the properties that give the best speedups.
We show that in all cases the multilevel scheme converges
to a minimum energy path of the reference model, even when
the preconditioning model favors a qualitatively different
path.
Malonaldehyde Tautomerization. The enol of malonal-

dehyde can undergo intramolecular proton transfers (Figure 1).
Estimates for the hopping barrier vary with the level of theory,
from 0.9 to 3.7 kcal/mol with DFT functionals37 to 3.9−
4.4 kcal/mol with coupled cluster approaches.19,37,38 Hartree−
Fock and early SE methods overestimate this and similar con-
version barriers, probably as a result of underestimating electron
correlation, and, consequently, also, the stabilization from
conjugation in the transition state.39,40 We tested four protocols,
an R-only one with the BLYP functional (black, Figure 3), and
three ML runs with SE preconditioners PM3 (red), PM6
(green), and SCC-DFTB (blue).

We use as CVs the oxygen−hydrogen distances of the
breaking and forming bonds, rO1H* and rO2H* where H* denotes
the shared proton. All four force fields in this study predict
approximately circular, symmetric arcs for the reaction path
projected onto these coordinates (Figure 3A). The ML runs
relax to the same circular arc as does the BLYP simulation
(Figure 3B), passing through the saddle at rO1H* = rO2H* = 1.22 Å
in agreement with earlier BLYP findings (1.223 Å via DZP38

and 1.227 Å via cc-pVTZ37). The barrier heights for the
converged paths are fairly close to each other at ≈1.32 kcal/mol
even though P-only predictions are different by up to an order
of magnitude (Figure 4). BLYP is known to underestimate this
barrier, particularly with smaller basis sets;37 our DZVP value
falls in between the published values of 1.0 kcal/mol via DZP38

and 2.0 kcal/mol via cc-pVTZ.37

To visualize the speed of convergence, we plot the norm of
the displacement vector at each step of the iteration in Figure 5.
This quantity should approach zero near convergence. We
find that the ML scheme reaches the BLYP path 3−5 times
faster than the R simulation. A similar speedup can be ob-
served by following the barrier in the energy profile step-by-step
(Figure 6).
Claissen Rearrangement. Conversion of diaxial choris-

mate to prephanate is a prototypical Claissen rearrangement,
one of the best known pericyclic reactions (Figure 2). This
reaction is a demanding testcase for our ML preconditioning
scheme because the transition state has a cyclic, highly delocal-
ized structure with significant electron correlation that is not

captured well by SE force fields.12,41 Low levels of theory typ-
ically favor two-stage reaction scenarios (as opposed to
concerted bond formations and ruptures), which are often
hard to reconcile with experimental evidence.12

For the string method, we use the CO and CC distances
indicated in Figure 2 as the CVs (rCO and rCC). We use DFT
with the PBE functional for the reference model. In addition to
PM3, we also precondition with DFT with the BLYP
functional. Although the latter is of comparable computational
cost to the reference, we consider it to explore how the
properties of the preconditioning model affects the con-
vergence (measured in the number of outer loop iterations).
The initial and final paths predicted by the two DFT

methods indeed resemble each other more closely than that of
PM3 (Figure 7A). Starting from an initial linear interpolation
(black), both PBE (red) and BLYP (blue) converge to an
extended transition state characterized by simultaneously long
CO and CC distances around central images. PM3 (green),
on the other hand, predicts a compact transition state, and the

Figure 3. Reaction pathways for malonaldehyde tautomerization after
100 R- or P-only (A) or 20 ML (B) iterations of refinement.

Figure 4. Potential energy profiles along the string for the
malonaldehyde tautomerization after 100 R- or P-only (A) or 20 ML
(B) iterations of refinement. Color convention is as in Figure 5. The
predicted barrier height is ≈1.32 kcal/mol. Energies from geometry
optimization are indicated with orange dashed lines.

Figure 5. Convergence of the malonaldehyde tautomerization for the
string method with only DFT (black) and in the ML preconditioning
scheme with various inexpensive P models (red, PM3; green, PM6;
and blue, SCC-DFTB). Progress is measured by the norm of the net
string displacement as projected on the CV subspace and averaged
over all images. Inset shows reaction diagram.
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bonds that are ruptured maintain their covalent character
longer as indicated by their near-equilibrium distances (∼1.5 Å)
in the basins. In comparison, all final ML paths agree fairly well
with the PBE prediction (Figure 7B) as well as the basin and
saddle points from geometry optimization (orange). As for the
energies, PBE predicts the activation barrier and reaction enthalpy
to be 22.0 and −19.7 kcal/mol (Figure 8A, red), which is close to
earlier estimates of 17.5 and −20.8 kcal/mol, respectively, using
the same basis set but a lower plane wave cutoff and different
software.20 The BLYP and PBE barriers are similar (19.0 and
−17.2 kcal/mol, respectively), while the PM3 barrier is far
higher (53.1 kcal/mol; the reaction enthalpy is −23.9 kcal/mol).
ML energies (Figure 8B) are comparable with PBE.
The rate of convergence, as measured by the norm of the

displacement vector averaged over all images, is shown in
Figure 9. In terms of the number of reference model eval-
uations (outer loop iterations), we see that preconditioning
with BLYP leads to a greater acceleration than preconditioning
with PM3. For BLYP, an inner loop iteration costs about as
much as the reference model’s outer loop iteration. Because
there are 5 inner loop iterations plus one energy evaluation for

the outer loop, we multiply the ML iterations by 6 in the inset
to Figure 9 to obtain a rough estimate of relative computational
costs. This shows that the speedup comes from shifting the
work into the inner loop.

■ FINITE-TEMPERATURE STRING SIMULATIONS
We now consider extension of the ML scheme to a reaction in
which entropy plays a significant role at room temperature. The
finite-temperature case is more challenging as the precondition-
ing amplifies noise in the reaction path optimization, and we
show how we suppress this effect. The specific example that
we consider is hydrolysis of monomethylpyrophosphate (MPP)
in the presence of two water molecules. We show results
obtained with PM6 as the reference force field and PM3 as
the preconditioning force field because this choice allows
convergence of both R- and ML-string calculations in a feasible
amount of time. However, we have also performed multilevel
string calculations for this reaction with DFT with the PBE
functional as the R model and the SE method PM6 as the
P model, and we obtained a comparable initial reduction in the
number of outer loop iterations.

Figure 6. Monotonic relaxation of the potential energy profiles in
R-only and ML (P: PM3) refinements for malonaldehyde tauto-
merization. Initial profiles and first iterations are indicated as
m = 0 and m = 1, respectively. Last energies (100th R-only iteration
and 20th ML iteration) are indicated with circles for each image. All
iterations are shown.

Figure 7. Minimum energy pathways for the Claissen rearrangement.
(A) Predictions from each method by itself: PBE (R, red), BLYP
(blue), and PM3 (green) alone. (B) R-only path compared against the
two ML strings. Points from geometry optimization are in orange.

Figure 8. Potential energy profiles for the Claissen rearrangement.
(A) PBE, PM3, and BLYP alone. (B) PBE compared with the results
from the ML scheme with PM3 (green) and BLYP (blue) pre-
conditioning. Energies from geometry optimization are indicated with
orange dashed lines.

Figure 9. Convergence of ML path refinement of the Claissen
reaction. Convergence is expressed in terms of the norm of the
displacement vector as projected over the CVs and averaged over all
images. Abscissa is number of R iterations. The inset shows a version
of the BLYP ML curve in which the number of iterations is scaled by
the number of energy evaluations per outer loop iteration (6), which
provides a comparison in terms of rough computational cost.
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ML String Protocol.
1. Generate an initial guess for the reaction path in the

CV space by linearly interpolating between the end
points in Table 1.

2. Generate initial molecular configurations for the N
images (here, N = 10) by dragging the system from
the reactant to the product basin with steered molecular
dynamics at the reference level of theory (PM6). During
the dynamics, we apply a harmonic restraint with a force
constant of kdrag = 5000 kcal/mol·Å−2 to each CV and
shift its minimum progressively from one image to the
next over the course of 10 000 MD steps at T = 300 K
for a total of 90 000 steps. These structures are also used
to start the PM3 calculations.

3. Perform one iteration of the string method for both the
R and P models separately, as follows.
(a) Equilibrate the images at their current positions to

their desired temperatures in the presence of
harmonic restraints kequil = 5 000 kcal/mol·Å−2.
We equilibrate the reference model at 300 K for
2500 MD steps; images for the preconditioning
model are equilibrated at 10 K for 500 MD steps.

(b) Determine the displacement of each image. For
the reference model, propagate a swarm of
25 copies of the system at the reference level of
theory, each for 10 MD steps at 300 K under a
harmonic restraint with force constant kloose,R =
5 kcal/mol·Å−2. Each member of the swarm begins
with different velocities selected at random from a
Maxwell−Boltzmann distribution. For the pre-
conditioning model, propagate a single copy for
10 MD steps at 10 K under a harmonic restraint
with force constant kloose,P = 25 kcal/mol·Å−2. In
each case, determine the image displacements by
averaging over all copies and trajectory steps
associated with each image. We exclude points that
are outside a cutoff to ensure that displacements
are limited in extent. The cutoff is 0.25 Å in the
CV space defined by the first three CVs in Table 1,
which involve only heavy atoms, and 0.50 Å in the
CV space defined by the remaining CVs, which
involve hydrogen atoms.

(c) Apply each displacement to its image if and only if
the energy averaged over the swarm points within
the cutoff is lower than the energy averaged over
the equilibration steps in step 3a.

(d) Smooth and reparametrize the resulting arcs five
consecutive times such that image points are

nearly equidistant in the CV space. We use a
smoothing coefficient of κ = 0.1. The first and last
image points are held fixed during this step.

4. Calculate the difference between the net displacements of
the reference and preconditioning models at this iteration,
dm. Let the correction term (eq 10) be the average

=
∑
∑

=
−

=
−d

w d

wm
i
m m i

i

i
m m i

avg 1 0

1 0 (12)

where m is the present interation and w0 = 0.75 is a
constant that controls the relative weights of newer and
older iterations. Set the contributions from protonic CVs
to zero. These degrees of freedom are very noisy due to
the fact that the two force fields can favor different
protonation states for a given heavy atom configuration.

5. Iterate the inner loop, evaluating only the precondition-
ing model:
(a) Generate an initial point by dragging each image

for 500 MD steps at 10 K to the new CV points
obtained from the reference model part of step 3d.

(b) Perform an iteration of the string method for only
the preconditioning model. Add the average
correction term (eq 12) each iteration and drag
the system to the resulting point. Smooth and
reparametrize as in step 3d. Average over any prior
preconditioning iterations (within this inner loop)
such that

φ
φ

=
∑

∑+
=

−
+

=
−

w

wm
k i

k k i
m
i

i
k k i1

,avg 1 0 1

1 0 (13)

where m denotes the outer loop iteration, and k
the inner loop iteration. The weighting is geo-
metric, as in eq 12, with the same biasing constant
w0. Repeat for K = 10 times.

6. Geometrically average the difference between the final
point from step 5b and the starting point from step 3b
over any prior outer loop displacements using forms
analogous to the inner-loop equations (eqs 12 and 13).
Scale the resulting displacement by 0.9, and drag both
systems to the resulting target image position. We drag
the reference model at 300 K for 2500 MD steps; we
drag the preconditioning model at 10 K for 500 MD
steps. We use the same force constants as in step 3a.

7. Return to step 3a until convergence.

Example. Our choice of phosphate ester hydrolysis is
motivated by the discrepancies reported between potential
surface mapping42−44 and targeted molecular dynamics45−47

studies in characterizing the most likely pathway. There has
been debate about the extent of associativity.48 In a fully
associative scenario (the SN2 limit), the nucleophilic water
inserts itself head-on, followed by the rupture of the bridging
bond. This corresponds to a trigonal bipyramidal transition
state, that is, a pentacoordinated β-phosphorus. In the alter-
native (SN1) limit, a dissociative scenario,49 a trigonal planar
species is sandwiched in between the nucleophile and the
anhydride bridging oxygen at distances as large as the sum of
van der Waals radii (∼3.3 Å).48 Furthermore, this picture
implies that the phosphodiester bond is ruptured before the
nucleophile can be incorporated. Naturally, the preferred path
depends on the electrostatic environment and the pKa of the
leaving group.42

Table 1. Initial MPP End Pointsa

CV image 1 (reactant) image 10 (product)

Pα−Pβ 2.96 4.50
Pβ−Obr 1.61 3.20
Pβ−On 3.50 1.60
On−Hn,1 0.96 2.00
Oc−Hn,1 2.40 0.96
Oc−Hc,1 0.96 2.00
Oβ−Hc,1 1.36 2.00
On−Hn,2 0.96 0.96 (fixed)
Oc−Hc,2 0.96 0.96 (fixed)

aAbbreviations are as follows: (br)idge, (n)ucleophile, and (c)atalytic.
Distances are in Ångstrom.
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We consider hydrolysis in the presence of two water mol-
ecules, one nucleophilic and the other catalytic (Figure 10). For
visualization purposes only, the reaction path is projected onto
the breaking and forming oxygen−phosphate distances, those
of the β-phosphorus with the anhydride bridging or the
nucleophilic water oxygens (Figure 11). This representation is
known as a More O’Ferrall−Jencks (MOFJ) plot. A perfectly
associative reaction corresponds to a path that goes through the
lower left corner, while a perfectly dissociative path would go
through the upper right corner.
The space orthogonal to the MOFJ plot involves many

protonic degrees of freedom. The diversity of possible pro-
tonation states demands consideration of additional coor-
dinates when simulating the reaction. We use the nine CVs that

are indicated in Table 1 and Figure 11. They include the
breaking and forming bonds, as well as two inert O−H bonds
that are fixed to reduce competing protonation pathways.
Additionally, the CVs include four oxygen-proton CVs
(protonic CVs); these are free to vary except at the string
end points. For the terminal images, we fix the O−H distances
at 0.96 Å to select for specific reaction and product protonation
states. As noted in step 4 of the ML string protocol, only
nonprotonic CVs (i.e., Pα−Pβ, Pβ−On, and Pβ−Obr) contribute
to the correction term.
As mentioned above, we use the PM6 force field as the

reference and precondition it with low-temperature (T = 10 K)
PM3. As can be seen in Figure 12, the PM6 reaction path
consists of protonation of a phosphate by the catalytic water,
followed by attack by the nucleophilic water and neutralization
by transferring a proton between the waters (Figure 12). The
ML simulations reprise this path (Figure 12), reaching it in
about 3-fold fewer iterations (Figure 13).
Energies of the transition states found by reference and ML

strings are comparable (Figure 14); however, basins exhibit
differences because of hydrogen bonding rearrangements of
water. This is more prominent in the product basin where the
ML scheme finds more favorable interactions between the
catalytic water and magnesium ion. To verify that these are
indeed PM6 solutions, we switch off ML and continue PM6

Figure 10. Diagram of hydrolysis of MPP catalyzed by two water molecules. Arrows indicate directions of electron pair movements. Nucleophilic
and catalytic water molecules are indicated.

Figure 11. CVs used in the MPP example. Blue and red arrows
indicate nonprotonic and protonic CVs, respectively. Bonds marked
with an asterisk are fixed. Notations follow Table 1.

Figure 12. MOFJ plot for MPP hydrolysis. Abscissa is Pβ-Obr distance, ordinate is Pβ-On distance. Red and blue string pairs indicate first and last R
and ML paths included in averaging potential energies. Insets are representative snapshots from the final ML path. Initial path is in black. Contoured
landscape is from well-tempered metadynamics50 (WTM) to provide information about the energy landscape local to the final string pathway. WTM
setup uses 10 walkers51 that are restarted every 500 MD steps from the final points of R-only images. Gaussian hills of height 1 kcal/mol are
deposited every 50 steps on the space spanned by nonprotonic CVs. For WTM, ΔT is 5000 K. To reduce water evaporation in WTM, reflective
boundaries are applied on all CVs at 5.0 Å. Walkers are integrated using the same MD time step and thermostat as in string trajectories. Over
∼51 000 hills are collected to reproduce the free energy surface. These simulations show that the transition state region is fairly flat, so that the
variations in the paths are likely to reflect thermal fluctuations. Free energy contours are spaced by 5 kcal/mol.
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string simulations for another 20 iterations. The path remains
stable. We estimate activation barrier and the reaction enthalpy
as 8.0 and −14.8 kcal/mol. While the level of theory and
limited solvent representation employed here preclude draw-
ing conclusions about the reaction, the simulations show that
the ML preconditioning scheme can accelerate convergence of
complex systems at room temperature. A caveat is that, achiev-
ing this speedup requires averaging the displacements and
the correction term to control the noise, which the pre-
conditioning amplifies.

■ CONCLUSIONS
Here, we show that a multilevel preconditioning scheme can ac-
celerate quantum-chemical path optimization. We illustrate the
scheme with the string method, but the approach as described
could be immediately applied to other path finding methods3,4

(likewise, geometry optimization, as discussed in ref 13).

The scheme differs from traditional strategies for combining
different levels of theory in that it uses information from both
models at all times, in a way that guarantees that convergence
is to a path that is stable under the reference model. As is true
for almost any multidimensional optimization problem, this
solution is not guaranteed to be the global minimum. The
examples that we considered suggest that preconditioning with
a model that better corresponds to the reference model in
energy leads to a greater decrease in the number of reference
model evaluationsessentially, more work can be shifted to
the preconditioning model (the inner loop of the nested
iteration). The multilevel approach suggested here is closely
related to parallel-in-time integration, and it is possible that
techniques developed to accelerate parallel-in-time integration
could also be adapted to the present context (see ref 52).
Of course, the speedup in CPU time depends on the relative

costs of the two models. The SE methods that we primarily use
for preconditioning here are negligible in computational cost
compared with the reference DFT. Given that a wide range
of methods are computationally inexpensive in comparison to
ab initio methods that account for electron correlation,
especially with large basis sets, we expect significant speedups
to be possible in applications that demand chemical accuracy.
It will be interesting to explore such applications, as well as
further developments to the method such as selectively choosing
between preconditioning models to capture their different
strengths as an optimization progresses.
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