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The postoperative survival time and quality of life of patients with colon adenocarcinoma (COAD) varies widely. In order to make
accurate decisions after surgery, clinicians need to distinguish patients with different prognostic trends. However, we still lack
effective methods to predict the prognosis of COAD patients. Accumulated evidences indicated that the inhibition of
peroxisome proliferator-activated receptors (PPARs) and a portion of their target genes were associated with the development
of COAD. Our study found that the expression of several PPAR pathway-related genes were linked to the prognosis of COAD
patients. Therefore, we developed a scoring system (named PPAR-Riskscore) that can predict patients’ outcomes. PPAR-
Riskscore was constructed by univariate Cox regression based on the expression of 4 genes (NR1D1, ILK, TNFRSF1A, and
REN) in tumor tissues. Compared to typical TNM grading systems, PPAR-Riskscore has better predictive accuracy and
sensitivity. The reliability of the system was tested on six external validation datasets. Furthermore, PPAR-Riskscore was able
to evaluate the immune cell infiltration and chemotherapy sensitivity of each tumor sample. We also combined PPAR-
Riskscore and clinical features to create a nomogram with greater clinical utility. The nomogram can help clinicians make
precise treatment decisions regarding the possible long-term survival of patients after surgery.

1. Introduction

Colon adenocarcinoma (COAD) is the world’s second most
prevalent cancer and the third greatest cause of cancer-
related death [1]. Despite the fast advancement of COAD
surgery and adjuvant therapy, 65 percent of patients with
severe COAD will experience recurrence and metastasis,
with a 5-year survival rate of less than 10% . As a result,
effectively forecasting the prognosis of COAD patients and
distinguishing between high-risk and low-risk patients has
emerged as one of the most pressing clinical issues. Patients
with low survival prospects can benefit considerably from
prompt follow-up and the adoption of effective treatment
regimens. For patients with a greater chance of survival, less
intrusive testing and lower chemotherapy medication dos-
ages can enhance quality of life. Although blood biomarkers
like CA19-9 (carbohydrate antigen 19-9) and CEA (carcino-
embryonic antigen) are often employed in COAD diagnosis
and prognosis, their sensitivity and specificity are low. We
still need to seek for more reliable indicators to predict the

prognosis of patients with CC, which will help guide clinical
care while also providing new opportunities for exploring
novel therapeutic targets.

Peroxisome proliferator-activated receptors (PPARs) are
a group of nuclear receptor proteins discovered in 1990.
They exist in three different subtypes, PPARα (NR1C1),
PPARβ/δ (NR1C2), and PPARγ (NR1C3), and can act as
ligand-activated transcription factor (TF) [3]. Recent
research has demonstrated that PPARs have an anticancer
effect in addition to their metabolic efficiency [4–5], [2, 6].
Furthermore, a number of studies have discovered that
abnormal PPARs and PPAR target gene expression are fre-
quently related to the development and progression of can-
cer [7–9], and agonists of the PPAR pathway, such as
thiazolidinediones, are typically regarded antiproliferative
in tumor cells [10].

The involvement of the PPAR pathway and its down-
stream target genes in COAD remains to be discovered. In
this study, we found that the PPAR pathway and down-
stream target genes were generally repressed in colon cancer
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tissues through microarray and RNA-seq data. Furthermore,
we found a significant correlation between the expression of
PPAR pathway-related genes in cancer tissues and the prog-
nosis of COAD patients. We can predict the prognosis of
patients as well as their sensitivity to certain chemotherapy
medicines based on the expression of these genes. This find-
ing will bring great possibilities for COAD patients’ progno-
sis prediction and accurate postoperative therapy.

2. Materials and Methods

2.1. Colon Adenocarcinoma Dataset Acquisition. Four data-
sets (GSE6988, GSE14297, GSE15781, and GSE44076) con-
taining gene expression data and associated clinical data
for colon cancer tissues and normal intestinal epithelium
were downloaded from the Gene Expression Omnibus
(GEO; http://www.ncbi.nlm.nih.gov/geo/). Normalized data
were used for analysis the PPAR pathway and downstream
gene expression patterns between the normal and tumor tis-
sue. A total of 456 COAD RNA-seq data were downloaded
from the TCGA data portal (https://portal.gdc.cancer.gov/)
[11]. Six datasets comprising prognostic information of
COAD patients were used as the external validation cohorts
(GSE12945, GSE17536, GSE33133, GSE39084, GSE39582,
and GSE103479) were also downloaded from the GEO.

2.2. Pathway Enrichment Analysis. Differentially expressed
genes between colon cancer tissues and normal intestinal
epithelium were determined by using the R package
“limma.” Then, the “clusterProfiler” package [12] in R was
used to perform the gene set enrichment analysis (GSEA).
We selected the four pathways most closely associated with
PPARs for analysis (KEGG_PPAR_SIGNALING_PATH-
WAY, PPAR-alpha target genes, PPAR-delta target genes,
and PPAR-gamma target genes). The pathway gene sets
were retrieved from the Molecular Signature Database
(MSigDB) [13] or PPAR Gene Database.

2.3. PPAR Pathway-Related Gene Procurement.We collected
69 PPAR signaling pathway genes in the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database under the name
KEGG_PPAR_SIGNALING_PATHWAY. Furthermore,
144 PPAR target genes (40 PPAR-alpha target genes, 64
PPAR-delta target genes, and 69 PPAR-gamma target genes)
were downloaded from the PPAR Gene Database (http://
www.ppargene.org/). Together, we got 180 PPAR signaling
pathway-related genes with prognostic information by inter-
section. Finally, we removed the low expression genes
(FPKM < 1) and obtained 140 PPAR signaling pathway-
related genes (PPAR-related genes) for further analysis.

2.4. Prognosis Analysis. To find the genes associated with
COAD prognosis among the 140 genes involved in the
PPAR signaling pathway, we first utilized the univariate
Cox proportional hazard regression analysis to analyze the
overall survival rate (OS) of COAD patients based on the
expression levels of these 140 genes. Eventually, multivariate
Cox proportional hazard regression analysis was used to
determine an optimized prognostic model. We named this
scoring model as “PPAR-Riskscore.”

The PPAR-Riskscore of patients with COAD was estab-
lished by the following equation: PPAR − Riskscore =∑n

i Xi
∗ Yi, where Xi indicates the expression value of gene i;
meanwhile, Yi means the coefficient of gene i generated
from the multivariate Cox regression analysis. According
to the median value of the risk score, the samples were clas-
sified into two groups (high- and low-risk groups). We
employed a time-dependent receiver operating characteristic
(ROC) curve to assess the multigene marker’s specificity and
sensitivity in predicting the 1-year, 3-year, and 5-year OS of
COAD and compared them to other clinical indications, like
age, sex, subdivision, and TNM stage (II and III). This
multigene marker’s predictive ability was ultimately con-
firmed in the GSE12945, GSE17536, GSE33133, GSE39084,
GSE39582, and GSE103479 cohorts.

2.5. GSVA and Tumor-Infiltrating Immune Cell Analysis. To
investigate the relationship between the PPAR-Riskscore
and biological pathways, single-sample gene set enrichment
analysis (ssGSEA) was used using the “GSVA” R package
to analyze the related gene expression patterns of these sam-
ples. A score corresponding to each function, as well as the
correlation between these functions and the risk score, was
calculated for each sample. For GSVA, the gene set file
“http://c2.cp.kegg.v7.3.symbols. gm” was obtained from
MSigDB. The significance threshold was set at FDR < 0:05.
Furthermore, taking into account the significance of the
tumor immune microenvironment, the CIBERSORT algo-
rithm was utilized to evaluate the infiltration of 22 types of
immune cells.

2.6. Chemotherapy Sensitivity Prediction. We utilized the
GDSC database to determine the half-maximal inhibitory
concentration (IC50) of each COAD patient chemotherapy
medications for predicting chemotherapy drug sensitivity
using the package to examine the difference in chemother-
apy sensitivity between various groups. Statistical signifi-
cance was defined as a P value < 0.05.

2.7. Construction of a Nomogram. To find out whether the
PPAR-Riskscore was an independent prognostic factor in
patients with COAD, we used univariate and multivariate
Cox regression analysis methods. A nomogram consisting
of a risk score and TNM stage was created based on the
findings of multivariate analysis for predicting1-, 3-, and
5-year OS. And the calibration plots were used to evaluate
the accuracy between the true OS and the nomogram-
predicted values.

2.8. Statistical Analyses. To compare normally distributed
data, the Student’s t-test or one-way ANOVA test was uti-
lized. The Mann-Whitney U test or the Kruskal-Wallis test
was used to access nonnormally distributed data. The
nomogram-predicted was built using the “pRRophetic”
package “rms” and Iasonos’ guide. R software (version
4.0.3) or GraphPad Prism 6.0 was used to conduct all statis-
tical tests and visual analysis.
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3. Results

3.1. Gene Set Enrichment Analysis of PPAR Pathways
between Colon Cancer Tissue and Normal Intestinal
Epithelium. We selected four PPAR-related pathways from
MSigDB to investigate the status of PPAR pathway in colon
cancer, including the “KEGG PPAR SIGNALING PATH-
WAY,” “PPAR-alpha target genes,” “PPAR-delta target
genes,” and “PPAR-gamma target genes.” The alterations
in these pathways were examined in the four microarrays:
GSE6988: 53 COAD vs. 28 normal, GSE14297: 18 COAD
vs. 7 normal, GSE15781: 22 COAD vs. 20 normal, and
GSE44076: 98 COAD vs. 98 normal. The results of GSEA
showed that the four pathways were significantly downreg-
ulated in the colon cancer tissue but normal epithelium
(Figure 1). Among them, the PPAR-alpha targets was the
most significantly downregulated (in which NES value was
the smallest among three cohorts, and its P value was statis-
tically significant in three of the four cohorts). On the other
hand, PPAR-delta targets were not statistically significant in
three of the four cohorts, and the inhibitory trend of PPAR-
gamma target was not obvious. According to the findings,
the PPAR pathway and its target genes are frequently
downregulated in colon cancer. We may be able to uncover
better treatment targets and prognosis indicators by study-
ing these genes.

3.2. The Transcription of PPAR-Related Genes Is Related to
the Prognosis of UCEC Patients. Cox analysis was performed
on the 140 PPAR-related genes in order to identify PPAR-
related genes that were associated with OS in the TCGA
dataset. Firstly, using univariate Cox regression analysis, 7
PPAR-related genes showed a strong connection with the
outcomes of patients with COAD (Figure 2(a)). Then, to
ensure that 7 prognostic genes were reliable, multivariate
cox univariate regression analysis was used to filter genes
without overfitting. Eventually, we created a scoring system
named PPAR-Riskscore to predict the prognosis time of
COAD patients based on the correlation coefficient of each
gene (Figure 2(b)).

PPAR − riskscore = 0:67 × ExpNR1D1 + 0:63 × ExpILK
− 0:94 × ExpTNFRSF1A − 0:31 × ExpREN:

ð1Þ

Patients were then split into high-risk and low-risk
groups based on the median PPAR-Riskscore. The distribu-
tion of PPAR-Riskscore and patient survival status is shown
in Figures 2(c) and 2(d). NR1D1 and ILK were found to be
highly expressed in the high-risk group, whereas TNFRSF1A
and REN were found to be strongly expressed in the low-risk
group, according to a heatmap of the expression patterns of
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Figure 1: GSEA analyzes the difference in expression levels between colon cancer and normal controls. Four gene sets related to expression
levels from four GEO cohorts were analyzed. The curve above the enrichment score of 0 points shows that the gene set is activated in colon
cancer. A curve below 0 point shows that it is more active in the normal controls than in colon cancer. P adjust: adjusted P value; NES:
normalized enrichment score.
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Figure 2: Continued.
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four genes (Figure 2(e)). The Kaplan-Meier (K-M) curve
revealed that the survival rate of patients in the low-risk
group was considerably greater than that of patients in
the high-risk group (Figure 2(f)). The area under the
curve (AUC) values for 1-year, 3-year, and 5-year survival
of PPAR-Riskscore in the TCGA dataset were 0.741, 0.745,
and 0.797, respectively, according to the time-dependent
ROC analysis, consistent with satisfactory model perfor-
mance (AUC > 0:5; Figure 2(g)). As such, these results
indicated that we can successfully establish a PPAR-
related COAD prognosis model with certain applicability,
among which NR1D1 (nuclear receptor subfamily 1 group
D member 1), ILK (integrin-linked kinase), TNFRSF1A
(the tumor necrosis factor receptor superfamily, member
1A), and REN (renin) can be effective prognostic factors
of COAD patients.

3.3. Independent Prognostic Value of the PPAR-Riskscore.
After that, we looked at the association between COAD
patient clinical characteristics, risk score, and outcomes in
the TCGA cohort to corroborate the PPAR-Riskscore-
independent prognostic value. Using univariate Cox regres-
sion analysis, it was shown that TNM stage (II and III)
and risk score were both substantially associated with patient
survival (P < 0:001) (Figure 3(a)). Other clinical indicators
and OS had some correlations, but they did not achieve sta-
tistical significance. These 3 variables were later added as
covariates in a multivariate Cox regression analysis, which
revealed that the PPAR-Riskscore was a significant indepen-
dent risk factor for the OS of COAD patients (Figure 3(b)).
The predictive power of PPAR-Riskscore (HR = 1:415, 95%
CI = 1:188-1.685, P < 0:001) was even higher than TNM
stage II and stage III. PPAR-Riskscore (HR = 1:415, 95%

CI = 1:188-1.685, P < 0:001) was an independent predictive
factor for COAD patient OS.

3.4. External Verification of the PPAR-Riskscore. For the pur-
pose of determining if the PPAR-Riskscore is applicable to
other COAD cohorts, we utilized external data to validate
our findings. To confirm the accuracy of the analytical find-
ings, we enrolled six cohorts, each with more than 50 sam-
ples (GSE12945, GSE17536, GSE33133, GSE39084,
GSE39582, and GSE103479). Based on PPAR-Riskscore,
we used the same procedure to split patients into high-and
low-risk groups. Unsurprisingly, patients in the high-risk
group had a higher mortality rate in all validation cohorts
(P < 0:001) (Figure 4). In addition, we use PPAR-Riskscore
to predict patients’ 1-, 3-, and 5-year OS. PPAR-Riskscore’s
AUC was 0.6 or higher in most ROC analyses. According
to the findings, PPAR-Riskscore has some specific practical
application value in predicting COAD patient prognosis.

3.5. Identify the Biological Characteristics of Patients with
Different PPAR-Riskscore. To further assess the biological
behavior characteristics of patients with varying PPAR-Risk-
score, we used GSVA enrichment analysis. In patients with a
high PPAR-Riskscore, glycolipid metabolism, ECM-receptor
interaction, axon guidance, and focal adhesion were signifi-
cantly activated compared to patients with a low PPAR-
Riskscore (Figure 5). It appears that patients with a high
PPAR-Riskscore were more likely to be associated with
cancer-related signaling pathways, whereas olfactory trans-
duction and cytokine receptor interaction were highly
enriched in patients with a low PPAR-Riskscore and were
more likely to be associated with other signaling pathways.
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Figure 2: Construction of the PPAR-Riskscore prediction panel. (a) Identification of the prognostic PPAR-related genes by univariate Cox
regression analysis; (b) identification of 4 prognostic PPAR-related genes by multivariate Cox regression analysis. (c) and (d) The
distribution of PPAR-Riskscore and the survival status of patients with different scores. (e) Heatmap of the expression profiles of the
genes in the prognostic signature. (f) The Kaplan-Meier curves of overall survival for patients between the high-risk group and low-risk
group. (g) Time-independent receiver operating characteristic (ROC) analysis for evaluating the predictive performance of PPAR-Riskscore.
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3.6. Differences in Infiltrating Immune Cells in Tumor Tissues
of Patients with Varying PPAR-Riskscore. When it comes to
immune cell infiltration, the CIBERSORT algorithms were
employed to investigate if the PPAR-Riskscore could accu-
rately describe the features of the tumor microenvironment
(Figure 6). The results revealed that patients with high
PPAR-Riskscore had significantly higher proportions of
M0 macrophages, while patients with low PPAR-Riskscore
had obviously higher proportions of T cell CD4 memory
resting. It is well known that tumor-associated macro-
phages (TAMs) have protumorigenic properties. In addi-
tion, many studies have been proved that activated
memory CD4 T cells were a key tool for tumor healing. It
can kill cancer cells directly or indirectly by stimulating
and recruiting CD8 T cells and various other immune cells
[14]. It shows that the PPAR-Riskscore, via controlling
immune cell infiltration, may play a role in the occurrence
and development of COAD.

3.7. Chemotherapeutic Response Analysis. Adjuvant chemo-
therapy is the primary postoperative treatment approach
for COAD patients; thus, we studied whether the PPAR-
Riskscore could be used to predict the sensitivity of high-
and low-risk patients to three chemotherapy medications
that are often used for COAD patients (Figure 7). Based on
the PPAR-Riskscore, all COAD samples were divided into
two groups: those at high risk and those at low risk. Follow-
ing an analysis of the GDSC database, it was discovered that
the IC50 values of commonly used chemotherapy drugs
including 5-fluorouracil, irinotecan, and oxaliplatin were
elevated in the control group compared to those with COAD
groups. The association between the IC50 of these three
medications and the PPAR-Riskscore was then investigated
using correlation analysis. The results showed that the
higher the PPAR-Riskscore, the lower the IC50 of 5-
fluorouracil (R = −0:312). It showed that 5-fluorouracil
could be an effective drug for high PPAR-Riskscore patients.
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Figure 3: Verification of the independent prognostic value of the PPAR-Riskscore. (a) Forest plots of the univariate Cox regression analyses
among PPAR-Riskscore and clinical factors. (b) Forest plots of the multivariate Cox regression analyses among PPAR-Riskscore and
clinical factors.
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3.8. Construction of a Prognostic Nomogram. After that, we
developed a nomogram incorporating TNM stage and
PPAR-Riskscore as two independent prognostic indicators
related to COAD patient 1-, 3-, and 5-year OS. This allowed
us to evaluate the ability of PPAR-Riskscore to reliably pre-
dict the clinical prognosis and facilitate clinical usage of
COAD (Figure 8(a)). The prognosis of a patient may be
computed by adding up the contribution scores of each item
in the equation. As shown in Figure 8(b), calibration plots
for the surviving time points were produced, demonstrating
that the nomogram had excellent prediction ability. The
results of the decision curve study show that the clinical
applicability of our nomogram surpassed the clinical fea-
tures by a significant margin (Figure 8(c)). It showed that
by combining the PPAR-Riskscore with clinical parameters
to predict prognosis, a greater number of patients might
benefit from it.

4. Discussion

PPARs have gone from being totally unknown receptors to
key actors in a variety of physiological processes and patho-
logical situations in the past twenty years. The role of these
receptors in cell differentiation and cancer is one of their
most important functions. Numerous reports have indicated
that PPARs act as tumor suppressors or tumor accelerators,
indicating that they might be used as pharmacological tar-
gets for cancer prevention and therapy [15–21]. The related
influence of PPAR on tumor development has always been
related to cell cycle inhibitory genes such as p18, p21, and
p27. It can induce apoptosis by inhibiting B-cell
lymphoma-2 (Bcl-2), and it can also reduce angiogenesis
by inhibiting vascular endothelial growth factor (VEGF)
[22, 23]. PPARα is expressed in hepatocytes, cardiomyo-
cytes, proximal tubular cells, and brown adipose tissue
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Figure 4: Results of PPAR-Riskscore external validation utilizing six microarray cohorts. Based on the value of PPAR-Riskscore, each
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[24]. PPARβ/δ is expressed in several tissues with some spe-
cies differences, while PPARγ is expressed in white and
brown adipose tissue, the gut, and immune cells and is
related to adipogenesis, lipid storage, and glucose homeosta-
sis [25]. Recently, a study showed that PPAR expressions are
explicitly deregulated in colorectal cancer (CRC), with
PPARα and PPARδ being overexpressed, while PPARγ is
suppressed in CRC tumor tissues. More importantly, abnor-
mal PPAR expression levels in tumor tissues seemed to be
linked to CRC development and poor prognosis [26]. There-
fore, we need to find biomarkers that that reliably predict the
prognosis of COAD patients in order to guarantee that
patients get more suitable and successful therapy.

To find the COAD prognostic indicators linked with
PPAR, 140 genes implicated in the PPAR signaling pathway
were investigated in this research utilizing COAD patient
data obtained by bioinformatics approaches. Subsequently,
we determined the novel four gene models (NR1D1, ILK,
TNFRSF1A, and REN) and established a prognostic model

named PPAR-Riskscore. Using the risk score, COAD
patients are divided into two groups: those at high risk and
those at low risk. A survival curve analysis reveals that
patients in the high-risk group have considerably poorer
outcomes than those in the low-risk group. The ROC curve
demonstrates that this model has excellent 1-, 3-, and 5-year
survival prediction accuracy. According to multivariate Cox
regression analysis, PPAR-Riskscore is an independent risk
factor for COAD.

Among the genes of PPAR-Riskscore, NR1D1 is the
most studied, and it is the target of PPAR-gamma-related
pathway. Nuclear receptor subfamily 1 group D member 1
(NR1D1; REV-ERBα) is a nuclear receptor that controls a
variety of physiological functions [27]. It is also thought to
have a role in cancer. Many malignancies are killed by phar-
macological activation of NR1D1 [28]. One research found
that NR1D1 interferes with the recruitment of DDR com-
plexes to damaged DNA locations, hence impairing normal
DNA repair. Aside from this, it was shown that NR1D1
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Figure 5: GSEA analysis between patients with high-risk and low-risk PPAR-Riskscore.
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improved the susceptibility of breast cancer cells to DNA
damage-induced chemotherapy, hence increasing the likeli-
hood of PCR in breast cancer patients [29]. Another
research has shown that NR1D1 inhibits activation of the
JAK/STAT3 signaling pathway by upregulating the expres-
sion of SOCS3, thus suppressing ovarian cancer cell growth
and inducing apoptosis. Through the use of immunohisto-
chemistry and other techniques, X. Wang et al. discovered
that the expression of REV-ERB was reduced in gastric can-
cer tissue. In gastric cancer, the researchers discovered that
REV-ERB expression was substantially related with poor dif-
ferentiation, TMN stage, and lymph node metastasis. Fur-
thermore, it has been shown that REV-ERB expression is
substantially associated with patient survival time, suggest-
ing that REV-ERB may be a prognostic factor in gastric can-
cer on an independent basis [30].

ILK, a target of PPARβ/δ-related pathway, is a 59 kDa
serine/threonine protein kinase that binds to the cytoplasmic
domains of integrins β1 and β3 and is distributed in the
cytoplasm near the cell membrane. In the process of carcino-
genesis, progression, and metastatic processes, it has dual
effects on the cells. A number of signal transduction path-
ways are regulated by ILK, which also forms a scaffold com-
plex with cytoskeleton proteins, all of which are critical in
the regulation of cell motility, tumor growth, and invasion
[31]. ILK was recently discovered to be overexpressed in sev-

eral cancers (the prostate [32], ovary [33], breast [34], colon
[35], lung [36], and thyroid [37]), contributing to their pro-
liferation, invasion, and metastasis by regulating EMT-
related genes. EMT is a key process that drives cancer occur-
rence and progression. Currently, it has been documented
that ILK is associated with colorectal cancer. It has been
shown in pathological results that high ILK expression levels
are associated with CRC stage, lymph node metastasis, and
patient survival [38]. The in vitro CRC studies by Shen
et al. also revealed that overexpression of ILK may stimulate
the development of EMT in CRC cells [35]. In addition, ILK
expression is upregulated in ovarian cancer, and it has a pos-
itive correlation with tumor development. The in vivo
tumorigenesis of human ovarian cancer cells is suppressed
by silencing the ILK gene [33]. On the contrary, it has been
reported that loss of ILK abrogates the mechanosensing
capability of breast cancer cells and blocks tumorigenic
and metastatic potential [34].

TNF-α and REN are also a target of PPAR-gamma-
related pathway, and TNF-α is a highly active cytokine
engaging in the signaling pathway of necrosis or apoptosis
in cells [39]. TNF-α is an endogenous tumor promoter that
is generated by neoplastic cells or cells in the tumor micro-
environment. TNFRSF1A is considered the dominant sig-
naling receptor for the cytokine TNF-α. When TNF-α
binds to TNFRSF1A, it activates the transcription factor
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NF-B, mediates apoptosis, and regulates inflammation [40].
In the study by Yang et al., identification of TNFRSF1A by
bioinformatics analyses such as WGCNA showed that the
expression of TNFRSF1A was highly expressed in glioma
samples compared with normal brain samples. In addition,
the expression level of TNFRSF1A correlated with WHO
grade and other clinical parameters, and it was revealed to
be an independent predictive factor. Knockdown of
TNFRSF1A inhibited the proliferation and migration of gli-
oma cell lines in vitro. These findings suggest that
TNFRSF1A may be a promising biomarker for the diagnosis,
treatment, and prognosis of mesenchymal subtype gliomas

[41]. As a result of the disruption of REN tumor suppression
function shown in human medulloblastoma, the issue of
whether this gene is involved in the formation of cerebellar
GCPs has been raised. Through overexpression and function
knockout studies, Argenti et al. demonstrated that REN pro-
motes growth stagnation, differentiation, and apoptosis and
showed that loss of REN may release inhibition of the
Hedgehog pathway and promote tumorigenesis.

According to the information presented above, the target
gene used to construct the model in this research has gotten
varying degrees of attention and investigation for various
kinds of cancers. PPAR-Riskscore is an independent
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prognostic factor (Figure 3). The tool is shown to be able to
further predict survival probability in patients with the same
tumor stage, so it has a high level of clinical value. We con-
ducted gene set variation analysis (Figure 5) to understand
the biological characteristics of patients with different PPAR-
Riskscore. The results showed that pathways such as glycolipid
metabolism, ECM-receptor interaction, axon guidance, and
focal adhesion were significantly upregulated in patients with
high PPAR-Riskscore. Additionally, we developed a nomo-
gram to improve prognosis accuracy and make clinical appli-
cation easier. For cancer prognosis, nomograms are widely
used. Using statistical methods, it combines parameters to pre-
dict patients’ prognosis. Calibration charts and decision curves
were used to analyze our nomogram. The results showed that
the nomogram was more accurate and could benefit more
patients than simply using one factor.

It is worth noting that the research presents limitations:
(1) the transcriptome data utilized in the model was
obtained through sequencing. Parameters may need to be
adjusted if microarrays and qPCR are used to calculate
PPAR-Riskscore. (2) An appropriate cut-off value needs to
be determined with a larger cohort. (3) The patient popula-

tion is heterogeneous in this retrospective analysis. There-
fore, more clinical investigations are needed to verify the
efficiency of the prediction tools and nomogram developed
in this study.

5. Conclusions

In conclusion, our PPAR gene expression-based scoring sys-
tem is a valuable tool for predicting COAD patient survival.
It can also aid therapeutic chemotherapy by evaluating the
score. However, more clinical trials are needed to corrobo-
rate our findings.
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