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X‑ray diffraction analysis of matter 
taking into account the second 
harmonic in the scattering 
of powerful ultrashort pulses 
of an electromagnetic field
M. K. Eseev, A. A. Goshev, K. A. Makarova & D. N. Makarov*

It is well known that the scattering of ultrashort pulses (USPs) of an electromagnetic field in the 
X-ray frequency range can be used in diffraction analysis. When such USPs are scattered by various 
polyatomic objects, a diffraction pattern appears from which the structure of the object can be 
determined. Today, there is a technical possibility of creating powerful USP sources and the analysis 
of the scattering spectra of such pulses is a high-precision instrument for studying the structure of 
matter. As a rule, such scattering occurs at a frequency close to the carrier frequency of the incident 
USP. In this work, it is shown that for high-power USPs, where the magnetic component of USPs 
cannot be neglected, scattering at the second harmonic appears. The scattering of USPs by the second 
harmonic has a characteristic diffraction pattern which can be used to judge the structure of the 
scattering object; combining the scattering spectra at the first and second harmonics therefore greatly 
enhances the diffraction analysis of matter. Scattering spectra at the first and second harmonics are 
shown for various polyatomic objects: examples considered are 2D and 3D materials such as graphene, 
carbon nanotubes, and hybrid structures consisting of nanotubes. The theory developed in this work 
can be applied to various multivolume objects and is quite simple for X-ray structural analysis, because 
it is based on analytical expressions.

X-ray diffraction (XRD) analysis of matter, as well as X-ray crystallography (XRC) are the most powerful meth-
ods for determining the structure of matter1–5. Most crystal structures and many molecules were discovered by 
these methods. They underlie many modern discoveries in the fields of physics, chemistry, biology, medicine 
and crystallography, e.g.2,6–10. Currently, these basic methods of X-ray structural analysis are supplemented 
and expanded in connection with the creation of new types of radiation sources, small sizes of objects under 
study, etc. As a result, separate directions in X-ray structural analysis appear, for example, grazing-incidence 
small-angle scattering (GISAS), transmission small-angle scattering (SAS), grazing-incidence diffraction (GID), 
diffuse reflectometry (DR), single crystal monochromatic diffraction (SXD), powder diffraction (EDX, ADX), 
fiber diffraction (FD) and others2,3,5,11,12. The theoretical basis of these methods has been understood for some 
time1,3; their physical interpretation is based on X-ray diffraction from various polyatomic structures. By analyz-
ing the diffraction pattern, the structure of the substance can be judged. Usually, the theory of X-ray diffraction 
by various periodic and complex structures is described as the scattering of plane waves of infinite duration in 
time1,3. However, the processes of scattering of high-power ultrashort pulses (USPs) with femto- and especially 
attosecond time resolution by structures of this kind have been little studied so far. Moreover, at present, power-
ful USP sources are being introduced, for example, the European X-ray Free Electron Laser (XFEL), the Linear 
Accelerator of a Coherent Light Source (LCLS), and the Free Electron laser Radiation for Multidisciplinary 
Investigations (FERMI), all of which now enable this kind of research to be carried out.

In the last two decades, the generation of isolated attosecond pulses through high harmonic generation has 
provided a powerful tool for studying many important physical processes on the attosecond timescale13. Indeed, 
there is a tendency towards an increase in the power of USPs of an electromagnetic field and a reduction in their 
duration14–16. Research is actively being carried out, the technique of X-ray free electron lasers (e.g. XFEL) is 
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being improved16, and a subfemtosecond barrier with a high peak power has also been achieved, which makes 
it possible to study excitation in a molecular system, and the motion of valence electrons with high temporal 
and spatial resolution17.

Studies of the structure and composition of nanosystems and biomolecules using USP scattering are possible 
for systems in both stationary and nonstationary states. Nonstationary objects can be studied only with the use of 
USPs, since the characteristic time in such systems is less than, or comparable to, the femtosecond timescale. Such 
processes can be the formation and rearrangement of chemical bonds, intra-atomic and molecular processes, 
etc.18–22. For example, the use of nanosystems in various devices is primarily associated with the charge transfer 
process, i.e. on changes in states over time18. It is for this reason that considerable interest is shown in real-time 
observations of electron dynamic processes.

The theoretical basis for carrying out this kind of research is rather poorly developed and often does not 
take into account the aspects of scattered USPs14,16,23–28, which is why theoretical studies of the aspects of USPs 
in their scattering by various polyatomic systems are currently being carried out. In spite of this, the magnetic 
component of such USPs is usually not taken into account. Indeed, it is well known that the force acting on a 
charged particle from the magnetic component of the electromagnetic field is approximately c = 137 (au) times 
less than its electrical component. However, when considering some phenomena, its contribution is very signifi-
cant and neglecting it can lead to a misunderstanding of certain processes. For example, in29, when considering 
tunneling ionization in a strong field regime, its contribution was found to be very significant. In30, taking into 
account the magnetic component of USPs led to the possibility of detecting the orientation of molecular anions 
in space; and in28, it was also shown that the magnetic component must be taken into account in the scattering 
of USPs by various polyatomic systems.

It was found that taking into account the magnetic component of a USP leads to the appearance of the second 
harmonic. A joint analysis of the spectra of USP scattering at the fundamental and second harmonics provides 
more information about the object under study. Objects such as graphene, carbon nanotubes (CNTs), and a 
hybrid structure consisting of CNTs are considered as examples. We will use the atomic system of units where 
� = 1, |e| = 1,me = 1.

Theoretical basis
Consider an arbitrary polyatomic system on which a USP is falling in the direction n0 . The duration of such a 
pulse will be assumed to be much less than the characteristic atomic time τa ∼ 1 , i.e.τ

/

τa
≪ 1 . This will allow us 

to use the sudden disturbance approximation, in which the intrinsic Hamiltonian of the system can be neglected, 
since the electron in the atom does not have time to evolve under the action of the atomic field26. It should be 
added that the condition τ

/

τa
≪ 1 for using our approximation is not strict, and it is sufficient to assume, as 

shown in26, that ω0τa ≫ 1 , where ω0 is the carrier frequency of the falling USP. Obviously, the condition ω0τa ≫ 1 
is satisfied for X-ray frequencies. Let us consider the intensity of the electromagnetic field of a USP in a general 
form, i.e. it will be assumed to depend on coordinates and time E(r, t) . We are interested in electromagnetic 
fields that are not strong enough to allow for relativistic effects. As obtained in28 (see also26,27), taking these 
approximations into account, the probability W of a photon being created of a given frequency ω per unit solid 
angle �k with a simultaneous transition of a polyatomic system from the main state to all possible final states 
(hereinafter, the scattering spectrum of USPs) is determined:

where S(ω,n,n0) = G(ω,n,n0)− F(ω,n,n0) , Na is the total number of atoms in the system, Ne is the number 
of the electrons in an atom, c is the speed of light, n is the direction of the created photon emission, G(ω,n,n0) 
and F(ω,n,n0) are the mean values expressed in terms of electron density ρ(r) in the form:

where k = nω/c , f(ra) =
[

Ẽ(ω)× n
]

 , Ẽ(ω) =
+∞
∫

−∞

(

E(ra,e , t)− 1
2∇a

(

E(ra,e ,t)
c

)2
)

eiωtdt, where ∇a,e = ∂
/

∂ra,e . 

Also in Eq. (2), δN (p) is a factor that completely determines the geometric arrangement of atoms in the target, 
which is calculated in a general form as:

Summation in Eq. (3) is carried out over all atoms of the considered system. We will use the electronic density 

ρ(r) of the Dirac–Hartree–Fock–Slater model, in which ρ(r) = Ne
4πr

3
∑

i=1

Aiα
2
i e

−αi r , where Ai ,αi are the tabular 

coefficients that determine the electron density in an atom31. Using this model, we can find expressions for 
G(ω,n,n0) and F(ω,n,n0) in an analytical form. As a result, we obtain28
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where p = ω
c (n − n0) = k − k0 has the meaning of a recoil pulse in the scattering of a 

U S P, F1 =
∞
∫

−∞
v(x)eiωxdx, F2 =

∞
∫

−∞
v2(x)eiωxdx,  e x p r e s s i o n  f o r  v(x)  d e t e r m i n e d : 

E(t, r) = E0v(x, γ ,ω0), x = t − n0r/c,n0 is a unit vector along USP, γ is the spectral width parameter, ω0 is the 
carrier frequency, i.e.v(x, γ ,ω0) sets the form of the USP.

Further, for complete definiteness of the scattering spectrum, we define the functions F1(ω) and F2(ω) . For 
this, we will consider a USP of the Gaussian form:

In Eq. (5), k0 = n0
ω0
/

c , and the pulse duration is τ = 1/γ , where γ is a damping parameter in a Gauss-
ian pulse. We will assume that the USP is multi-cycle, i.e. ω0

/

γ ≫ 1 . In such a high-cycle case, the condition 
∫∞
−∞ E(r, t)dt = 0 will be met. It is usually used in the case of laser light sources. It should be added that the 

choice of USP in the form of Eq. (5) is not strictly fixed in our theory. The pulse selection can be arbitrary 
depending on the USP source. The Gaussian pulse is chosen as one of the best known for describing the USP. For 
example, in32, an exact description of a subcycle pulsed beam (SCPB) was found, where, in the case considered 
in this paper ( ω0

/

γ ≫ 1 ), the solution has the form of a Gaussian pulse. Further, by taking into account only 
those terms that will make a significant contribution to the scattering, we obtain:

Also, we define the value f(ra,e) , which contains information about the USP field [see Eqs. (1) and (2)] as:

From Eqs. (6) and (7) it can be seen that the contribution to the magnetic component is determined by the 
factor F2 . This factor becomes significant only with high-power USPs, which can be seen from Eq. (7). In this 
case, taking into account the magnetic component will lead to the appearance of the second harmonic, which is 
clearly seen from the second function in Eq. (6). The line width at the fundamental and second harmonic is 
determined by the parameter γ . It should be added that the magnetic component in the scattering of USPs is 
usually not considered in diffraction analysis, on the basis that its contribution is too small. In fact, if high-power 
USPs are used, the contribution of the magnetic component can be significant and even comparable with the 
contribution of the fundamental harmonic. Let us estimate at what power of USP the magnetic component can 
already be taken into account. In the atomic units in Eq. (7), we can assume that ra,e ∼ 1 . As a result, we must 
estimate two dimensionless parameters E0

c2
 and ω0

c

(

E0
c2

)2
 . These relations show the magnitude of the magnetic 

component contribution of the of the USP during its scattering. Modern USP sources can generate radiation 
intensities I = cE20/8π ≈ 1022W/cm2 and even greater (e.g.3), which correspond to E0 ≈ 1012V/cm and above. 
In atomic units, these correspond to E0 ∼ 103 and above (the atomic unit of field strength Ea = 5.14× 109 V/cm ). 
Consider the first parameter E0

c2
 , where in atomic units E0

c2
≈ E0

1372
 . In this case, it is seen that for E0 ∼ 103 , the 

parameter E0
1372

 may be significant E0
1372

∼ 1/10 and even greater than this value for E0 > 103 . Consider the second 
parameter ω0

c

(

E0
c2

)2
 , which differs from the first factor ω0

c  . This parameter can be even larger than the first when 
ω0
c > 1 and make a greater contribution. In other words, the magnetic component of USPs can be significant for 

powerful USP sources.
From Eq.  (1) it can be seen that the diffraction pattern is determined mainly by the expression 

δN (p)F(ω,n,n0) , which is obvious since the factor δN (p) determines the geometric arrangement of atoms in 
the target. It is also seen from Eqs. (1) and (3) that in the case of a polyatomic system, the main part in the scat-
tering spectrum is introduced by the last term in Eq. (1), since the maximum value δmax

N (p) = N2
a . At present, 

it is technically possible to conduct research not only on polyatomic systems, but also on systems where the 
number of atoms is not large. In this case, we must take into account not only the last term in Eq. (1), but also 
all the terms in full. In general, Eq. (1) contains both incoherent and coherent parts of the spectrum. In other 
words, the scattering spectrum can be ∝ NeNa for the incoherent part of the spectrum. This case corresponds to 
scattering of USP by atomic electrons independently of each other. In the case of the coherent part, the scattering 
spectrum ∝ N2

e N
2
a . This case corresponds to the scattering of the USP by atomic electrons together.
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Diffraction analysis taking into account the magnetic component of the USP
In this section, using specific examples, we show the effect of the magnetic component of USPs on the scattering 
spectra. By taking into account the magnetic component of the USP, we also show that the diffraction pattern 
provides enough information to enable the use of the second harmonic for the diffraction analysis of matter. 
First, we will look at 2D materials—a group of rings on a plane (or plane group of rings (PGR)), and graphene, 
and then 3D materials such as a nanotube and a hybrid system consisting of nanotubes.

Consider a group of rings consisting of Nn identical atoms on the nth ring, located along the circumference of 
the ring with radius Rn , equidistant from each other, see Fig. 1. We introduce a rectangular coordinate system so 
that the origin of the coordinate system is in the center of the ring, and the x, y axes lie in the plane of the ring. 
As a result, the factor δN (p) for such a system will be in the form28:

where M is the number of rings, J0 is the zero-order Bessel function, Nn is the number of atoms in a ring with 
radius Rn , L1, L2 are the numbers of nodes on the x, y axes, respectively, and d1, d2 are the lattice periods.

Using Eqs. (1) and (8) we now calculate the spectra for the scattering of USPs on such a system for different 
spatial locations of the detector, as specified by the angles Θ and ϕ. An example of such a calculation is shown 
in Fig. 1: 3D plots show the spatial distribution of the intensity of the scattered USP; 2D plots show the same 
distribution, but in the form of contour plots, which demonstrate the magnitude of the scattering spectra of the 
USPs. It can be seen that scattering at the first harmonic, and hence without taking into account the magnetic 
field, has certain diffraction maxima that are characteristic of this system. Of these diffraction maxima, there is 
one main maximum, the intensity of which is significantly higher than the others. This maximum has a clearly 

(8)δN (p) =
(

M
∑

n=1

NnJ0
(

Rn
∣

∣p× k
∣

∣

)

)2 2
∏
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[
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[

pdi/2
]
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Figure 1.   3D radiation pattern of the scattering spectra USP [see Eq. (1)] and the contour plot for the spectra, 
where θ and φ are angles (in radians) with a spherical coordinate system, i.e. polar and azimuth angles, 
respectively. Inserts in contour plots show an enlarged (more contrasting) scatter spectrum. The first harmonic 
is in the figures above, and the second harmonic is below. A USP was selected with a frequency ω0=100 au, a 
pulse duration γ corresponding to 43 as and amplitude E0=1000 au. For the plane group of rings, the number of 
atoms in the ring is N = 6, the radius of the ring is R = 4 au, the number of grid nodes is 5 × 5 au, (25 rings), and 
the distance between the centers of adjacent rings is d = 7 au. The angle of incidence αbetween n0 and the z axis 
was selected asα = π/4.
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pronounced direction in the direction of the falling pulse n0. If we consider scattering at the second harmonic, 
i.e. taking into account the magnetic component of the USP, we will also see the diffraction maxima. There are 
noticeably more of these maxima than at the first harmonic, and they are more pronounced. In other words, the 
diffraction pattern at the second harmonic is more informative. In contrast to the first harmonic, the direction 
of the scattered USP at the second harmonic differs markedly from the direction n0 of the falling pulse. Both 
parts of the spectrum are sensitive to the number of ring atoms: the greater the number of atoms, the smaller 
the solid angle of the diffraction peak.

Thus, most of the radiation falls on the carrier frequency ω0. With an increase in the radius of the system and 
the number of atoms in it, the spectrum degenerates into a delta function.

Next, we consider another 2D material: graphene. The factor δN (p) for graphene was partially calculated in33. 
As a result, the factor δN (p) can be represented as:

where L is the number of graphene ribbons, N  is the number of the cells in graphene tape, d is the distance 
between atoms along the x axis, and i and j are unit vectors along the x and y axes, respectively, see Fig. 2.

Using Eqs. (1) and (9), the spectra were calculated for the scattering of USPs on graphene. An example of such 
a calculation is shown in Fig. 2; the 3D and 2D graphs are described similarly to those in Fig. 1. Scattering at the 
first harmonic, and therefore without taking into account the magnetic field, has certain diffraction maxima that 
are characteristic of this system. It should be noted that the diffraction pattern at the first harmonic is quite close 
to the diffraction pattern when USPs are scattered by a system of rings (see Fig. 1). In the case of scattering at the 
second harmonic, the diffraction maxima characteristic of graphene can also be seen. There are noticeably more 
bright peaks than at the first harmonic, and they are more pronounced. The diffraction pattern presented in the 
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Figure 2.   3D radiation pattern of the scattering spectra USP [see Eq. (1)] and the contour plot for the spectra, 
where θ and φ are angles (in radians) with a spherical coordinate system, i.e. polar and azimuth angles, 
respectively. Inserts in contour plots show an enlarged (more contrasting) scatter spectrum. The first harmonic 
is in the figures above, and the second harmonic is below. A USP was selected with a frequency ω0=100 au, 
a pulse duration γ corresponding to 43 as and amplitude E0 = 1000 au. The numbers of the graphene ribbons 
and cells are L = 10 , N = 10 , respectively The angle of incidenceαbetween n0 and the z axis was selected as 
α = π/4.
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second harmonic scattering spectra among these 2D objects (PGR, graphene) has obvious differences. Therefore, 
the analysis of the spectra will make it possible to more correctly determine the studied system.

We now consider a 3D system in the form of a CNT, in the approximation of an axially symmetric group of 
rings, see Fig. 3. The factor δN (p) for such a system was studied in28, and as a result:

where Nn is number of atoms in a ring n with radius Rn , L is the number of planes with rings, d is the step between 
planes, and k is the unit vector directed along the z axis. Thus, we can define the analog of both a single layer 
M = 1 and a multi-layer M > 1 CNT.

Below we demonstrate the scattering spectra of USPs by a CNT for different spatial locations of the detector 
as specified by the angles Θ and ϕ. An example of such a calculation is shown in Fig. 3; the 3D and 2D graphs are 
described similarly to those in Fig. 1. It can be seen that the scattering at the first harmonic has certain diffrac-
tion maxima that are characteristic of this system; of these, there is one main maximum, the intensity of which 
is significantly higher than the others. This maximum has a clearly defined direction along the vector n0, i.e. in 
the direction of the falling pulse. If we consider the scattering at the second harmonic, we will see that there are 
more maxima than at the first harmonic, and they are more pronounced. The diffraction pattern at the second 
harmonic carries more information than at the first. The direction of the scattered USP at the second harmonic 
differs markedly from the direction n0 of the pulse falling, in contrast to the first harmonic. Both parts of the 
spectrum are sensitive to both the number of ring atoms and the angle of incidence of the pulse. With an increase 
in the number of atoms, the spectrum acquires a smaller solid angle of the diffraction peak.
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Figure 3.   3D radiation pattern of the scattering spectra USP [see Eq. (1)] and the contour plot for the spectra, 
where θ and φ are angles (in radians) with a spherical coordinate system, i.e. polar and azimuth angles, 
respectively. Inserts in contour plots show an enlarged (more contrasting) scatter spectrum. The first harmonic 
is in the figures above, and the second harmonic is below. A USP was selected with a frequency ω0=100 au, a 
pulse duration γ corresponding to 43 as. and amplitude E0 = 1000 au. The number of planesL = 8 , the distance 
between planes d = 2au, and the ring radius R = 4au. The angle of incidenceαbetween n0 and the z axis was 
selected as α = π/4.
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We now consider a composite nanostructure, that of a hybrid system consisting of CNTs and PRG, see Fig. 4. 
In such a system, CNTs connect the two PRG planes discussed above. We will consider the case where CNTs 
alternate through one ring in the PGR plane (like a chessboard). The factor for such a system δN (p) , has not yet 
been studied, but is simple to obtain from the previous cases for PGR and a CNT:

where d1 and d2 are the periods of the lattice in the centers of which the rings are located along the x and y axes, 
respectively (x and y are in the plane of the rings), n3 is the number of nodes along the z axis, [n1] and [n2] are 
the numbers of odd atoms along the x and y axis, respectively, and [n′

1] and [n′
2] are the numbers of even atoms 

along the x and y axes, respectively.
Below, we present the calculations of the scattering spectra of USPs on a composite carbon system. An 

example of such a calculation is shown in Fig. 4; 3D and 2D graphs are described similarly to those in Fig. 1. 
The scattering at the first harmonic has certain diffraction maxima that are characteristic of this system; of these 
there is one main maximum, the intensity of which is significantly higher than the others. This maximum has a 
clearly defined direction along the vector n0, i.e. in the direction of the falling pulse. If we consider the scattering 
at the second harmonic, we will see that there are more maxima than at the first harmonic, and they are more 
pronounced. The direction of the scattered USP at the second harmonic differs markedly from the direction n0 
of the falling pulse. Both parts of the spectrum are sensitive to the number of ring atoms.
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Figure 4.   3D radiation pattern of the scattering spectra USP [see Eq. (1)] and the contour plot for the 
spectra, where θ and φ are angles (in radians) with a spherical coordinate system, i.e. polar and azimuth 
angles, respectively. Inserts in contour plots show an enlarged (more contrasting) scatter spectrum. The first 
harmonic is in the figures above, and the second harmonic is below. A USP was selected with a frequency ω0

=100 au, a pulse duration γ corresponding to 43 as and amplitude E0 = 1000 au. The numbers of nodes n3 = 5 , 
n1 = n2 = 3 , distance d1 = d3 = d3 = 5au, number of atoms in a ring N = 6 , and ring radius R = 3au. The 
angle of incidenceαbetween n0 and z axis was selected as α = π/4.
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It can be seen from the presented plots that taking into account the magnetic component of the USP, which 
leads to the appearance of the second harmonic in the scattering spectrum, i.e. makes a noticeable contribution 
to the overall diffraction pattern. At the second harmonic, this pattern has more than one clearly pronounced 
diffraction maximum, in contrast to the first harmonic. It should be added that the absolute value of the spectrum 
at the second harmonic can be significantly greater if a larger value is chosen E0 и ω0.

Discussion and conclusion
We have shown that by using Eq. (1), it is possible to calculate the scattering spectra of USPs with allowance for 
the magnetic component of the electromagnetic field. The magnetic component leads to the generation of the 
second harmonic, which can be used for X-ray diffraction analysis of the substance. The above examples dem-
onstrate that the second harmonic leads to a diffraction pattern that has more maxima and is more pronounced 
than the diffraction pattern at the first harmonic. We should add that this important result is applicable not only 
to the cases considered above, but is a fundamental consequence of the USP scattering with allowance for the 
second harmonic and is general. We will show this using Eq. (3). Since the factor is responsible for the geometric 
arrangement of atoms in the system, it is responsible for the diffraction pattern. The factor can be presented in 
another form:

where δ(R − Ra) is the Dirac delta function. Since we assume that ω0
/

γ ≫ 1 , then in this case the value dW/d�k

[see Eq. (1)], when integrated over frequencies, will be concentrated near the two frequencies ω0 and 2ω0 . In this 
case the vector p is also concentrated near two frequencies p1 = ω0/c(n − n0) and p2 = 2ω0/c(n − n0) . This, in 
turn, leads to the fact that the factor δN (p) is also situated near the first ω0 and 2ω0 harmonics. Since p2 = 2p1 , 
then the number of oscillations as a result of integration in 

∫

ρ(R)eip2Rd3R will be more than 
∫

ρ(R)eip1Rd3R , 
leading to the fact that there will be more diffraction maxima at the second harmonic. For example, this can 
be seen directly from the factors δN (p) in Eqs. (8)–(11), and is easily shown in the case of a rectangular lattice, 
where the delta factor (see e.g.34) is determined:

where d1, d2, d3 are the interatomic distances and directions along the x, y, z axes, respectively, and N1,N2, N3 are 
the numbers of atoms along selected x, y, z axes, respectively. With a sufficiently large number of atoms in the system, 
Eq. (13) shows that the peaks will be at: ω0/c(n− n0)d1 = 2πn,ω0/c(n− n0)d2 = 2πm,ω0/c(n− n0)d3 = 2πk , 
where n,m, k = 0, 1, 2, ... are integers. This is the Laue condition if we assume that the scattering occurs at the 
fundamental frequency ω0 . If we consider scattering by the second harmonic, then we obtain a certain analog 
of the Laue condition in the form:ω0/c(n− n0)d1 = πn,ω0/c(n− n0)d2 = πm,ω0/c(n− n0)d3 = πk . Com-
paring these two expressions, it can be seen that the second harmonic does indeed have a large number of dif-
fraction peaks.

As a result, we obtain two diffraction patterns on the fundamental and second harmonics, both of which were 
derived from the same USP and on a given polyatomic system. As a result, diffraction analysis can be carried 
out by studying two diffraction patterns at once, which allows you to get more details about the research object. 
It should be added that the approach developed here, as also shown in28, is a special case corresponding to well-
known techniques in X-ray and diffraction analysis.

The theory developed here takes into account aspects of the interaction of USPs with matter. Note that using 
Eq. (1), both stationary and dynamic systems can be studied. In this case, it is necessary to replace in Eq. (1) the 
density ρ(r) by ρ(r, t) , where is the moment in time at which the USP acts on the system under study19. These 
dynamic systems include complex molecules, including biomolecules, where bonds are broken or formed, as 
well as peptides and biological systems within which there is charge migration.

It should be added that the sizes of the objects that were considered here and which we are interested in are 
less than the extinction length in dynamic diffraction. This means that dynamic diffraction can be neglected. 
Although the diffraction at the second harmonic will also be on larger objects, where dynamic diffraction cannot 
be neglected. How scattering at the second harmonic will affect the effects in the dynamic theory of diffraction 
is an interesting question and can be investigated in the future.

Thus, the method presented here is sensitive to the geometry of nano-objects and may soon supplement X-ray 
structural analysis. The authors expect their work to become a starting point for experimental research aimed at 
studying biomolecules and various dynamic systems, as well as for detecting defects in 2D and 3D nanosystems.
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