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Abstract: Currently, Chemoinformatic methods are used to perform the prediction for 

FBPase inhibitory activity. A genetic algorithm-random forest coupled method (GA-RF) 

was proposed to predict fructose 1,6-bisphosphatase (FBPase) inhibitors to treat type 2 

diabetes mellitus using the Mold2 molecular descriptors. A data set of 126 oxazole and 

thiazole analogs was used to derive the GA-RF model, yielding the significant 

non-cross-validated correlation coefficient r2
ncv and cross-validated r2

cv values of 0.96 and 

0.67 for the training set, respectively. The statistically significant model was validated by a 

test set of 64 compounds, producing the prediction correlation coefficient r2
pred of 0.90. 

More importantly, the building GA-RF model also passed through various criteria 

suggested by Tropsha and Roy with r2
o and r2

m values of 0.90 and 0.83, respectively. In 

order to compare with the GA-RF model, a pure RF model developed based on the full 

descriptors was performed as well for the same data set. The resulting GA-RF model with 

significantly internal and external prediction capacities is beneficial to the prediction of 

potential oxazole and thiazole series of FBPase inhibitors prior to chemical synthesis in 

drug discovery programs. 
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1. Introduction  

Diabetes is one of the most prevalent diseases worldwide, and the incidence of this continues to grow, 

which causes a global public health burden. It is estimated that by 2025, India, China and the United 

States will possess the largest number of people with diabetes [1]. The more prevalent form, type 2 

diabetes, accounts for more than 90% of cases. The pathogenesis of type 2 diabetes is complex, involving 

progressive development of insulin resistance and a relative deficiency in insulin secretion, which may 

lead to overt hyperglycemia [2]. Type 2 diabetes is associated with the metabolic syndrome that 

comprises a set of alterations that include glucose intolerance, truncal obesity, hypertension and 

dyslipidemia [3]. It has been reported that the metabolic syndrome is associated with a markedly 

increased risk of coronary artery disease [4]. The risk of myocardial infarction in patients with diabetes 

and no history of cardiac disease roughly equates the risk in non-diabetic patients with known cardiac 

diseases [5]. In addition, diabetes often conspires to cause various complications such as eye diseases.  

It has been documented that diabetes is the primary reason for loss of vision [6]. Patients with diabetes 

suffer from great mental and physical pain. Consequently, it is necessary to develop an effective drug for 

the treatment of this disease. Since hyperglycemia leads to severe microvascular and macrovascular 

complications, the primary treatment goal is to reduce the glucose level. Several popular classes of oral 

diabetes therapies on the market include sulfonylureas, peroxisome proliferator-activated receptor-γ 

(PPAR-γ) agonists, metformin and so forth [7,8], which lower glucose by increasing glucose metabolism 

either via enhanced insulin secretion or improved insulin sensitivity. However, therapies with these drugs 

still have several drawbacks. For example, sulfonylurea therapy is usually associated with weight gain [9] 

and metformin therapy is forbidden in patients with renal and hepatic diseases, respiratory insufficiency 

and alcohol abuse [10]. As a consequence, there is a need for novel, more effective drugs with more safe 

profiles and fewer side effects to the treatment of diabetes. 

Fructose 1,6-bisphosphatase (FBPase), a highly regulated enzyme that catalyzes the second to last 

step in gluconeogenesis, draws attention as a potential therapeutic target to treat type 2 diabetes  

mellitus [10,11]. FBPase enables the inhibition of gluconeogenesis from all the corresponding substrates 

while avoiding direct effects on glycogenolysis, glycolysis and the tricarboxylic acid cycle. In addition, 

evidence from clinical research suggests that FBPase inhibitors may show an adequate safety  

margin [11]. Several classes of agents against FBPase have recently been reported including 

anilinoquinazolines [12], benzoxazole benzenesulfonamides [13], MDL-29951 [14], adenosine 

5’-monophosphate (AMP) mimics, etc. Some of these series of drugs, however, were explored without 

successfully achieving acceptable oral bioavailability, thus, it is still required to research novel drugs 

with desirable characteristics. 

Chemoinformatic methods, as a complementary approach of experiment technology, have found 

wide utility and acceptance, and these methods are playing a central role in drug design [15]. In view 

of this, previous reports [16] have performed a computational study based on a series of FBPase 

inhibitors. However, these methods were developed and tested on just a few compounds. In the current 

work, a larger dataset was used to derive a statistical model with a high prediction power. 

Random forest (RF), a new regression tool, has been reported to be a combination of relatively high 

prediction accuracy and a collection of desired features that makes RF uniquely suited for modeling in 

chemoinformatics [17] based on a quantitative description of the compound’s molecular structure. RF 
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can show an excellent performance even when most predictive variables are noise, it can be used when 

the number of variables is much larger than the number of observations, and it returns measures of 

variable importance. It is well known that an ideal regression model should have a high performance 

with few descriptors. Thus in the present work, to optimize the Mold2 molecular descriptor subset [18], 

with the statistical performance and efficiency of the model being simultaneously enhanced, the genetic 

algorithm-random forest coupled method is selected to perform a regression task to investigate whether 

the proposed GA-RF method can construct an ideal prediction model for the FBPase inhibitors.  

In addition, the derived optimal model was checked by Y-randomization to ensure that the prediction 

model was not obtained by chance correlation. Moreover, the rigorous statistical criteria suggested by 

Thropsha and Roy [19,20] were used to validate the model as well. For comparison with the GA-RF, 

the pure RF model, which means that the model was developed in the full descriptors without variable 

selection, was also applied using the same dataset. 

2. Results and Discussion  

2.1. Descriptor Calculation and Preprocessing 

For the quantitative structure-activity relationship (QSAR) investigations, one of the important 

factors affecting the quality of the model is the choice of molecular descriptors used to obtain the 

structural information suitable for model development. The software Mold2 [18] enables a rapid 

calculation of a large and diverse set of descriptors encoding two-dimensional chemical structure 

information. A comparative analysis of Mold2 descriptors with those calculated by commercial tools 

such as Cerius2 [21], Dragon [22] on several data sets demonstrated that Mold2 descriptors can convey 

a similar amount of information as those widely-used software packages [18]. Although acting as a 

freely available tool, Mold2 has been proved suitable not only for the QSAR research [23–25], but also 

for virtual screening of large databases in drug development [18]. In the present work, a total of  

777 Mold2 descriptors were calculated based on the SDF file format of all the studied FBPase 

inhibitors. All these descriptors were then preprocessed as follows: (1) descriptors containing values 

greater than 85% zero were removed; (2) zero- and near zero-variance predictors were removed, as 

descriptors like this may cause the model to crash or the fit to be unstable; and (3) one of the two 

descriptors that had absolute correlations above 0.75 was omitted. After these steps, the number of the 

descriptors was reduced to 108 for further research. 

2.2. Split of the Training and Test Sets 

Rational selection of training and test sets is also one of the important and challenging steps for the 

development of validated QSAR models. Self-organizing maps (SOM) can be employed for data 

survey, which has been successfully applied to split datasets [26,27]. In the current study, in order to 

probe the descriptor space, a total of 108 Mold2 descriptors were used to obtain a SOM map. A small 

Kohonen network with 6 × 6 = 36 neurons was employed, producing a map with 36 positions. All the 

compounds were placed onto the 36 positions of the Kohonen map. Figure 1 demonstrates the 

distribution of the compounds, where the black dot denotes the training set, while the red asterisk 

stands for the compounds from the test set. As can be seen from this figure, firstly, the representative 
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points of the test set are close to those of the training set, and secondly, the training and test sets 

uniformly fill the whole chemical space, indicating a rational selection of the training and test 

inhibitors in the present work [28]. The training set was applied for the development of the model and 

the external test set was used for the assessment of the built model. The training set and test sets 

include 126 and 64 compounds, respectively. 

Figure 1. Self-organizing map (SOM) analysis for fructose 1,6-bisphosphatase (FBPase) 

inhibitors, where the black dot denotes the training set and the red asterisk stands for the 

test set. 

 

2.3. Set Parameters of GA-RF Algorithm 

In the present work, all the genetic parameters are set as follows: The number of maximum 

generations is set to 200 and the number of individuals to 50. Individuals are then selected from the 

population using the stochastic universal sampling algorithm, with a generation gap of 0.9. The 

double-point crossover is adopted with the probabilities of 0.7. The mutation operation is performed 

based on the default value included in the genetic algorithm toolbox developed by the Evolutionary 

Computation Research Team at The University of Sheffield, UK. Herein, the minimum out-of-bag 

(OOB) mean squared error (MSE) is used as the fitness function to obtain the optimal individual. 

2.4. Statistical Results 

Apart from the quality of the used data sets, the selection of proper descriptors relevant to the 

FBPase inhibitory activity is crucial for optimizing the prediction system by reducing the noise in a 

statistical learning process. After GA-RF, the final 40 Mold2 descriptors are selected. Table 1 illustrates 

the names of these selected descriptors and the corresponding definitions [18]. 
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Table 1. Molecular descriptors selected from genetic algorithm-random forest coupled 

method (GA-RF) for the FBPase inhibitors. 

Name Definition Name Definition 

D004 Number of 05-membered rings D543 
Lowest eigenvalue from Burdex matrix 
weighted by van der Waals order-4 

D016 Number of double bonds D545 
Lowest eigenvalue from Burdex matrix 
weighted by van der Waals order-6 

D152 
Mean atomic polarizability  
scaled on carbon-SP3 

D547 
Lowest eigenvalue from Burdex matrix 
weighted by van der Waals order-8 

D164 Index of terminal vertex matrix D557 
Lowest eigenvalue from Burden matrix 
weighted by polarizabilities order-2 

D237 Kier 3-path index D561 
Lowest eigenvalue from Burden matrix 
weighted by polarizabilities order-6 

D279 
Total information content  
order-4 index 

D562 
Lowest eigenvalue from Burden matrix 
weighted by polarizabilities order-7 

D309 
Sum eigenvalue weighted by mass 
distance matrix 

D563 
Lowest eigenvalue from Burden matrix 
weighted by polarizabilities order-8 

D455 
Geary topological structure 
autocorrelation length-1 weighted by 
atomic van der Waals volumes 

D571 
Highest eigenvalue from Burden matrix 
weighted by masses order-8 

D458 
Geary topological structure 
autocorrelation length-4 weighted by 
atomic van der Waals volumes 

D582 
Highest eigenvalue from Burden matrix 
weighted by electronegativities 
Sanderson-scale order -3 

D462 
Geary topological structure 
autocorrelation length-8 weighted by 
atomic van der Waals volumes 

D589 
Highest eigenvalue from Burden matrix 
weighted by polarizabilities order-2 

D465 
Geary topological structure 
autocorrelation length-3 weighted by 
atomic Sanderson electronegativities 

D598 Number of total tertiary carbon-SP3 

D470 
Geary topological structure 
autocorrelation length-8 weighted by 
atomic Sanderson electronegativities 

D647 
Number of group primary amines 
(aliphatic) 

D473 
Geary topological structure 
autocorrelation length-3 weighted by 
atomic polarizabilities 

D715 Number of group CH2R2 

D476 
Geary topological structure 
autocorrelation length-6 weighted by 
atomic polarizabilities 

D719 Number of group CH2RX 

D491 
Moran topological structure 
autocorrelation length-5 weighted by 
atomic van der Waals volumes 

D729 Number of group =CHR 

D492 
Moran topological structure 
autocorrelation length-6 weighted by 
atomic van der Waals volumes 

D731 Number of group =CHX 

D499 
Moran topological structure 
autocorrelation length-5 weighted by 
atomic Sanderson electronegativities 

D746 
Number of group H attached to C0(sp3) 
no X attached to next C 
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Table 1. Cont. 

Name Definition Name Definition 

D506 
Moran topological structure 
autocorrelation length-4 weighted by 
atomic polarizabilities 

D754 Number of group O= 

D523 
Mean molecular topological order-3 
charge index 

D756 
Number of group Al-O-Ar or 
Ar-O-Ar or R-O-C=X 

D541 
Lowest eigenvalue from Burden matrix 
weighted by van der Waals order-2 

D775 Hydrophilic factor index 

Based on the determined optimal parameters by GA, the GA-RF model presents an 

(root-mean-square error) RMSE of 0.25 and 0.34 for the training and test sets, respectively. The 

determined coefficient r2
ncv reaches a value as high as 0.96 with r2

cv = 0.67 for the training set. The 

model predictability is evaluated by an external prediction set, which illustrates r2
ts and r2

pred values of 

0.91 and 0.90, respectively. It is well known that the random forest algorithm can manipulate the data 

set even with a large number of descriptors [17]. Thus we compare the GA-RF with pure RF, which 

means that the latter model is built based on the whole 108 descriptors. It can be seen from Table 2 that 

the pure RF performs comparably but relatively low statistics compared with GA-RF. The scatter plots 

of the experimental versus predicted FBPase inhibitory activity based on the GA-RF and RF models are 

shown in Figure 2, where the proposed GA-RF model presents a relatively better performance than RF. 

For the former, the data points of training and test sets distribute more closely in a straight line  

(y = x), indicating that GA-RF exhibits both the inner and external prediction power. Table 3 gives the 

experimental and predicted results for both models. 

Table 2. Statistical performances of GA-RF and RF models a. 

Model 
Training Set Test Set 

r2
ncv r2

cv RMSE r2
ts r2

pred RMSE 

GA-RF 0.96 0.67 0.25 0.91 0.90 0.34 
RF 0.96 0.59 0.28 0.87 0.85 0.42 

a r2
cv from OOB estimation; mtry is equal to 13 and 36 for GA-RF and RF, respectively. 

Figure 2. The scatter plots of actual and predicted activity by GA-RF and RF models. 
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Table 3. Compounds with their chemical names, observed and predicted activities by 

GA-RF and RF for the FBPase inhibitors. 

 

No. R2 Obs. pIC50
 GA-RF RF Ref. a 

1 Me 7.00 6.62 6.70 [29] 
2 * Et 6.40 6.20 6.25 [29] 
3 vinyl 5.92 5.99 6.05 [29] 
4 CH2OH 6.66 6.63 6.61 [29] 

5 * H 6.30 6.05 6.27 [29] 
6 Cl 6.74 6.61 6.64 [29] 
7 Br 7.10 6.85 6.89 [29] 
8 SMe 6.05 6.23 6.16 [29] 
9 CN 5.70 5.65 5.73 [29] 

10 * NH2 7.60 7.38 7.20 [29] 
11 NHMe 6.00 5.95 6.08 [29] 
12 NHAc 5.00 5.69 5.66 [29] 
13 CONH2 5.56 5.75 6.03 [29] 

14 * CSNH2 6.30 6.38 6.39 [29] 
15 Ph 4.87 5.33 5.40 [29] 

16 * 2-thienyl 5.10 5.93 5.78 [29] 
17 3-pyridyl 5.30 5.40 5.55 [29] 

 

No. R5 Obs. pIC50 GA-RF RF Ref. a 

18 H 6.35 6.38 6.42 [29] 
19 Me 6.92 6.84 6.80 [29] 
20 HOCH2 6.30 6.73 6.55 [29] 

21 * n-Pr 7.52 7.29 7.13 [29] 
22 * i-Pr 7.55 7.04 7.01 [29] 
23 CF3CH2 7.24 6.99 7.14 [29] 
24 neopentyl 7.92 7.58 7.51 [29] 
25 cyclobutyl 7.72 7.61 7.54 [29] 

26 * cyclopentyl 7.68 7.67 7.58 [29] 
27 cyclohexyl 8.00 7.80 7.83 [29] 
28 cyclopropyl-CH2 7.70 7.62 7.53 [29] 
29 cyclopentyl-CH2 7.74 7.36 7.44 [29] 
30 cyclohexyl-CH2 7.23 7.18 7.08 [29] 
31 PhCH2 6.82 6.85 6.82 [29] 

32 * morpholinyl-CH2 6.25 6.16 6.45 [29] 
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Table 3. Cont. 

 

No. R5 Obs. pIC50 GA-RF RF Ref. a 

33 Cl 7.15 7.03 6.97 [29] 
34 * Br 7.30 6.99 6.88 [29] 
35 * I 7.00 6.87 6.36 [29] 
36 1-morpholinyl 7.80 7.09 7.29 [29] 
37 EtS 7.48 7.32 7.24 [29] 

38 * n-PrS 7.80 7.21 7.03 [29] 
39 i-PrS 7.62 7.50 7.46 [29] 
40 t-BuS 7.62 7.52 7.53 [29] 

41 * PhS 6.52 6.70 6.58 [29] 
42 CONMe2 5.77 5.94 6.22 [29] 
43 CO2Et 7.85 7.55 7.48 [29] 
44 CO2Bn 7.82 7.25 7.43 [29] 
45 n-PrSO 6.07 6.56 6.45 [29] 

46 * Ph 7.85 7.68 7.64 [29] 
47 * 2-MeO-Ph 7.37 7.51 7.52 [29] 
48 3-MeO-Ph 7.68 7.60 7.62 [29] 
49 4-MeO-Ph 7.66 7.61 7.64 [29] 

50 * 4-MeS-Ph 7.68 7.41 7.40 [29] 
51 4-t-Bu-Ph 7.06 7.21 7.10 [29] 

52 * 4-MeO2C-Ph 7.85 7.48 7.36 [29] 
53 4-F-Ph 7.80 7.71 7.68 [29] 
54 4-Cl-Ph 7.89 7.76 7.75 [29] 
55 4-Ac-Ph 7.49 7.45 7.48 [29] 
56 4-MeSO2-Ph 7.39 7.30 7.00 [29] 

57 * 4-Ph-Ph 7.47 7.31 7.23 [29] 
58 2-nathphyl 7.92 7.66 7.61 [29] 
59 2-furanyl 7.40 7.12 7.22 [29] 

60 * 2-thienyl 7.36 7.17 7.20 [29] 

 

No. [linker] R5 Obs. pIC50 GA-RF RF Ref. a 
61 2,5-furanyl H 5.00 5.41 5.78 [29] 
62 -CH2OCO- n-Pr 7.30 6.90 6.92 [29] 

63 * -CH2NHCO- 2-thienyl 6.02 6.42 6.69 [29] 
64 2,6-pyridyl H 5.70 5.74 5.94 [29] 
65 1,3-phenyl H 5.89 6.06 6.01 [29] 

66 * 1,3-phenyl-(6-Me) n-Pr 6.87 6.71 6.39 [29] 
67 * 1,3-phenyl-(6-OMe) i-Pr 6.68 7.05 6.89 [29] 
68 * 1,3-phenyl-(6-F) Ph 7.10 7.42 7.27 [29] 
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Table 3. Cont. 

 

No. R5 Obs. pIC50 GA-RF RF Ref. a 

69 * i-Bu 6.92 6.38 6.13 [30] 
70 H 5.00 5.60 5.43 [30] 
71 Allyl 6.85 6.70 6.51 [30] 
72 n-Bu 6.77 6.64 6.54 [30] 
73* n-Pentyl 6.68 6.54 6.35 [30] 
74 -CH2-cyclohexyl 6.49 6.24 6.29 [30] 
75 Ph 6.80 6.78 6.80 [30] 
76 Bn 6.05 6.23 6.12 [30] 
77 -CH2-(2-thienyl) 6.59 6.47 6.59 [30] 
78 n-PrS 7.15 6.97 6.91 [30] 
79 i-PrS 6.96 7.01 7.02 [30] 

80 * t-BuS 6.92 6.64 7.05 [30] 
81 PhS 5.40 5.79 6.08 [30] 
82 -CO2Me 7.17 7.06 6.70 [30] 

83 * -CO2Et 7.42 7.10 6.85 [30] 
84 -CO2Pr-i 7.40 7.13 7.14 [30] 
85 -CO2Bn 7.07 6.95 6.91 [30] 
86 -COSEt 7.52 7.23 7.20 [30] 
87 -COBu-t 6.07 6.10 6.22 [30] 

 

No. R2 Obs. pIC50 GA-RF RF Ref. a 

88 Me 6.22 6.24 6.14 [30] 
89 HO 5.00 5.48 5.43 [30] 

90 * H 5.72 5.87 5.80 [30] 
91 Me2N- 5.68 5.61 5.54 [30] 

92 * i-Pr- 5.66 5.79 5.78 [30] 
93 MeHN- 5.37 5.55 5.62 [30] 
94 Et 6.02 6.09 5.94 [30] 

95 * EtHN- 5.00 5.43 5.68 [30] 
96 vinyl 5.17 5.49 5.54 [30] 
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Table 3. Cont. 

 

No. R2 R5 Obs. pIC50 GA-RF RF Ref. a 

97 H2N- H 5.15 5.50 5.43 [30] 
98 * H2N- Me 6.38 6.19 5.72 [30] 
99 H2N- Et 6.42 6.39 6.17 [30] 

100 * H2N- n-Pr 6.55 6.46 6.08 [30] 
101 * H2N- i-Pr 6.24 6.36 6.19 [30] 
102 * H2N- n-Bu 6.60 6.32 5.98 [30] 
103 * H2N- n-Pent 6.46 6.30 6.10 [30] 
104 Me CF3 5.00 5.45 5.54 [30] 
105 H Ph 5.00 5.35 5.45 [30] 

 

No. X Y Q R2 R5 Obs. pIC50 GA-RF RF Ref. a

106 NH O PO3H2 NH2 iBu 5.30 5.55 5.47 [31] 
107 S O PO3H2 H H 5.26 5.58 5.56 [31] 
108 CH=CH O PO3H2 NH2 Ph 7.38 6.95 6.87 [31] 

 

No. R8 R’ Obs. pIC50 GA-RF RF Ref. a 

109 * -NH(CH2)2PO3H2 OH 4.00 4.36 4.62 [32] 
110 * -NH(CH2)2OPO3H2 OH 3.85 4.27 4.56 [32] 
111 -NH(CH2)2PO3H2 H 4.00 4.27 4.44 [32] 

 

No. [linker] R9 Obs. pIC50 GA-RF RF Ref. a 

112 -NH(CH2)2- Bn 4.04 4.20 4.26 [32] 
113 * -NH(CH2)2- Ph(CH2)2- 4.00 4.14 4.20 [32] 
114 -NH(CH2)2- 2-naphthyl-CH2- 4.46 4.35 4.42 [32] 

115 * -CONHCH2- Ph(CH2)2- 4.00 4.19 4.50 [32] 
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Table 3. Cont. 

116 -(CH2)3- Ph(CH2)2- 4.00 4.04 4.16 [32] 
117 * -CH=CHCH2- Ph(CH2)2- 4.00 4.19 4.28 [32] 
118 -S(CH2)2- Ph(CH2)2- 3.84 4.03 4.29 [32] 

119 * -CH2OCH2- Ph(CH2)2- 4.64 4.09 4.38 [32] 
120 -2,5-furanyl- Ph(CH2)2- 5.30 4.95 4.95 [32] 
121 -2,5-thienyl- Ph(CH2)2- 4.32 4.55 4.71 [32] 

N

N N

N

NH2

R8

Ph  

No. R8 Obs. pIC50 GA-RF RF Ref. a 

122 * -(CH2)2-OPO(OH)2 4.40 4.13 4.21 [32] 
123 -2,5-furanyl-SO3H 3.82 4.43 4.50 [32] 

 

No. R2 R R9 Obs. pIC50 GA-RF RF Ref. a 

124 H -N(Me)2 -(CH2)2Ph 3.60 4.11 4.17 [32] 
125 H -NHMe -(CH2)2Ph 4.30 4.46 4.41 [32] 
126 H Cl -(CH2)2Ph 4.30 4.61 4.59 [32] 
127 H -NH2 -CH2CH(Ph)2 4.15 4.31 4.47 [32] 
128 H -NH2 -(CH2)2(cyclohexyl) 5.85 5.54 5.54 [32] 
129 H -NH2 -(CH2)(2-naphthyl) 5.48 5.22 5.19 [32] 
130 H -NH2 cyclopropyl 5.82 5.70 5.78 [32] 
131 H -NH2 cyclopentyl 5.70 5.69 5.76 [32] 
132 H -NH2 Et 5.74 5.65 5.76 [32] 
133 H -NH2 isobutyl 5.82 5.81 5.82 [32] 
134 H -NH2 neopentyl 6.10 5.87 5.87 [32] 

135 * -SMe -NH2 isobutyl 6.15 5.52 5.42 [32] 
136 -SO2Me -NH2 isobutyl 4.55 4.95 4.99 [32] 

 

No. R2 R9 [linker] Obs. pIC50 GA-RF RF Ref. a 
137 * H -CH2C(Me)2CH2OH 2,5-furanyl 5.35 5.52 5.40 [32] 
138 H -CH2C(Me)2CH2Cl 2,5-furanyl 6.05 5.83 5.91 [32] 

139 * H -CH2C(Me)2CMe3 2,5-furanyl 5.80 5.66 5.67 [32] 
140 * H -CH(Me)CMe3 2,5-furanyl 5.30 5.72 5.74 [32] 
141 -NH2 -CH2CMe3 2,5-furanyl 5.26 5.27 5.27 [32] 

142 * -SMe -CH2CMe3 2,5-furanyl 5.96 5.54 5.42 [32] 
143 * H -CH2CMe3 2,5-(3,4-di-Cl)furanyl 4.89 5.56 5.42 [32] 
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Table 3. Cont. 

 

No. R Obs. pIC50 GA-RF RF Ref. a 
144 * Me 5.22 5.49 5.70 [33] 
145 Et 5.65 5.80 5.88 [33] 
146 nPr 5.96 6.00 6.03 [33] 

147 * iBu 5.82 5.91 6.00 [33] 
148 cycllopropyl-CH2- 6.10 6.03 6.02 [33] 
149 cyclobutyl-CH2- 6.10 6.04 6.01 [33] 
150 cyclopentyl-CH2- 5.82 5.87 5.81 [33] 
151 cyclohexyl-CH2- 5.60 5.64 5.63 [33] 
152 cycloheptyl-CH2- 5.49 5.57 5.64 [33] 
153 norbornyl 6.00 5.94 5.85 [33] 

154 * benzyl 5.30 5.72 5.70 [33] 
155 4-tBu-benzyl 5.02 5.26 5.34 [33] 
156 4-CF3-benzyl 5.15 5.50 5.51 [33] 
157 4-Ph-benzyl 5.60 5.63 5.59 [33] 

158 * 3-furanyl-CH2- 5.38 5.74 5.68 [33] 
159 * 3-HO-benzyl 5.73 5.87 5.75 [33] 
160 * 3-thienyl-CH2- 5.40 6.02 6.08 [33] 

 

No. R1 R5 R7 Obs. pIC50 GA-RF RF Ref. a 

161 * iBu Et H 5.60 5.86 5.87 [33] 
162 iBu nPr H 5.52 5.69 5.66 [33] 

163 * iBu MeO H 6.15 6.41 6.25 [33] 
164 iBu OH H 6.30 6.23 6.24 [33] 
165 iBu Cl H 6.70 6.52 6.56 [33] 
166 iBu H Cl 6.05 6.19 6.11 [33] 
167 iBu Br H 6.40 6.32 6.29 [33] 

168 * iBu H Br 6.40 6.21 6.14 [33] 
169 * iBu F H 7.00 6.56 6.47 [33] 
170 * (Et)2CHCH2- F H 6.82 6.83 6.57 [33] 
171 (Et)2CH- F H 6.07 6.42 6.38 [33] 

172 * cPr-CH2- F H 7.26 6.54 6.53 [33] 
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Table 3. Cont. 

 

No. R5 R6 R7 Obs. pIC50 GA-RF RF Ref. a 

173 Br H Br 6.00 6.09 6.03 [33] 
174 Cl H Cl 6.35 6.34 6.30 [33] 

175 * F H Cl 7.00 6.77 6.67 [33] 
176 F H Br 6.89 6.75 6.67 [33] 
177 F Cl H 6.65 6.66 6.59 [33] 
178 Br Cl Cl 5.00 5.53 5.60 [33] 

179 * F H vinyl 6.55 6.90 6.94 [33] 
180 F H cPr 7.22 7.08 7.10 [33] 

 

No. R7 Obs. pIC50 GA-RF RF Ref. a 

181 * Ph 7.05 6.79 6.83 [33] 
182 4-F-Ph 6.74 6.74 6.75 [33] 
183 4-Cl-Ph 7.05 6.94 6.81 [33] 
184 Et 7.26 7.07 7.06 [33] 
185 nPr 7.00 6.99 7.02 [33] 
186 tBu(CH2)2- 6.68 6.70 6.67 [33] 
187 (Me)2CH(CH2)3- 7.00 6.92 6.99 [33] 
188 HO(CH2)3- 7.10 6.97 7.05 [33] 
189 (Me)2N(CH2)3- 7.26 6.72 6.73 [33] 

190 * Cl(CH2)4- 7.15 6.74 6.78 [33] 

* test set; a from the corresponding references. 

2.5. Further Test for the External Prediction Power 

To validate firmly the performances of the prediction, the squared correlation coefficient values 

between the observed and predicted values for the test set compounds with intercept (r2
ts) and without 

intercept (r2
o) are also calculated. Table 4 presents the values of the parameters for all models in the 

present work. According to references [19,34], models are considered acceptable if they satisfy all  

the following conditions: (1) r2
pred > 0.5, (2) r2

ts > 0.6, and (3) r2
o is close to r2

ts, such that the  

[(r2
ts − r2

o)/r
2
ts] < 0.1 and 0.85 ≤ k ≤ 1.15. When the predicted values of the test set compounds (x axis) 

are plotted against the observed values of the compounds (y axis) with the intercept set to zero, the slope 

of the fitted line gives the value of k, with the corresponding correlation coefficient r2
o. Herein, r2

o is a 

quantity characterizing linear regression with the y-intercept set to zero, which can be illustrated by  
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y = kx; while r2
ts is the conventional coefficient of determination for the best fit linear regression  

(i.e., denoted by y = ax + b) in the test set [19,28]. It can be noticed that the developed GA-RF and 

pure RF models fully satisfy all the requirements, but the latter is relatively less accurate than GA-RF. 

Table 4. External predictability of GA-RF model. 

Model r2
ts r2

pred r2
o
 (r2

ts − r2
o)/r2

ts k r2
m

 

GA-RF 0.91 0.90 0.90 0.01 1.01 0.83 
RF 0.87 0.85 0.85 0.02 1.01 0.76 

Roy et al. have reported [35] that the r2
pred may, sometimes, not truly reflect the predictive capability 

of a model on a new dataset. Also, the squared regression coefficient r2
ts between the observed and 

predicted values of the test set compounds does not necessarily mean that the predicted values are very 

near to the observed activities. To better evaluate the external predictive capacity of a model, a modified 

r2
ts term, r2

m, is suggested as follows [20]: 

)rr1(rr 2
o

2
ts

2
ts

2
m −−×=

 
(1)

In case of good external prediction capacity, predicted values will be very close to the observed ones 

and thus the r2
ts will be very near to the r2

o. In the best case r2
m may be equal to r2

ts, whereas in the worst 

case the r2
m value could be zero. Herein, the built GA-RF model achieves a better r2

m value of 0.83 than 

RF (0.76), which illustrates that the current model possesses a highly predictive power. 

2.6. Investigation of Parameter Turning on the GA-RF Model 

As seen from Tables 2 and 4, since the proposed GA-RF model illustrates relatively better statistical 

results than the pure RF model, the following analysis is only restrict to this model. Generally, RF has 

effectively only one tuning parameter, mtry, which is the number of the descriptors randomly sampled as 

candidates for splitting at each node during the tree induction. It ranges from 1 to p, the total number of 

descriptors available, in which p is equal to 40. Although it has been reported [17] that RF still 

performs well using the default mtry value (p/3), one still expects to investigate the effect of parameter 

turning. Herein, 50 replications of OOB estimation (r2
oob) based on the FBPase inhibitors are performed, 

with the purpose to assess the correlation between the actual and predicted data with a range of mtry 

values, including the default value, which is equal to 13 for the current study. Figure 3 shows the 

boxplot of these correlations. This plot suggests that mtry is optimal when near five with a median value 

of 0.701, while the default mtry gives a median value of 0.696. Both results are comparable. It is also 

observed that the worst statistical results are derived from mtry = 1 and = 40. The observation is in 

agreement with the previous report [17]. From this Figure, one can notice that it is necessary to 

perform a moderate parameter tuning to get the optimal one, although at most times, RF can give the 

optimal model by using default parameters. 
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Figure 3. Boxplot of 50 replications of OOB estimation (r2
oob) at various values of mtry. 

Horizontal lines inside the boxes are the median correlation. 

 

Besides the mtry, the number of trees also has an effect on the RF performance [17]. One principle 

of building RF model is to ensure that there are sufficient trees in the forest in order to get enough 

training of each sample. To illustrate this, the performances of OOB set, test set and training set are 

compared with the increase of the number of trees. Figure 4 shows that similar tendency exists for the 

tracks of the OOB mean squared errors, the test set and the training set ones, once there are a sufficient 

number of trees. In the present work, 100 trees are enough to build RF model. The information 

obtained from this Figure is that mean squared errors of the test and OOB do not increase after the mean 

squared errors of training set reach the minimum; instead, they converge to their asymptotic values 

which are also close to their minimum. In this sense, it can be concluded that RF does not overfit, which 

has been supported by the previous reports [17,23]. 

Figure 4. Comparison of mean squared errors from out-of-bag (OOB) set, test set and 

training set as the number of trees increases for FBPase inhibitors. 

 

2.7. Y-Randomization Check 

Presently, the Y-randomization check [34] is implemented for further assurance of the robustness of 

the optimal GA-RF model. The dependent variable is randomly shuffled and a new QSAR model is 
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developed using the original independent variable matrix. The new QSAR models (after several 

repetitions) are expected to possess low r2
ncv, r

2
cv, r

2
ts, r

2
pred, r

2
m and high RMSE for the training and test 

sets, respectively. If the opposite happens, then an acceptable QSAR model cannot be obtained for the 

specific modeling method and data. In the current work, the Y-randomization check is repeated 500 

times and the resulting statistics are compared with the prediction statistics without such checks, with the 

average values reported in Table 5. As shown in this Table, the correlation coefficients have a significant 

decline while the RMSE values sharply increase, which indicates that the proposed GA-RF model 

possesses a real prediction power, and the result is not due to a chance correlation. 

Table 5. Comparison with and without Y-randomization check of the optimal GA-RF model. 

Model 
Training Set Test Set 

r2
ncv r2

cv RMSE r2
ts r2

pred r2
m RMSE 

GA-RF a 0.96 0.67 0.25 0.91 0.90 0.83 0.34 
GA-RF b 0.01 −0.14 1.27 0.06 −0.10 0.04 1.13 

a without Y-randomization check; b with Y-randomization check. 

2.8. Explanation of the Selected Descriptors 

The ideal QSAR model would be robust, sparse, predictive, and interpretable. In many cases such an 

ideal is not achievable with current descriptors and the corresponding variable mapping methods, 

although much effort is being expended in approaching this ideal. In most QSAR researches, a full direct 

explanation for all the descriptors is difficult, where most similar reported works all give few detailed 

analyses of the descriptors involved in their model development, thus only a few descriptors in this work 

are explained. Generally speaking, QSAR can be classified into two categories: Interpretative QSAR 

and predictive QSAR. For the current work, it belongs to the latter. In spite of this fact, we still attempt 

to offer some rational explanations for the major descriptors using RF built-in variable importance 

measure technology. Figure 5 depicts the variable importance plot of the GA-RF model. Herein, there 

are two parameters that give the definitions of the variable importance measures: (1) Mean Decrease 

Accuracy (%IncMSE) and Mean Decrease Gini (IncNodePurity). The higher values of these two 

parameters represent the higher variable importance. For more details about these parameters, please 

refer to the corresponding literature [36,37]. In Figure 5, it can be seen that the first two most 

important descriptors are D561 and D562 surrounded by the red frames. D561 refers to the lowest 

eigenvalue from Burden matrix weighted by polarizabilities order-6, while D562 stands for the lowest 

eigenvalue from Burden matrix weighted by polarizabilities order-7. Both descriptors illustrate that 

molecular polarizabilities play a central role in FBPase inhibitory activity, which can be supported by 

the experimental results [29–33]. Previous literature has illustrated that the phosphate group forms a 

constellation of hydrogen bond interactions that are essential for binding affinity [32]. In the present 

work, it can be observed that all the studied compounds possess the phosphate group and most of them 

have oxazole and thiazole groups as well as -NH2 substituents, which increase the molecular polarity. 

In addition, previous reports have also depicted the similar conclusion that the polar groups are favored 

to increase the FBPase inhibitory activity [16,38]. As suggested in the literature that the FBPase 

binding pocket presents the hydrophilic nature [11] and the polar groups of inhibitors will bind to the 
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site, leading to potent inhibition of the enzyme. The information obtained by the current work, to some 

degree, provides an insight into the structural features of both oxazole and thiazole FBPase inhibitors 

from a theoretical point of view, which should be helpful to design new FBPase inhibitors of this series 

for the treatment of type 2 diabetes. It should be pointed out that herein we just present a representative 

explanation of the selected descriptors. However, in terms of developing a highly predictive model, the 

proposed GA-RF model in this work could implement this task. 

Figure 5. Variable importance plot from GA-RF. The first two important descriptors are 

surrounded by red frames. 

 

3. Experimental Section 

3.1. Dataset 

A large, diverse dataset of 190 FBPase inhibitors were collected from the literature [29–33] published 

by Dang and co-workers after removing duplicated and undesirable compounds. Here the converted 

molar pIC50 (−logIC50) values, ranging from 3.60 to 8.00 M, were used as the dependent variables in the 

QSAR regression analysis to improve the normal distribution of the experimental data points. The whole 

data set was divided into training (126) and test (64 molecules) sets, respectively. All structures and the 

corresponding activity values of the dataset as well as their belongings to the training and test sets are 

listed in Table 3. 

3.2. Descriptor Calculation 

A rational design of novel lead drug is getting more and more popular [39]. QSAR, one of the most 

frequent drug design methods, can build a bridge between molecular descriptors and statistical 

methods to predict the new compounds. In the present work, all two-dimensional structures of the 

dataset were built with the ISIS/Draw 2.3 program, and converted SDF format by the Open Babel 

software package [40]. The final structures were transferred into Mold2 [18], a free program available 

to the public, to calculate molecular descriptors. The Mold2 software package can calculate 777 

molecular descriptors solely from 2D chemical structures. Hong et al. have reported that the models 

generated using Mold2 descriptors were comparable to those obtained using descriptors from the 

commercial software packages. In our work, all original 777 molecular descriptors were calculated. 
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3.3. Computational Methods 

GA: Genetic algorithm is derived from Darwin’s theory of natural selection and evolution. Based on 

the Darwinian principle of survival of the fittest, GA obtains the optimal solution after a series of 

iterative computations including selection or reproduction, crossover or recombination, and mutation. 

Due to its highly efficient optimization algorithm, GA has already been successfully applied in many 

QSAR analyses [41–44] to perform variable selection. In the present work, the binary coding form of 

each chromosome was adopted with 1 and 0 representing selected and non-selected descriptors, 

respectively. The double point crossover was employed in our study [45–47], which allowed new 

solution regions in the search space to be explored in order to get the global optimum. In binary code 

genes, the code may be changed from 0 to 1 or vice versa through mutation operation. As a last step, the 

old population was replaced by children, and a new generation was produced. The evolutionary process 

operated for many generations until the termination condition was satisfied [47]. For the detailed 

methodology about GA, please refer to the corresponding literature [48,49]. 

RF: Random forest is an ensemble of single decision trees, producing a corresponding number of 

outputs, and the outputs of all trees are aggregated to obtain one final prediction. The training algorithm 

of RF for regression can be briefly summarized as follows [17,25]: (1) draw N bootstrap samples from 

the original training set; (2) construct an un-pruned tree Tp (p = 1, …, N) with each training set Bp. At 

each node, rather than choosing the best split among all predictors, randomly sample mtry of the 

predictors and then choose the best split from among those variables. The tree is grown to the maximum 

size and not pruned back; (3) predict the N trees by average for regression. The tree growing algorithm 

used in RF is CART which is efficient especially when the number of descriptors is very large, with the 

reason being that RF only tests the mtry of the descriptors rather than the whole one, where the default 

mtry is one-third of the number of descriptors for regression. Since the number of mtry is very small, the 

search can finish quickly.  

RF possesses its own reliable statistical characteristics based on OOB set prediction, which could be 

used for validation and model selection with no cross-validation performed. It was shown that the 

prediction accuracy of an OOB set and a five-fold cross validation procedure was nearly the same [17]. 

Although RF performs relatively well “off the shelf” without expending much effort on the parameter 

tuning or variable selection [17], it is also of importance for carrying out some tentative investigations on 

the changes of mtry or descriptor selection to optimize the performance of RF. Herein, we just present a 

brief introduction of RF, for more details please see the corresponding literature [17,50]. It has been 

reported that RF can show excellent performance even when most predictive variables are noise, and it 

can be used when the number of variables is much larger than the number of observations, and it returns 

measures of variable importance [17,50]. However, to obtain an ideal regression model, a variable 

selection process is still required. To achieve the above objective, in this work, the GA variable selection 

method using OOB MSE as the fitness function was carried out to achieve the regression task for the 

current FBPase inhibitors in order to yield a high prediction model. 
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3.4. Statistical Validation 

In the current study, the selected descriptors served as independent variables and the pIC50 values as 

dependent variables in the RF regression analysis. The inner predictive values of the models were 

evaluated first by a cross-validation process [51,52]. The cross-validated coefficient, r2
cv, was calculated 

using Equation (2): 
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where iy , iŷ , and try  are the observed, predicted, and mean values of the target property, respectively, 

for the training set. Herein, 2
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1i
ii )ŷy(

=

−  is the predictive residual sum of squares (PRESS). The 

optimal number of components obtained from the cross-validation was used to derive the final QSAR 

model. Then, a non-cross-validation analysis was carried out; and the Pearson coefficient (r2
ncv) and 

RMSE were calculated. 
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where n denotes the number of the studied compounds. 

It has been reported [19] that although the low value of r2
cv for the training set can exhibit a low 

predictive ability of a model, the opposite is not necessarily true. That is, a high r2
cv is necessary, but not 

sufficient, for a model with a high predictive power. Therefore, the external validation must be estimated 

to establish a reliable and predictive QSAR model. The predictive coefficient r2
pred listed in the following 

equation was used to check the models. In addition, various criteria suggested by Tropsha and  

Roy [19,20] were also performed to validate the predictive power of the current built models. 

)SD/"PRESS("1r 2
pred −= (4)

where SD is the sum of the squared deviations between the actual activity of the compounds in the test 

set and the mean activity in the training set, and “PRESS” is the sum of the squared deviations between 

predicted and observed activity for each compound in the test set. 

4. Conclusions 

In the present work, a GA-RF algorithm is successfully proposed as an efficient chemoinformatic 

method to predict FBPase inhibitory activity. The GA-RF model went through all rigorous 

examinations suggested by Tropsha and Roy with r2
pred of 0.90 and r2

m of 0.83, exhibiting its feasibility 

and reliability to derive a highly predictive model for FBPase inhibitors. In addition, results from a 

Y-randomization check illustrate that the GA-RF model possesses real prediction power not due to 

chance correlation. Explanation of the selected descriptors by GA-RF suggests that the polar factors 

play a central role in the FBPase inhibition. Thus, the proposed model is useful for predictive tasks to 

screen for new and potent oxazole and thiazole series of FBPase inhibitors in early drug development. 
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