
Frontiers in Immunology | www.frontiersin.

Edited by:
Ji Ming Wang,

National Cancer Institute at Frederick,
United States

Reviewed by:
Antonino Bruno,

MultiMedica (IRCCS), Italy
Manoj B. Menon,

Indian Institute of Technology Delhi,
India

*Correspondence:
Michael B. Yaffe
myaffe@mit.edu

Specialty section:
This article was submitted to

Cytokines and Soluble
Mediators in Immunity,
a section of the journal

Frontiers in Immunology

Received: 18 September 2020
Accepted: 30 December 2020
Published: 23 February 2021

Citation:
Suarez-Lopez L, Kong YW, Sriram G,

Patterson JC, Rosenberg S,
Morandell S, Haigis KM and Yaffe MB

(2021) MAPKAP Kinase-2 Drives
Expression of Angiogenic

Factors by Tumor-Associated
Macrophages in a Model of

Inflammation-Induced Colon Cancer.
Front. Immunol. 11:607891.

doi: 10.3389/fimmu.2020.607891

ORIGINAL RESEARCH
published: 23 February 2021

doi: 10.3389/fimmu.2020.607891
MAPKAP Kinase-2 Drives
Expression of Angiogenic Factors
by Tumor-Associated Macrophages
in a Model of Inflammation-Induced
Colon Cancer
Lucia Suarez-Lopez1,2, Yi Wen Kong1, Ganapathy Sriram1, Jesse C. Patterson1,
Samantha Rosenberg1, Sandra Morandell 1, Kevin M. Haigis2 and Michael B. Yaffe1,3*

1 Center for Precision Cancer Medicine, Koch Institute for Integrated Cancer Research and Departments of Biological
Engineering and Biology, Massachusetts Institute of Technology, Cambridge, MA, United States, 2 Department of Cancer
Biology, Dana Farber Cancer Institute, Boston, MA, United States, 3 Divisions of Acute Care Surgery, Trauma and Surgical
Critical Care, and Surgical Oncology, Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, United States

Chronic inflammation increases the risk for colorectal cancer through a variety of
mechanisms involving the tumor microenvironment. MAPK-activated protein kinase 2
(MK2), a major effector of the p38 MAPK stress and DNA damage response signaling
pathway, and a critical regulator of pro-inflammatory cytokine production, has been
identified as a key contributor to colon tumorigenesis under conditions of chronic
inflammation. We have previously described how genetic inactivation of MK2 in an
inflammatory model of colon cancer results in delayed tumor progression, decreased
tumor angiogenesis, and impaired macrophage differentiation into a pro-tumorigenic M2-
like state. The molecular mechanism responsible for the impaired angiogenesis and tumor
progression, however, has remained contentious and poorly defined. Here, using RNA
expression analysis, assays of angiogenesis factors, genetic models, in vivo macrophage
depletion and reconstitution of macrophage MK2 function using adoptive cell transfer, we
demonstrate that MK2 activity in macrophages is necessary and sufficient for tumor
angiogenesis during inflammation-induced cancer progression. We identify a critical and
previously unappreciated role for MK2-dependent regulation of the well-known pro-
angiogenesis factor CXCL-12/SDF-1 secreted by tumor associated-macrophages, in
addition to MK2-dependent regulation of Serpin-E1/PAI-1 by several cell types within the
tumor microenvironment.

Keywords: signal transduction, MAPKAP kinase 2, tumor associated macrophage (TAM), inflammation driven
tumorigenesis, colon tumors, stress signaling, angiogenesis
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INTRODUCTION

Colorectal cancer is the third most common cancer type, and the
second leading cause of cancer-related deaths worldwide (1).
Chronic inflammation is an important contributor to tumor
development and progression in various types of cancer, including
those arising in the GI tract. Patients with inflammatory bowel
disease (IBD), for example, are at high risk of developing colon
tumors, particularly those with ulcerative colitis (UC) (2). Many of
these inflammatory effects are mediated through the tumor
microenvironment, including the recruitment of various types of
innate and adaptive immune cells, as well as modulation of local
stromal and endothelial cells as the tumors evolve.

Macrophages constitute one of the most frequent tumor-
infiltrating cell types. Once tumors are established, tumor-
associated macrophages (TAMs) promote tumor growth and
are required for angiogenesis, invasion, and metastasis (3). Not
surprisingly, high TAM content generally correlates with poor
prognosis (4). In broad terms, macrophages have been generally
classified into M1 and M2 types (5). M1 macrophages are
activated by IFN-g and microbial products, express high levels
of proinflammatory cytokines (TNF-a, IL-1, IL-6, IL-12 or IL-
23), major histocompatibility complex (MHC) molecules, and
nitric oxide synthase. These M1 macrophages are capable of
killing pathogens and can prime anti-tumor immune responses.
By contrast, M2 or ‘‘alternatively’’ activated macrophages, are
induced in vitro by IL-4 and/or IL-13, downregulate MHC class
II and IL-12 expression, and show increased expression of the
anti-inflammatory cytokine IL-10, scavenger receptor A, and
arginase. TAMs often express many genes typical of the M2
phenotype and have therefore been described as ‘M2-skewed’.
However, there is evidence that suggests that the phenotype of
TAMs vary with the stage of tumor development. M1-like cells
often predominate at sites of chronic inflammation where
tumors can develop, and then are replaced by M2-like
macrophages as the tumor begins to invade, vascularize and
develop (6). Tumor growth and metastasis requires an increased
intratumoral blood supply, which is normally triggered by tumor
hypoxia. Infiltrated TAMs respond to hypoxic signals by
producing pro-angiogenic cytokines and growth factors such as
angiopoietin 2, vascular endothelial growth factor (VEGF), IL-8,
CXCL1, and FGF-2, among others, to induce the recruitment,
proliferation and maturation of endothelial cells to create new
blood vessels, in a process referred to as “the angiogenic switch”
(7). The signaling pathways responsible for changing the
phenotypes of tumor-associated macrophages during the process
of tumorigenesis and progression, including the angiogenic switch,
remain incompletely defined (8, 9).

One commonly accepted model of tumor development posits
that cancers co-opt many of the normal wound repair signals that
non-cancerous tissues use to respond to injury, stress, and DNA
damage (10, 11), in order to grow, remodel their surrounding
stroma, become vascularized, and create an immune suppressive
microenvironment. Our long-standing interest in stress, cell injury,
and protein kinase-mediated DNA damage signaling, both within
epithelial tumor cells, and between the supporting stromal and
immune cells and the developing tumor, led us to study specific
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signaling pathways in inflammation-induced tumor progression,
and in the response of growing tumors to cytotoxic treatments,
using systems biology approaches (12–15). One particularly
important pathway that emerged from these studies is the
p38MAPK pathway, and its downstream effector kinase
MAPKAP Kinase-2 (MK2). This pathway is critical for
production of inflammatory cytokines and chemokines in
macrophages, including TAMs (16, 17). In response to
inflammatory stimuli (i.e. Toll-like receptors, TNF-a or IL-1
receptor activation for example), MAPK kinase-3 and 6 (MKK3
and MKK6) phosphorylate and activate p38a (18), which, in turn,
phosphorylates and activates MK2, with which it forms a stable
heterodimeric complex in the nucleus. p38a phosphorylation of
MK2 exposes its nuclear export signal (NES), resulting in export of
both active p38a and active MK2 out of the nucleus (19, 20). In the
cytoplasm, MK2 phosphorylates Tristetraprolin (TTP), an RNA-
binding protein that normally binds to AU-rich elements (ARE) in
cytokine-encoding mRNAs, targeting them for degradation in the
absence of inflammatory stimuli. Phosphorylation of TTP by MK2
mediates the formation of a TTP: 14-3-3 protein complex, leading
to TTP release from AREs and increased cytokine mRNA
translation (21, 22). Pro-inflammatory cytokines like IL-1b, IL-4,
IL-6, IL-8, GM-CSF, IFN-g, TNF-a and COX2 are post-
transcriptionally up-regulated by MK2 by this mechanism (23).
In addition, a novel alternative role for the p38a-MK2 pathway in
suppressing cytokine production through TTP in an mRNA
stability-independent manner has recently been reported in
TAMs under conditions of constitutive inflammation within the
tumor microenvironment, likely limiting the extent of total
inflammatory cytokine production within the tumors (24).

We recently reported that genetic depletion of MK2 within the
myeloid compartment—neutrophils, dendritic cells, macrophages,
etc.—reduced inflammatory colon tumor progression and
impaired tumor neo-angiogenesis. In addition, we showed that
MK2 was required for in vitro macrophage polarization into the
pro-angiogenic M2 phenotype (25). Here we further explore the
specific importance of macrophages and MK2 function in vivo
during inflammation-induced tumor development, using RNA-
Seq, direct assays of angiogenesis factors and macrophage
reconstitution experiments. We describe how MK2-depleted
macrophages show reduced expression of pro-angiogenesis
factors, both in vitro and in vivo, and how reconstitution of
MK2 function in the macrophage compartment is both
necessary and sufficient to restore angiogenesis factor expression,
efficient angiogenesis and tumor progression.
MATERIAL AND METHODS

Mice
MK2 KO mice were generated as described previously (25) and
maintained in a C57BL/6N background. In order to deplete MK2
in myeloid linages (LysM-KO mice), mice carrying a floxed allele
of MK2 (MK2 FL/FL) were crossed with Lyz2 tm1(cre)Ifo strain
(26). LysM-KO and non Cre-carrier littermate controls (LysM-
FLFL) were backcrossed 5 generations to C57BL/6N.
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Murine Bone Marrow-Derived
Macrophage (BMDM) Differentiation
and Polarization
Bone marrow cells were isolated from femurs and tibias of MK2
WT and MK2 KO mice by briefly centrifuging the bones at
15,000 x g for 15s at 4°C in a 1.5 ml eppendorf tube. After red
blood cell lysis in RBC lysis buffer (eBioscience), 2x106 cells per
ml were seeded on 10cm bacterial plates in IMDM supplemented
with 10ng/ml murine M-CSF. An equal volume of M-CSF
supplemented media was added on top of the existing media
72 h post-seeding. On day 7 after seeding, cells were detached
using 5 mM EDTA in PBS w/o Ca andMg, and re-plated on 6 cm
tissue culture plates at 4 million cells per plate in IMDM (10%
FBS with antibiotics). Cells were allowed to attach for 12 h. To
induce polarization, cells were either unstimulated, or treated
with 10 ng/ml murine IL-4 (Gibco to obtain M0 and M2 cells
respectively and harvested 24h post-stimulation.

RNA Extraction and RNA Sequencing
RNA from macrophage cultures was obtained using TRIzol
(Invitrogen) and further purified using the RNeasy Mini Kit
(Qiagen), following manufacturer’s instructions. RNA quality
was measured using the Bioanalyzer (Agilent), to ensure RQN
values were above 9 before submitting the samples for RNAseq.
50ng RNA was submitted per sample to the MIT BioMicro
Center for Illumina library preparation and sequencing. Briefly,
libraries were prepared for sequencing using the Kapa
Hyperprep kit (Roche) and fragments were verified to be
around 200bp. 40nt single-end sequencing was performed on
HiSeq2000. The quality of the RNA-seq data was assessed using
the FastQC [v0.11.7 (27),] tool prior to downstream analysis.

Gene Mapping and Gene Annotation
Single-end RNA-Seq data was mapped to the Mus musculus
genome (GRCm38 (mm10) build from Gencode (28), using
RSEM (RNA-Seq by Expectation maximization) with Bowtie 2
as the aligner (29). Expected counts, expected counts rounded,
TPM and FPKM files were generated.

EdgeR
EdgeR was used to perform differential gene expression analysis
using the expected counts rounded values. Exact test was
performed for each pairwise comparison (MK2-WT M0 vs
MK2-WT M2 macrophages, MK2-WT M0 vs MK2-KO M0
macrophages, MK2-WT M0 vs MK2-KO M2 macrophages,
MK2-WT M2 vs MK2-KO M0 macrophages, MK2-WT M2 vs
MK2-KO M2 macrophages, MK2-KO M0 vs MK2-KO M2
macrophages) (30, 31). Resulting data from the edgeR analysis
between M2 macrophages isolated from MK2 WT and MK2 KO
mice was visualized using EnhancedVolcano (32).

GeTMM
To allow for both inter- and intra-sample comparison, we used
the normalization algorithm GeTMM (Gene length corrected
TMM), which combines gene-length correction (required for
intrasample comparison) with the normalization procedure
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TMM (Trimmed Mean of M-values; required for intersample
comparison) (33). Z-scores were calculated for GeTMM
normalized data (FDR<0.05) and visualized as a heatmap using
the software MeV v4.8.1. Pearson correlation based hierarchical
clustering was performed and the sample tree/edge lengths were
plotted in Dendroscope (v3.5.10).

GSEA
Hypergeometric GSEA was performed on DE genes from edgeR
analysis between M2 macrophages isolated from MK2 WT and
MK2 KO mice (FDR<0.05, fold change -/+ 2) and overlaps with
GO biological processes (C5, BP) were computed. Following
hierarchical unsupervised clustering, hypergeometric GSEA was
also performed on the DE genes from cluster 6 and overlaps with
GO biological processes (C5, BP) were computed (34–36).

Protein Array
Angiogenesis-related proteins were analyzed using the Mouse
Angiogenesis Proteome Profiler™ Array Kit (R&D Systems),
following manufacturer’s instructions. This immunoassay allows
the simultaneous analysis of 31 angiogenesis-related proteins,
shown in Supplemental Table 1. Bone-Marrow derived
macrophages were obtained from MK2 WT and KO mice as
described above, plated at the same cellular density (1X106 cells/
ml in a total 3 ml of culture) and treated with IL-4 to induce M2
polarization. Twenty-four hours after M2 induction, the same
volume of cell culture supernatants (500 µl) was collected and
diluted 1:3 for protein array assay. Membranes were scanned and
pixel intensity of each spot was quantified in ImageJ, after
background subtraction.

Murine Colitis-Associated Cancer
Inflammation-induced colitis associated cancers were generated
in WT and MK2 KO mice as described previously (25). In brief,
8–12 weeks old male mice were administered 2.5% DSS (MP
biochemicals) in the drinking water for 5 days every 21 days, for
a total of 5 cycles to induce chronic inflammation. Colon tumors
were generated by intraperitoneal administration of 10 mg/ml of
Azoxymethane (AOM, Sigma) before chronic DSS administration
(37). Colons were harvested and tumors examined 100 days after
AOM administration under a dissecting scope. Tumor images
were taken and tumor size was measured using ImageJ (38).

All mouse studies were approved by the MIT Institutional
Committee for Animal Care and conducted in compliance with
the Animal Welfare Act regulations and other federal statutes
relating to animals and experiments involving animals and
adhere to the principles set forth in the Guide for the Care and
Use of Laboratory Animals, National Research Council, 1996
(Institutional Animal Welfare Assurance No. A-3125–01).

Macrophage Depletion
To deplete macrophages during AOM/DSS induced colon
tumorigenesis, mice were intraperitoneally administered 1mg
of anti-CFSR1 antibody (BioXcell) once weekly in the AOM/DSS
protocol starting right before the fourth cycle of DSS (day 68)
until the end of the protocol (day 100), as previously described
February 2021 | Volume 11 | Article 607891
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(39). Control animals were administered Rat IgG2A as an isotype
control as recommended by the manufacturer.

Macrophage depletion efficiency was determined by FACS
mediated-quantification of CD45+CD11b+F4/80+ cells, both in
the colonic mucosa and peritoneal cavity, of mice administered
with 1mg IgG or anti-CFSR1 7 days after one single injection of
1mg of antibody. For lamina propria macrophages, colons were
flushed with cold PBS and minced with a razor blade and
digested with Liberase TL (0.3mg/ml)/DNAse (10µg/ml)
solution for 40 min at 37°C. Digested tissue was then filtered
through 100uMmesh and washed in PBS solution containing 1%
FBS, 2mM EDTA. Peritoneal resident macrophages were
obtained by peritoneal lavage using 5 mL of ice- cold PBS
supplemented with 2% FBS. Single cell suspensions were
incubated for 10 min at room temperature with Fc blocking
(CD16/32) antibody (eBioscience) prior to staining with
fluorochrome-conjugated antibodies against mixtures of the
following antigens: CD45, CD11b and F4/80. DAPI was used
to exclude dead cells. Multiparameter analysis was performed on
a LSR Fortessa (BD) and bi-dimensional dot plots were generated
using FlowJo software.

Macrophage Adoptive Transfer
Bone-marrow cells were obtained from 8–10 weeks old male
C57BL/6N mice as described above. Cells were cultured in
IMDM media supplemented with 15% L-929 conditioned
media to maximize cell numbers. To generate conditioned
media, L-929 cell line was cultured in IMDM 10% FBS with
antibiotics for 7 days. Media was collected, filtered through
0.22uM filters and stored at −80°C for later use.

After seven days in culture, macrophages were detached and
counted, resuspended in sterile PBS and intraperitoneally
administered to mice. One million cells per mouse was
administered once weekly to mice under AOM/DSS protocol,
from day 68 to the end of the experiment (Day 100).

Immunohistochemistry
Harvested colons were flushed with PBS and Swiss-rolled prior
to fixation in 10% neutral buffered formalin and paraffin
embedding. Four micron sections were de-waxed and
rehydrated before heat-mediated antigen retrieval in citrate
buffer (pH 6). Anti-Serpin-E1 (Thermo-scientific MA5-17171,
1:1,000), anti-Cxcl12 (R&D systems MAB350-SD, 1:200), anti-
Timp1 (Thermo-scientific MA5-13688 1:100), Anti F4/80 (CST
70076S, 1:250), anti-Arg1 (CST 93668S, 1:100), anti-iNOS (CST
13120S, 1:400), anti-CD31 (Abcam, ab28364, 1:200) antibodies
were used for immunohistochemistry. Impact DAB (Vector)
secondary antibodies were used, and samples were hematoxylin
counterstained before mounting. Slides were scanned in a Leica slide
scanner before analysis, which was performed using Aperio
ImageScope software. Leica’s “positive cell count” algorithm was
used for automated counting of positive cells in all immunostainings,
except CD31 and F4/80 staining, where the staining pattern does not
allow easy automated identification of single cells. In these cases, the
“positive pixel count” algorithm was used instead. In all cases,
positive counts (cells or pixels) were normalized by the analyzed
area in mm2.
Frontiers in Immunology | www.frontiersin.org 4
Statistical Methods
Unless stated otherwise, all data was plotted and analyzed in
GraphPad Prism software, using Student’s t test analysis. Data
represent the mean +/− SEM. For tumor size analysis, all tumor
sizes from all mice within same experimental group were pooled
for statistical analysis. For IHC, stained slides from serial sections
of Swiss-rolled entire colons were analyzed, and all tumor areas
from mice within the same experimental group were pooled for
statistical analysis.
RESULTS

MK2 Deficiency Markedly Alters the
Transcriptional Program During M2
Macrophage Polarization
We and others have previously described how MK2 genetic
inactivation results in a significant delay in tumor progression
in a mouse model of inflammation-driven tumorigenesis (25,
40–42). Interestingly, our study showed that while global
numbers of macrophages were not affected by loss of MK2
function (25), alternatively polarized, M2-like macrophage
recruitment was significantly reduced in the microenvironment
of colon tumors. Importantly, genetic knock-out of MK2 (either
constitutive or myeloid-compartment specific) resulted in a poor
vascularization of tumors (25), and conditioned media from
MK2-knock-out M2 macrophages exhibited reduced pro-
angiogenic capacities when incubated with endothelial cells in
vitro (25). To better understand the role of MK2 in macrophage
differentiation and function, we examined the impact of
knocking out MK2 on the transcriptional program that is
activated during macrophage M2 polarization using RNA-Seq
(Figure 1A). Unpolarized macrophages (M0) were isolated and
propagated from the bone marrow of six MK2 wild type (WT) or
from six MK2 knock out (KO) mice in the presence of the
cytokine M-CSF for 7 days (43). This protocol results in highly
enriched macrophages cultures (~80% purity) with similar
efficiency in WT and KO cells (25). MK2 WT or MK2 KO M0
cells were then either cultured for an additional 24 h in the
presence of the macrophage alternative activator IL-4 to drive
M2 polarization or treated with a vehicle (PBS) control. We have
previously reported IL-4 driven M2 polarization is defective in
MK2 KO macrophages compared to WT [% of CD206+ cells:
WT 45.35+/- 12.83 vs. KO 16.07+/-13.60 (25)]. RNA was
extracted and RNAseq was then performed on these six
biological replicates.

RNAseq reads were mapped to the mouse transcriptome
using RSEM (RNA-Seq by Expectation Maximization) and
EdgeR was used to identify differentially expressed (DE) genes
during M2 macrophage polarization, and further analyzed based
on MK2 status (31). Exact tests (classic EdgeR) were performed
on all pairwise combinations of MK2-WT M0 macrophages,
MK2-WT M2 macrophages, MK2-KO M0 macrophages, and
MK2-KOM0 macrophage populations. This analysis identified a
total of 4,627 differentially expressed genes with an FDR<0.05 in
any of the 6 pairwise comparisons (Supplemental Tables 2–7).
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FIGURE 1 | MK2 deficiency markedly alters the transcriptional program during M2 macrophage polarization. (A) Experimental scheme for polarization of bone
marrow-derived cells from MK2 WT and MK2 KO mice into M0 and M2 macrophages. (B) Dendrogram visualization of unsupervised hierarchical clustering analysis
of RNA-Seq data for M0 and M2-polarized macrophages derived from MK2 WT and KO mice. (C) Volcano plot showing the significantly expressed differential genes
following edgeR analysis of M2 macrophages derived from MK2 WT and KO mice. (D) GSEA analysis identifies the top 12 down- and up-regulated GO terms that
differ between M2-polarized macrophages derived from MK2 WT and KO mice. (E) Heatmap of RNA-Seq expression for genes that are differentially expressed
between MK2 WT M0, MK2 WT M2, MK2 KO M0 and MK2 KO M2 (FDR <0.05, all pairwise comparisons). Expression values were converted to z-scores to facilitate
visualization. (F) Hypergeometric test GSEA identification of the top 12 GO terms corresponding to genes in cluster 6 of panel E that are dysregulated in MK2-
deficient macrophages, compared to WT macrophages, following M2 polarization.
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As expected, in WTMK2 macrophages, addition of IL-4 resulted
in the increased expression of Arginase-1, Retnla, and MRC1
(CD206) which is indicative of M2 polarization (Supplemental
Table 1). Furthermore, a hypergeometric test performed on all of
the significantly up- and down-regulated genes (exact test; FDR
<0.05 and fold-change ≥ +/− 2; 1,1017 genes) showed significant
overlap with an M2 gene expression signature reported by
Jablonski and colleagues (44) (up-regulated genes, p=3.61e-14;
down-regulated genes, p=1.24e-15), further verifying polarization
of M0 macrophages to an M2 state.

To allow for both inter- and intra-sample comparison, we
used the algorithm Gene length-corrected Trimmed Mean of M-
values (GeTMM), which combines gene-length correction
(required for intra-sample comparison) with the normalization
procedure TMM (Trimmed Mean of M-values; required for
inter-sample comparison) (33). Only genes that were identified
to be significantly (FDR<0.05) DE in any of the 6 EdgeR pairwise
comparisons were used. We found that the six biological
replicates from each group clustered tightly with each other in
their groups. Interestingly, M0 macrophages from MK2 wild-
type mice and M0 macrophages from MK2 knock-out mice
clustered closer to each other than to their corresponding M2-
polarized counterparts (Figure 1B), suggesting that MK2-KO M0
macrophages are more similar to MK2-WT M0 macrophages than
they are to their corresponding M2-like states. Furthermore, this
gene expression-based clustering indicates that genetic deficiency of
MK2 inmacrophages does not completely abrogateM2 polarization,
since these cells cluster closer to WT M2 macrophages than to the
KO M0 cells, but it significantly altered the M2 transcriptional
program, since MK2-KO M2 samples clustered distinctly from the
MK2-WT M2 macrophage population.

Next, we examined the genes that were dysregulated in M2-
polarized macrophages upon MK2 genetic inactivation (cf. MK2-
WT M2 vs. MK2-KO M2 macrophages). We identified 440 genes
with FDR<0.05 with a fold change of ≥ -/+ 2 (Figure 1C,
Supplemental Table 4) that were differentially expressed
between WT and MK2-KO macrophages after polarization
towards an M2 state. To identify the functions associated with
these genes, GO biological process terms and their significance
were computed using the hypergeometric distribution, and the top
12 up- and down-regulated GO terms identified (Figure 1D) (34–
36). Interestingly, four of the top 12 down-regulated GO terms are
tube morphogenesis, cardiovascular system development, circulatory
system development, and tube development. These data agree with
our previous study and others (25, 45, 46), that reported roles for
MK2 in vasculature development and angiogenesis. Interestingly,
among the 12 GO terms most enriched in genes up-regulated upon
MK2 inactivation were regulation of kinase activity, phosphorus
metabolism and phosphorylation, consistent with the known cellular
role of MK2 as a central kinase in the p38/MAPK pathway (47).

Next, all significant DE genes identified by the EdgeR analysis
which combined all 6 pairwise comparisons between groups were
GeTMM normalized and used for unsupervised hierarchical
clustering. As shown in Figure 1E, this resulted in the appearance
of 8 distinct clusters of genes. Of particular interest is cluster 6, which
shows the largest difference in DE genes betweenMK2-wild type and
Frontiers in Immunology | www.frontiersin.org 6
MK2-deficient macrophages before and after M2 polarization. Most
of these genes showed striking down-regulation in the MK2 KO
macrophages compared to their WT counterparts upon M2
polarization. Hypergeometric GSEA analysis of the genes in cluster
6 (Figure 1F) identified vasculature development and circulatory
system development as particular important GO terms that showed
MK2-dependent changes during M2 polarization. Taken together,
these RNA-Seq data indicate that MK2 deficiency significantly alters
the transcriptional program of M2 macrophage polarization, and
among the genes that are mostly significantly dysregulated are those
related to angiogenesis and vasculature development.

MK2 Deficiency Halts the Production
and Secretion of Pro-Angiogenic Factors
by M2 Macrophages
The observed transcriptomic changes indicate that MK2 is
required for the expression of a large number of genes directly
implicated in angiogenesis during M2 polarization. This finding
is in good agreement with our previous observation that
conditioned media from MK2-inhibited M2 macrophages was
defective in promoting the proliferation of endothelial cells and
driving their morphogenic transformation into vascular-like
structures in vitro. To further validate these RNA expression
results at the protein level, we directly measured the secretion of
known angiogenic factors byM2 polarized macrophages fromMK2
wild-type and KO mice. Culture supernatants from M2 polarized
macrophage were harvested from both MK2WT and KOmice and
the secretion of angiogenic factors in the media was then quantified
using a mouse angiogenesis antibody array (Figure 2A and
Supplemental Table 1) (R&D Systems). Of the 31 angiogenesis-
related factors represented on these arrays, 3 of them displayed
noticeably reduced levels in the supernatants of MK2-KO M2
macrophages compared to the WT controls: Serpin-E1, Cxcl-12
and Timp-1 (Figure 2B). Importantly, RNA expression levels for
these same factors from the transcriptome analysis shown in
Figure 1 revealed similar levels of RNA reduction in the MK2 KO
M2macrophages relative toWT controls (3.07-fold, 9.01-fold and
2.45-fold, respectively) (Figure 2C), as the reduction in levels of
the secreted protein products (3.07-fold, 3.45-fold and 2.54-fold,
respectively) (Figure 2B). This suggests that their loss in MK2-
deficient macrophages was primarily a direct result of alterations
in RNA expression rather than loss of some MK2-dependent
cytoskeletal or exocytosis process.

To validate that these three angiogenesis factors are truly
regulated by MK2 in vivo, we next measured their expression in
colon tumors after MK2 depletion. Briefly, MK2 WT and KO mice
were challenged with the carcinogen Azoxymethane (AOM, 10 mg/
kg) followed by 5 cycles of dextran sodium sulfate (DSS, 2.5%) in the
drinking water. AOM is a mutagenic agent which in combination
with the inflammatory effect of DSS gives rise to visible tumors after
100 days. Following this protocol, visible adenomas develop in mice
colons after 100 days (37). Of note, we have previously described
that MK2 KO mice develop smaller adenomas compared to WT
controls, have significantly less infiltration of M2-like macrophages
and are significantly less vascularized (25). Tumors were processed
for pathological examination, immuno-stained for the presence of
February 2021 | Volume 11 | Article 607891
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Serpin-E1, Cxcl-12 and Timp-1 (Figure 2D). Positive cells within
the tumors were enumerated in a blinded fashion (Figure 2E). As
shown in Figure 2D, MK2 WT tumors are heavily infiltrated with
cells that express Serpin-E1, Cxcl-12 and to a lesser extent, Timp-1.
Interestingly, MK2 KO tumors show significantly lower infiltration
of Serpin-E1 and Cxcl-12 positive cells in tumors, in good
agreement with the downregulation of these factors in bone-
marrow derived MK2 KO macrophages previously seen.
However, the expression of Timp-1 in MK2 KO tumors was
similar to MK2 WT tumors, which indicates that the regulation
of this factor in vivo is not fully MK2-dependent. We therefore
conclude that Serpin-E1 and Cxcl-12 expression, but not Timp-1
expression, is MK2-dependent, both in vitro and in vivo.

Cxcl-12 Is Mainly Produced by Tumor-
Associated Macrophages in Colon Tumors
We have shown that MK2 is required for the production of
Serpin-E1 and Cxcl-12 both in in vitro cultured M2 macrophages
and in the tumor microenvironment. To examine whether these
factors are, in fact, produced by tumor-associated macrophages,
we immuno-depleted macrophages in the AOM/DSS mouse
model of colon cancer. Macrophage depletion in this model
was accomplished using antibodies directed against CSFR1. In
order to deplete macrophages during the period of tumor
progression, rather than prior to tumor initiation, 1 mg of anti-
CSFR1 antibody was dosed intraperitoneally weekly, starting
before the fourth cycle of DSS (Figure 3A). Non-specific IgG
was administered as an antibody control to macrophage non-
depleted animals. Efficient and sustained macrophage depletion
was confirmed 7 days after a single anti-CSFR1 dose in both in the
peritoneal cavity and colon (Supplemental Figure 1).

At the end of the protocol, colons were harvested, longitudinally
opened, and macroscopic tumors counted under the dissecting
microscope. Pictures were taken to quantify measurements of
tumor size using ImageJ. Interestingly, macrophage-depleted mice
showed significantly smaller tumors than IgG treated mice, as well
as a non-statistically significant trend towards fewer numbers of
adenomas, as quantified in Figures 3B, C. Tumors were harvested,
processed for pathological examination, and stained for markers of
total macrophages (F4/80) and M2 alternatively-activated
macrophages (Arginase-1). Blinded quantification confirmed that
anti-CSFR1 efficiently depleted total macrophages in the tumor
microenvironment of these mice (i.e. reduction of F4/80 positive
cells, Figure 3D, top panels). Furthermore, anti-CSFR1 treatment
also prevented the accumulation ofM2-like macrophages within the
tumors (Figure 3D, middle panels). Notably, tumor vascularization
was also significantly impaired after anti-CSFR1 treatment, as
assessed by staining for CD31, a marker of endothelial cells,
indicating a critical role of macrophages in promoting tumor neo-
angiogenesis (Figure 3D, lower panels). Remarkably, these in vivo
tumor growth and angiogenesis analyses revealed that bulk
depletion of macrophages during colon tumor progression
phenocopied our previous results seen following genetic
inactivation of MK2 in the entire myeloid compartment (25).

We next measured the expression of Serpin-E1 and Cxcl-12
in control and macrophage-depleted colon tumors, since we had
Frontiers in Immunology | www.frontiersin.org 8
shown that both of these pro-angiogenic factors are regulated by
MK2 signaling in macrophages (Figure 2E). We confirmed that
Cxcl-12 expression was significantly decreased after macrophage
depletion (Figure 3E bottom panels), suggesting that macrophages,
rather than neutrophils, are the main producers of this factor in the
tumor microenvironment. However, bulk macrophage depletion
did not reduce the number of Serpin-E1 positive cells in the tumor
microenvironment but instead resulted in Serpin-E1 upregulation
(Figure 3E top panels), indicating that this factor is not exclusively
produced by macrophages in this context.

Taken together, these results demonstrate that macrophages
are the main drivers of tumor neo-angiogenesis in inflammation-
driven colon tumors, as well as the main producers of the pro-
angiogenic factor Cxcl-12.

MK2 Regulates Macrophage Production of
CXCL-12 to Support Angiogenesis During
Inflammation-Associated Tumorigenesis
Having shown that Cxcl-12 production in the tumormicroenvironment
is macrophage dependent and MK2 regulates its expression in
vitro, we next investigated if MK2 was required for Cxcl-12
expression by macrophages in vivo.

We first measured Cxcl-12 expression in tumor infiltrating
cells in the myeloid-specific MK2 KO (LysM-MK2-KO) animals.
We had previously shown that myeloid-specific depletion of
MK2 results in smaller tumors in the AOM/DSS model, with less
infiltration of M2 macrophages and reduced vascularization
[Supplemental Figure 2, (25)] recapitulating the phenotype
observed in the whole-body KO (25) and by macrophage
depletion in this tumor model (Figures 3B–D). Colon tumors
generated in the LysM-MK2-KO mice were surveyed for Cxcl-12
expression by immunostaining. We could confirm that Cxcl-12
expression in the tumor microenvironment of LysM-MK2-KO
mice was dramatically reduced, providing direct support that
myeloid MK2 is necessary for Cxcl-12 expression in vivo
(Figure 4A).

Next, to demonstrate that it is specifically the macrophage
MK2 activity that is sufficient to regulate Cxcl-12 expression in
tumors, and therefore promote tumor progression and angiogenesis,
we restored MK2 function by adoptive transfer of WT macrophages
into the LysM-MK2-KO mice during AOM/DSS tumorigenesis. As
proper controls, LysM-FLFL, MK2 WT littermate controls were as
well adoptively transferred with WT macrophages.

MK2 proficient macrophages were derived from the bone-
marrow of MK2 WT mice. After seven days in culture, one
million of cells per mouse were intraperitoneally administered to
both LysM-MK2-KO mice and their littermate controls.
Macrophages were adoptively transferred weekly starting at the
fourth cycle of DSS, as we aimed to investigate MK2 functional
restoration in macrophages during tumor progression but not
tumor initiation (Figure 4B). Colons were harvested at the end
of the protocol, and tumors were counted, and their size
measured under a dissecting microscope. As shown in Figure
4C, functional restoration of MK2 within macrophages was
sufficient to restore tumor growth in the myeloid MK2 KO,
since no significant differences in tumor size or number were
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observed between LysM-MK2-KO and their littermate controls
following adoptive transfer of MK2-proficient macrophages.

We next immunostained colon tumors for the broad
macrophage marker F4/80 and the M2 specific marker Arginase-
1 in the WT and LysM-MK2-KO mice following reconstitution
with WT macrophages. Similar number of total macrophages were
observed in animals from both genotypes, but importantly, the
number of Arginase-1 positive M2-like macrophages was restored
to normal levels in the LysM-MK2-KO animals following
reconstitution with WT macrophages (Figure 4D). This was in
contrast to the phenotype we previously observed in LysM-MK2-
KOmice, where Arginase-1 positive cells were dramatically reduced
in colon tumors, despite the total numbers of macrophages being
similar (Supplemental Figure 2). Taken together, these data
indicate that reconstitution of MK2 activity within macrophages
is sufficient to fully restore M2 macrophages infiltration into colon
tumors in vivo.

We next quantified vascularization of the tumors after
macrophage adoptive transfer by immunostaining for the
endothelial marker CD31. As shown in the lower panel of
Figure 4D, reconstitution of MK2 WT macrophages into the
myeloid MK2 knock-out animals was sufficient to fully restore
the defective angiogenesis previously observed in the LysM-
MK2-KO mice [Supplemental Figure 2 and reference (25)].

Finally, we measured the level of expression of Cxcl-12 in
tumor infiltrating cells after WT macrophage transfer. As shown
in Figure 4E, Cxcl-12 positive cells were now present in the
tumor microenvironment at the same level as in the littermate
MK2 WT controls (LysM-FLFL). This result indicates that MK2
is required for the effective production of Cxcl-12 by tumor-
associated macrophages. Of note, infusion of WT macrophages
into the MK2WTmice resulted in increased numbers of Cxcl-12
positive cells, even higher than in not-infused controls (Figure 4,
compare LysM-FLFL quantification in panels A and E),
consistent with macrophages being the main producers of
Cxcl-12 in the tumor microenvironment in vivo.

Taken together, our results conclusively demonstrate that it is
macrophage MK2 function that is both necessary and sufficient for
tumor neo-angiogenesis. Furthermore, we have demonstrated that
the pro-angiogenic factor Cxcl-12 is directly regulated by MK2
signaling in macrophages in vitro, and its levels are markedly
attenuated in vivo in inflammatory colon tumors that develop in
mice with MK2-deficient macrophages. These findings, in
combination with the reduced angiogenesis observed in myeloid
MK2 knock-out animals, which is fully restored by adoptive transfer
of MK2WTmacrophages into animals lackingMK2 in the myeloid
compartment, strongly implicates the macrophage MK2-Cxcl-12
axis as a critical regulator of tumor neo-angiogenesis, consistent
with the known role of Cxcl-12 in tumor promotion and
vascularization (48, 49).
DISCUSSION

MK2, a key effector kinase of the p38MAPK pathway, regulates
multiple critical aspects of the innate immune system cells,
Frontiers in Immunology | www.frontiersin.org 11
including neutrophils (50–52), dendritic cells (53–55) and
macrophages (56, 57). There is growing evidence that p38/
MK2 pathway significantly contributes to inflammation-driven
tumorigenesis at multiple levels, since elegant studies from the
Nebreda lab have shown that epithelial p38a activity is required
for tumor maintenance while myeloid p38a regulates both
inflammatory cell recruitment to tumors and chemokine
production (58, 59). We have demonstrated, here, and in our
previous work, that the p38MAPK downstream effector kinase
MK2 is specifically required for the pro-angiogenic role of
macrophages in a mouse model of inflammation-driven colon
tumors. In the studies presented here, we first performed RNA
expression analysis on macrophages from whole body MK2 KO
mice to explore the molecular mechanisms underlying defective
angiogenesis, since we had shown previously that these animals
had defective colon tumor angiogenesis, and that macrophages
derived from these animals in vitro were less efficient at
polarizing into an M2 pro-angiogenic phenotype (25). Based
on the RNA expression data, we showed that macrophages from
these whole body MK2 KOs were defective in expression of
several pro-angiogenesis factors in vitro (Figures 1 and 2).
Importantly, although we had previously shown that myeloid-
specific MK2 KO animals fully recapitulated the colon tumor
angiogenesis-defective phenotype seen in whole body MK2 KO
mice (25), it was possible that the defective tumor angiogenesis
phenotype seen in the myeloid MK2 KO resulted from MK2
signaling in non-macrophage myeloid cell types such as
neutrophils or dendritic cells. To eliminate this possibility, we
showed here that specific depletion of the macrophage
population in wild-type animals also recapitulated the whole
body and myeloid MK2 KO colon tumor phenotype. Both global
and myeloid-specific MK2 knock-outs, as well as bulk
macrophage depletion results in similar numbers of tumors but
a significant reduction in tumor size, as well as a reduction in the
presence CD31+ endothelial cells within the tumors consistent
with impaired tumor angiogenesis and progression [Figure 3
and (25)]. Finally, to further prove that it is MK2 signaling within
macrophages that is critical for tumor angiogenesis in vivo, we
used adoptive transfer of WT macrophages into myeloid specific
MK2 KOs. This treatment fully restored the recruitment of M2-
polarized macrophages into the tumors, and reversed the
defective angiogenesis phenotype (Figures 4C, D), indicating
that the MK2 signaling/angiogenesis link is intrinsic to the
macrophages, and does not arise from defective MK2 signaling
in some other cellular compartment. Proangiogenic roles for
MK2 have previously been described within endothelial cells,
where MK2 is required for efficient post-natal arteriogenesis
and vascularization in response to arterial injury or ischemia
(60–62). However, our study is the first to demonstrate a
specific pro-angiogenic role of MK2 within tumor-associated
macrophages in vivo.

We observed that MK2 depleted BMDMs show deficient
expression and secretion of three angiogenesis factors: TIMP-1,
Serpin-E1 and CXCL-12. TIMP-1 is a secreted protein with known
anti-angiogenic properties. It inhibits the action of matrix
metalloproteinases (MMPs), which are involved in endothelial
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migration and capillary formation (63). Paradoxically, however,
recent studies have shown that high levels of TIMP-1 in both
plasma and tumor tissue are associated with poor prognosis in
several cancers, including prostate and colon cancer (64). Although
BMDMs expressed TIMP-1 in an MK2-dependent manner, we
found that MK2 whole-body knock-out mice showed similar
TIMP-1 levels within inflammatory colon tumors, suggesting
more complex regulation of TIMP-1 in an in vivo setting.

Serpin-E1, also known as PAI-1, is one of the three main
components of the plasminogen activation system, where it
functions as the major inhibitor of tPA that limits the cleavage
of plasminogen to plasmin. High levels of Serpin-E1 are
associated with poor prognosis in several types of cancer and
there is a large amount of in vitro and in vivo evidence of its role
in favoring tumor progression and angiogenesis (65, 66). The
underlying mechanism responsible for Serpin-E1 upregulation in
cancer is not fully understood, but it is known that it is secreted
by either epithelial, stromal or endothelial cells, where it
stabilizes the extracellular matrix and favors endothelial cells
migration (67, 68). In cultured endothelial cells, expression of
Serpin-E1 is known to be regulated by the p38MAPK pathway
(69) and the presence of Serpin-E1 in the local tumor
microenvironment has been shown to promote TAM polarization
towards an M2 phenotype (70), suggesting the presence of a
complex feedback loop. We observed loss of PAI-1 expression in
tumors from whole body MK2 KO mice, demonstrating an
important role for MK2 in PAI-1 expression in vivo. However,
PAI-1 expression was not reduced, but actually was increased in
colon tumors that arose in the setting of macrophage depletion. This
result suggests that non-macrophage cells types are primarily
Frontiers in Immunology | www.frontiersin.org 12
responsible for the MK2-dependent expression of PAI-1 in vivo,
most likely in endothelial cells (69).

Cxcl-12, also known as SDF-1, is a chemokine that induces
neovascularization in ischemic lesions, tumors, and wounded
tissues by recruiting bone marrow stromal stem cells through its
interaction with the receptor CXCR4 (71, 72). Cxcl-12 acts
synergistically with VEGF-A, to regulate tumor vasculature
under hypoxic conditions (73). It has been widely demonstrated
that Cxcl-12 promotes tumor growth and malignancy, enhances
tumor angiogenesis, participates in tumor metastasis, and
contributes to immunosuppressive networks within the tumor
microenvironment in several types of tumors including breast,
prostate, ovarian, colon and non-small cell lung cancer (48, 49, 74).
Previous studies have identified different sources of Cxcl-12 in the
tumor microenvironment: activated stromal fibroblasts (75),
monocytes (76), endothelial cells (77) and even primary tumor
cells (78, 79). Interestingly, CXCL-12 has been reported to be
expressed by monocytes in an autocrine/paracrine loop to promote
differentiation into pro-angiogenic and immunosuppressive
macrophages (76). We show here that MK2 regulates Cxcl-12
expression in tumor-infiltrated macrophages, as both myeloid and
whole-body MK2 KO mice show deficient Cxcl-12 expression in
colon tumors, and adoptive transfer of WT macrophages into
myeloid-MK2 KO mice is sufficient to restore Cxcl-12 expression
levels, tumor angiogenesis and tumor progression (Figures 4C–E).
Our data place, for the first time, the chemokine Cxcl-12 under
control of MK2 signaling in tumor-associated macrophages to
promote angiogenesis (Figure 5). The exact molecular mechanism
through which MK2 controls Cxcl-12 RNA expression, however,
remains to be determined. MK2 could control Cxcl-12
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transcription or mRNA stabilization. In the case of pro-
inflammatory cytokines and cell cycle regulators that contain
AU-rich elements in their 3’UTR, MK2 is known to enhance
their mRNA stability by phosphorylating RNA-binding proteins
with AU-rich binding domains such as TTP and hnRNPA0 (16, 80,
81). However, we have been unable to discern a clear AU-rich
element in the Cxcl-12 3’-UTR. Alternatively, MK2 could regulate
one or more transcription factors, or regulate a specific microRNA
or non-coding RNA that subsequently targets Cxcl-12 transcripts,
as shown previously for MK2 upregulation of miR-34c, which in
turn, represses c-Myc (82). However, microRNAs and non-coding
RNAs were not included in our RNA expression analysis. In future
studies we hope to address these possibilities.

Our results implicating a critical role for MK2 activity in
macrophages for inflammatory colon tumor angiogenesis,
however, contrast with those of Henriques et al, who concluded
that mesenchymal activity of the MK2/Hsp27 axis exclusively
contributes to tumor neo-angiogenesis in a APCmin intestinal
tumorigenesis model. This disparity may result from differences
between the two models (genetic versus inflammation driven) and
the target tissue, since APCmin mice develop mostly small
intestinal tumors whereas AOM/DSS tumors mostly arise in the
distal colon (42). While our experiments cannot completely rule
out some contribution of the mesenchymal MK2/Hsp27 axis to
tumor angiogenesis as proposed by Henriques et al., the data
presented here strongly implicate the importance of macrophages
in regulating angiogenesis in the AOM/DSS colon cancer model,
which is consistent with a widely recognized role ofmacrophages in
regulating tumor angiogenesis is a variety of cancer types (83, 84).

Macrophages are the most abundant cellular component of the
tumor microenvironment (85, 86) and there is strong evidence
that these TAMs influence tumor progression at multiple levels.
We show here that immune-mediated depletion of macrophages is
sufficient to disrupt tumor angiogenesis and tumor progression
(Figures 3B, C), highlighting the relevance of this cellular
compartment for colon cancer progression in this inflammatory
model of colon cancer. Our results support growing evidence
targeting TAMs maybe a viable strategy for cancer treatment (83)
and is consistent with related findings of a reduction in tumor
numbers and size following chlodronate-mediated depletion of
macrophages in the AOM/DSS model, which was also associated
with alterations in the microbiome (87).

This work is of potential importance for cancer therapeutics,
as small molecule inhibitors of MK2 are currently in active
development (17, 88, 89). Our data indicates that MK2
inhibition could be a promising strategy to block the pro-
angiogenic function of tumor-associated macrophages, and
therefore may represent an additional weapon with which to
combat cancer progression in the near future.
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Supplementary Figure 2 | Macrophage recruitment and tumor angiogenesis in
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MK2-KO mice. As reported previously, myeloid-specific inhibition of MK2 activity
did not significantly affect the total number of macrophages recruited to tumors (F4/
80 positive pixel/mm2: LysM-FL: 2435 +/- 938.5 vs LysM-KO: 815.3+/-242.6), but
significantly reduced M2-macrophages recruitment (ARG-1 positive cells/mm2,
Frontiers in Immunology | www.frontiersin.org 14
LysM-FLFL: 362.3 +/- 64.70, LysM-KO: 177.7 +/- 40.26) and tumor angiogenesis
(CD31 positive pixels/mm2, LysM-FL: 88879+/-8175 vs. LysM-KO: 66380
+/-5580). This blinded quantification and statistics can be found in our previous
publication (25).
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36. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P.
The Molecular Signatures Database Hallmark Gene Set Collection. Cell Syst
(2015) 1:417–25. doi: 10.1016/j.cels.2015.12.004

37. Neufert C, Becker C, Neurath MF. An inducible mouse model of colon
carcinogenesis for the analysis of sporadic and inflammation-driven
tumor progression. Nat Protoc (2007) 2:1998–2004. doi: 10.1038/
nprot.2007.279

38. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of
image analysis. Nat Methods (2012) 9:671–5. doi: 10.1038/nmeth.2089

39. Arnold IC, Mathisen S, Schulthess J, Danne C, Hegazy AN, Powrie F. CD11c+
monocyte/macrophages promote chronic Helicobacter hepaticus-induced
February 2021 | Volume 11 | Article 607891

https://doi.org/10.3322/caac.21492
https://doi.org/10.3748/wjg.v22.i20.4794
https://doi.org/10.1038/nrc2618
https://doi.org/10.1038/nrc2444
https://doi.org/10.1038/nature07205
https://doi.org/10.4049/jimmunol.180.4.2011
https://doi.org/10.3389/fimmu.2018.00527
https://doi.org/10.14348/molcells.2014.2374
https://doi.org/10.4103/jmau.jmau_68_18
https://doi.org/10.1038/nature08467
https://doi.org/10.1158/2326-6066.CIR-14-0209
https://doi.org/10.1038/msb.2012.1
https://doi.org/10.1038/msb.2012.1
https://doi.org/10.1016/j.cell.2008.08.034
https://doi.org/10.1126/science.1116598
https://doi.org/10.1016/j.cell.2012.03.031
https://doi.org/10.1016/j.cell.2012.03.031
https://doi.org/10.1038/nrm1834
https://doi.org/10.1038/nrd2829
https://doi.org/10.1074/jbc.273.3.1741
https://doi.org/10.1074/jbc.M611165200
https://doi.org/10.1074/jbc.M611165200
https://doi.org/10.1093/emboj/17.12.3363
https://doi.org/10.1074/jbc.M110465200
https://doi.org/10.1586/14789450.4.6.711
https://doi.org/10.1517/14728222.12.8.921
https://doi.org/10.1158/0008-5472.CAN-15-0205
https://doi.org/10.1073/pnas.1722020115
https://doi.org/10.1023/A:1008942828960
https://doi.org/10.1093/nar/gky955
https://doi.org/10.1186/1471-2105-12-323
https://doi.org/10.1093/nar/gks042
https://doi.org/10.1093/bioinformatics/btp616
https://github.com/kevinblighe/EnhancedVolcano
https://github.com/kevinblighe/EnhancedVolcano
http://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html
http://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html
https://doi.org/10.1186/s12859-018-2246-7
https://doi.org/10.1093/bioinformatics/btr260
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1038/nprot.2007.279
https://doi.org/10.1038/nprot.2007.279
https://doi.org/10.1038/nmeth.2089
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Suarez-Lopez et al. Macrophage MK2/CXCL-12 Promotes Angiogenesis
intestinal inflammation through the production of IL-23. Mucosal Immunol
(2016) 9:352–63. doi: 10.1038/mi.2015.65

40. Ray AL, Castillo EF, Morris KT, Nofchissey RA, Weston LL, Samedi VG, et al.
Blockade of MK2 is protective in inflammation-associated colorectal cancer
development. Int J Cancer (2016) 138:770–5. doi: 10.1002/ijc.29716

41. Ray AL, Berggren KL, Restrepo Cruz S, Gan GN, Beswick EJ. Inhibition of
MK2 suppresses IL-1b, IL-6, and TNF-a dependent colorectal cancer growth.
Int J Cancer (2017) 142(8):1702–11. doi: 10.1002/ijc.31191

42. Henriques A, Koliaraki V, Kollias G. Mesenchymal MAPKAPK2/HSP27
drives intestinal carcinogenesis. Proc Natl Acad Sci USA (2018) 115:E5546–
55. doi: 10.1073/pnas.1805683115

43. Manzanero S. Generation of mouse bone marrow-derived macrophages.
Methods Mol Biol (2012) 844:177–81. doi: 10.1007/978-1-61779-527-5_12

44. Jablonski KA, Amici SA, Webb LM, Ruiz-Rosado J de D, Popovich PG, Partida-
Sanchez S, et al. Novel markers to delineate murine M1 and M2 macrophages.
PloS One (2015) 10:e0145342. doi: 10.1371/journal.pone.0145342

45. Kobayashi M, Nishita M, Mishima T, Ohashi K, Mizuno K. MAPKAPK-2-
mediated LIM-kinase activation is critical for VEGF-induced actin
remodeling and cell migration. EMBO J (2006) 25:713–26. doi: 10.1038/
sj.emboj.7600973

46. Thuraisingam T, Xu YZ, Eadie K, Heravi M, Guiot M-C, Greemberg R, et al.
MAPKAPK-2 Signaling Is Critical for Cutaneous Wound Healing. J Invest
Dermatol (2010) 130:278–86. doi: 10.1038/jid.2009.209

47. Gaestel M. MAPK-activated protein kinases (MKs): Novel insights and
challenges. Front Cell Dev Biol (2016) 3:88. doi: 10.3389/fcell.2015.00088

48. Meng W, Xue S, Chen Y. The role of CXCL12 in tumor microenvironment.
Gene (2018) 641:105–10. doi: 10.1016/j.gene.2017.10.015

49. Guo F, Wang Y, Liu J, Mok SC, Xue F, Zhang W. CXCL12/CXCR4: A
symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic
communication networks. Oncogene (2016) 35:816–26. doi: 10.1038/
onc.2015.139

50. Coxon PY, Rane MJ, Uriarte S, Powell DW, Singh S, Butt W, et al. MAPK-
activated protein kinase-2 participates in p38 MAPK-dependent and ERK-
dependent functions in human neutrophils. Cell Signal (2003) 15:993–1001.
doi: 10.1016/S0898-6568(03)00074-3

51. Hannigan MO, Zhan L, Ai Y, Kotlyarov A, Gaestel M, Huang C-K. Abnormal
Migration Phenotype of Mitogen-Activated Protein Kinase-Activated Protein
Kinase 2 –/– Neutrophils in Zigmond Chambers Containing Formyl-
Methionyl-Leucyl-Phenylalanine Gradients. J Immunol (2001) 167:3953–61.
doi: 10.4049/jimmunol.167.7.3953

52. Sun L, Wu Q, Nie Y, Cheng N, Wang R, Wang G, et al. A Role for MK2 in
Enhancing Neutrophil-Derived ROS Production and Aggravating Liver
Ischemia/Reperfusion Injury. Front Immunol (2018) 9:2610. doi: 10.3389/
fimmu.2018.02610

53. Soukup K, Halfmann A, Dillinger B, Poyer F, Martin K, Blauensteiner B, et al.
Loss of MAPK-activated protein kinase 2 enables potent dendritic cell-driven
anti-tumour T cell response. Sci Rep (2017) 7:11746. doi: 10.1038/s41598-017-
12208-7

54. Soukup K, Halfmann A, Le Bras M, Sahin E, Vittori S, Poyer F, et al. The
MAPK-Activated Kinase MK2 Attenuates Dendritic Cell-Mediated Th1
Differentiation and Autoimmune Encephalomyelitis. J Immunol (2015)
195:541–52. doi: 10.4049/jimmunol.1401663

55. Göpfert C, Andreas N, Weber F, Häfner N, Yakovleva T, Gaestel M, et al. The
p38-MK2/3 Module Is Critical for IL-33–Induced Signaling and Cytokine
Production in Dendritic Cells. J Immunol (2018) 200:1198–206. doi: 10.4049/
jimmunol.1700727

56. Neininger A, Kontoyiannis D, Kotlyarov A, Winzen R, Eckert R, Volk HD,
et al. MK2 targets AU-rich elements and regulates biosynthesis of tumor
necrosis factor and interleukin-6 independently at different post-
transcriptional levels. J Biol Chem (2002) 277:3065–8. doi: 10.1074/
jbc.C100685200

57. Hitti E, Iakovleva T, Brook M, Deppenmeier S, Gruber AD, Radzioch D, et al.
Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 Regulates
Tumor Necrosis Factor mRNA Stability and Translation Mainly by Altering
Tristetraprolin Expression, Stability, and Binding to Adenine/Uridine-Rich
Element. Mol Cell Biol (2006) 26:2399–407. doi: 10.1128/mcb.26.6.2399-
2407.2006
Frontiers in Immunology | www.frontiersin.org 15
58. Youssif C, Cubillos-Rojas M, Comalada M, Llonch E, Perna C, Djouder N,
et al. Myeloid p38a signaling promotes intestinal IGF -1 production and
inflammation-associated tumorigenesis. EMBO Mol Med (2018) 10:e8403.
doi: 10.15252/emmm.201708403

59. Gupta J, delBarcoBarrantes I, Igea A, Sakellariou S, Pateras IS, Gorgoulis VG,
et al. Dual Function of p38a MAPK in Colon Cancer: Suppression of Colitis-
Associated Tumor Initiation but Requirement for Cancer Cell Survival.
Cancer Cell (2014) 25:484–500. doi: 10.1016/j.ccr.2014.02.019

60. Kapopara PR, von Felden J, Soehnlein O, Wang Y, Napp LC, Sonnenschein K,
et al. Deficiency of MAPK-activated protein kinase 2 (MK2) prevents adverse
remodelling and promotes endothelial healing after arterial injury. Thromb
Haemost (2014) 112:1264–76. doi: 10.1160/TH14-02-0174

61. Napp LC, Jabs O, Höckelmann A, Dutzmann J, Kapopara PR, Sedding DG,
et al. Normal endothelial but impaired arterial development in MAP-Kinase
activated protein kinase 2 (MK2) deficient mice. Vasc Cell (2016) 8:4.
doi: 10.1186/s13221-016-0038-2

62. Limbourg A, von Felden J, Jagavelu K, Krishnasamy K, Napp LC, Kapopara
PR, et al. MAP-kinase activated protein kinase 2 links endothelial activation
and monocyte/ macrophage recruitment in arteriogenesis. PloS One (2015)
10:1–12. doi: 10.1371/journal.pone.0138542

63. Brew K, Nagase H. The tissue inhibitors of metalloproteinases (TIMPs): an
ancient family with structural and functional diversity. Biochim Biophys Acta
(2010) 1803:55–71. doi: 10.1016/j.bbamcr.2010.01.003

64. Gong Y, Scott E, Lu R, Xu Y, Oh WK, Yu Q. TIMP-1 promotes accumulation
of cancer associated fibroblasts and cancer progression. PloS One (2013) 8:
e77366. doi: 10.1371/journal.pone.0077366

65. Binder BR, Mihaly J, Prager GW. uPAR-uPA-PAI-1 interactions and
signaling: a vascular biologist’s view. Thromb Haemost (2007) 97:336–42.
doi: 10.1160/TH06-11-0669

66. Rakic JM, Maillard C, Jost M, Bajou K, Masson V, Devy L, et al. Role of
plasminogen activator-plasmin system in tumor angiogenesis. Cell Mol Life
Sci (2003) 60:463–73. doi: 10.1007/s000180300039

67. Waltz DA, Natkin LR, Fujita RM, Wei Y, Chapman HA. Plasmin and
plasminogen activator inhibitor type 1 promote cellular motility by
regulating the interaction between the urokinase receptor and vitronectin.
J Clin Invest (1997) 100:58–67. doi: 10.1172/JCI119521

68. Bajou K, Noël A, Gerard RD, Masson V, Brunner N, Holst-Hansen C, et al.
Absence of host plasminogen activator inhibitor 1 prevents cancer invasion
and vascularization. Nat Med (1998) 4:923–8. doi: 10.1038/nm0898-923

69. Jaulmes A, Sansilvestri-Morel P, Rolland-Valognes G, Bernhardt F, Gaertner R,
Lockhart BP, et al. Nox4 mediates the expression of plasminogen activator
inhibitor-1 via p38 MAPK pathway in cultured human endothelial cells.
Thromb Res (2009) 124:439–46. doi: 10.1016/j.thromres.2009.05.018

70. Kubala MH, Punj V, Placencio-Hickok VR, Fang H, Fernandez GE, Sposto R,
et al. Plasminogen Activator Inhibitor-1 Promotes the Recruitment and
Polarization of Macrophages in Cancer. Cell Rep (2018) 25:2177–91.e7.
doi: 10.1016/j.celrep.2018.10.082

71. Xu X, Zhu F, Zhang M, Zeng D, Luo D, Liu G, et al. Stromal Cell-Derived
Factor-1 Enhances Wound Healing through Recruiting Bone Marrow-
Derived Mesenchymal Stem Cells to the Wound Area and Promoting
Neovascularization. Cells Tissues Organs (2013) 197:103–13. doi: 10.1159/
000342921

72. Hiasa K, Ishibashi M, Ohtani K, Inoue S, Zhao Q, Kitamoto S, et al. Gene
Transfer of Stromal Cell–Derived Factor-1a Enhances Ischemic
Vasculogenesis and Angiogenesis via Vascular Endothelial Growth Factor/
Endothelial Nitric Oxide Synthase–Related Pathway. Circulation (2004)
109:2454–61. doi: 10.1161/01.CIR.0000128213.96779.61

73. Domanska UM, Kruizinga RC, Nagengast WB, Timmer-Bosscha H, Huls G, de
Vries EGE.Walenkamp AME. A review on CXCR4/CXCL12 axis in oncology: No
place to hide. Eur J Cancer (2013) 49:219–30. doi: 10.1016/j.ejca.2012.05.005

74. Kryczek I, Wei S, Keller E, Liu R, Zou W. Stroma-derived factor (SDF-1/
CXCL12) and human tumor pathogenesis. Am J Physiol Physiol (2007) 292:
C987–95. doi: 10.1152/ajpcell.00406.2006

75. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R,
et al. Stromal fibroblasts present in invasive human breast carcinomas
promote tumor growth and angiogenesis through elevated SDF-1/CXCL12
secretion. Cell (2005) 121:335–48. doi: 10.1016/j.cell.2005.02.034
February 2021 | Volume 11 | Article 607891

https://doi.org/10.1038/mi.2015.65
https://doi.org/10.1002/ijc.29716
https://doi.org/10.1002/ijc.31191
https://doi.org/10.1073/pnas.1805683115
https://doi.org/10.1007/978-1-61779-527-5_12
https://doi.org/10.1371/journal.pone.0145342
https://doi.org/10.1038/sj.emboj.7600973
https://doi.org/10.1038/sj.emboj.7600973
https://doi.org/10.1038/jid.2009.209
https://doi.org/10.3389/fcell.2015.00088
https://doi.org/10.1016/j.gene.2017.10.015
https://doi.org/10.1038/onc.2015.139
https://doi.org/10.1038/onc.2015.139
https://doi.org/10.1016/S0898-6568(03)00074-3
https://doi.org/10.4049/jimmunol.167.7.3953
https://doi.org/10.3389/fimmu.2018.02610
https://doi.org/10.3389/fimmu.2018.02610
https://doi.org/10.1038/s41598-017-12208-7
https://doi.org/10.1038/s41598-017-12208-7
https://doi.org/10.4049/jimmunol.1401663
https://doi.org/10.4049/jimmunol.1700727
https://doi.org/10.4049/jimmunol.1700727
https://doi.org/10.1074/jbc.C100685200
https://doi.org/10.1074/jbc.C100685200
https://doi.org/10.1128/mcb.26.6.2399-2407.2006
https://doi.org/10.1128/mcb.26.6.2399-2407.2006
https://doi.org/10.15252/emmm.201708403
https://doi.org/10.1016/j.ccr.2014.02.019
https://doi.org/10.1160/TH14-02-0174
https://doi.org/10.1186/s13221-016-0038-2
https://doi.org/10.1371/journal.pone.0138542
https://doi.org/10.1016/j.bbamcr.2010.01.003
https://doi.org/10.1371/journal.pone.0077366
https://doi.org/10.1160/TH06-11-0669
https://doi.org/10.1007/s000180300039
https://doi.org/10.1172/JCI119521
https://doi.org/10.1038/nm0898-923
https://doi.org/10.1016/j.thromres.2009.05.018
https://doi.org/10.1016/j.celrep.2018.10.082
https://doi.org/10.1159/000342921
https://doi.org/10.1159/000342921
https://doi.org/10.1161/01.CIR.0000128213.96779.61
https://doi.org/10.1016/j.ejca.2012.05.005
https://doi.org/10.1152/ajpcell.00406.2006
https://doi.org/10.1016/j.cell.2005.02.034
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Suarez-Lopez et al. Macrophage MK2/CXCL-12 Promotes Angiogenesis
76. Sanchez-Martin L, Estecha A, Samaniego R, Sanchez-Ramon S, Vega MÁA,
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