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Editorial on the Research Topic

Biotechnology of Microalgae, Based on Molecular Biology and Biochemistry of Eukaryotic

Algae and Cyanobacteria

Microalgae, including eukaryotic algae and cyanobacteria, comprise a diverse group of microscopic
unicellular photosynthetic organisms that inhabit almost all ecological niches. Recently, energy
and resource production using microalgae have received a great deal of attention (Banerjee et al.,
2016). Several species of microalgae are commercially available. They include Arthrospira platensis,
Chlorella species, and Euglena gracilis (Koller et al., 2014; Gouveia et al., 2016; Yamada et al., 2016).
Microalgae produce high-value products such as pigments, lipids, bioplastics, carbohydrates, and
amino acids (Minhas et al., 2016). However, production bymicroalgae is generally less efficient than
current industrial production. To increase productivity, a basic understanding of photosynthesis,
metabolism, and the cellular structure of microalgae using molecular genetics is indispensable.
Here, we introduce current researches, which cover the basic and applied science of eukaryotic
algae and cyanobacteria.

The study of the primary carbon metabolism of photosynthetic organisms has a long history,
and basic scientists have devoted their time to deciphering the regulatory mechanisms of primary
metabolism and the biochemical properties of metabolic enzymes. Basic scientists have studied
the regulator mechanisms of anabolic carbon processes such as carbon fixation, gluconeogenesis,
and glycogen/starch production. However, the regulatory mechanisms of the catabolic processes
of microalgae have been less well studied. The downstream metabolites of sugar catabolism are
the precursors of biofuels and bulk chemicals, and an understanding of metabolic sugar regulation
would therefore lead to improvements in productive capacity and chemical variety (Oliver et al.,
2016). Unicellular cyanobacteria, such as Synechocystis and Synechococcus species, and filamentous
cyanobacteria, such as Nostoc species, are the preferred microbial cell factories because they are
easy to genetically manipulate (Atsumi et al., 2009; Khanna and Lindblad, 2015). Recently, there
has been an increase in the number of publications dealing with the metabolic engineering of
cyanobacteria. Several transcriptional regulators that activate the gene expression of sugar catabolic
enzymes in cyanobacteria have been identified in Synechocystis; for example, an RNA polymerase
sigma factor (SigE) and a response regulator (Rre37) (Osanai et al., 2011, 2014). Overexpression of
these genes causes increased production of polyhydroxybutyrates, which are bioplastic polyesters
(Osanai et al., 2014). Therefore, the elucidation of the regulatory mechanism of primary carbon
metabolism would be important.
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An understanding of photosynthetic electron transport
systems and light-to-chemical energy conversion is indispensable
for biorefineries. Varying light conditions mean that
photoautotrophs must sense light intensity, quality, and
light/dark photoperiods to carry out optimal photosynthesis
(Eberhard et al., 2008). Near-UV light, which causes damage
to the photosynthetic apparatus, is effectively screened-out
by light-blocking pigments such as anthocyanin and other
near-UV absorbing pigments. The application of multiple
interdisciplinary approaches has expanded our knowledge of
the structure and function of traditionally well-characterized
photoreceptors and their downstream signaling mechanisms.
The last 10 years in particular have witnessed discoveries in
the newly emerging field of plant photobiology, especially bilin
photoreceptor phytochromes (Rockwell and Lagarias, 2010).

Various types of cyanobacterial phytochromes have been
discovered using genomic information from Synechocystis,
and heterocystous (Nostoc punctiforme) and non-heterocystous
(Microcoleus IPPAS B353) cyanobacteria; they are distinguished
by their domain structures and by the number of cysteine (Cys)
amino acid residues they contain, which play a role in the
attachment of tetrapyrrole chromophores. Cyanobacteria are able
to sense near-UV and the entire visible light range using various
bilin photoreceptors. Their biological functions are implicated
in positive and negative phototaxis, state transition, and salt
acclimation, and to a lesser extent in other photobiological
responses such as carotenoid accumulation and filament stacking
(Wiltbank and Kehoe, 2016). Moreover, photosynthesis is
regulated by photoreceptors such as phototropin from the
green algae Chlamydomonas reinhardtii (Petroutsos et al., 2016)
and cyanobacterial phytochromes Cph2 from Synechocystis
(Schwarzkopf et al., 2014); the discovery of these photoreceptors
has paved the way for the study of the coevolution of light-
sensing and signaling pathways. Some eukaryotic algae contain
phytochromes that are responsive to the visible spectrum, rather
than to canonical red/far red light (Rockwell et al., 2014),
which is a fascinating aspect of phytochrome evolution. Basically,
cyanobacterial bilin photoreceptors transduce signals to the
immediate downstream component via phosphorylation. These
phosphorylated components often act as transcriptional factors,
activating the downstream cascade related to transition state and
phototaxis. Using these two-component systems, optogenetic
approaches can be applied to selectively regulate gene expression
for nutrient uptake and augment particular metabolic pathways
in the field of biotechnology (Narikawa et al., 2015).

The study of the regulatory mechanisms that maintain cellular
structure is also important for both basic and applied science.

Lipids are the major constituents of cellular membranes (Li-
Beisson et al., 2016). More specifically, microalgae contain
thylakoid membranes, which are the sites of photosynthetic
reactions that require the absorption of light energy to split
water, and produce oxygen, ATP, and reductants. Moreover,
lipids can be converted into biofuels. Microalgae are known for
their high capacity for lipid production. Triacylglycerols and
other neutral lipids are the major form of storage lipids; they
are often termed “oils,” and represent an inert end-product of
photosynthetic carbon assimilation. Compared with the higher
plants in which storage lipid accumulation only occurs in
limited types of tissues/cells, unicellular microalgae have a high
degree of flexibility that alters cellular lipid metabolic flux (i.e.,
lipid biosynthesis for photosynthetic membrane constructions
such as in plant leaves, or lipid accumulation for storage in
plant seeds) during growth. For instance, nitrogen starvation
alters the growth phase of algae and induces oil accumulation
at the expense of cellular membrane lipids in many algal
species. Thus, flexible lipid metabolic flux in unicellular systems,
overall high lipid productivity, photosynthetic capacity that
allows carbon fixation, and rapidly growing gene manipulation
technologies, have promoted the use of microalgae as an
emerging synthetic platform in metabolic engineering. A basic
understanding of complex algal lipid metabolism will guide
us to the most feasible and effective strategies for creating
biofuels.

Therefore, microalgae have great potential for biofuel and
biomaterial production. However, this translational research
requires knowledge of molecular biology and biochemistry.
Therefore, we believe that these researches contribute to crossing
the “valley of death” (the gap between basic research and
commercialization) in the future.
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