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Background:Hypertension is themost commonmodifiable risk factor for cardiovascular

diseases in South Asia. Machine learning (ML) models have been shown to outperform

clinical risk predictions compared to statistical methods, but studies using ML to predict

hypertension at the population level are lacking. This study used ML approaches in a

dataset of three South Asian countries to predict hypertension and its associated factors

and compared the model’s performances.

Methods: We conducted a retrospective study using ML analyses to detect

hypertension using population-based surveys. We created a single dataset by

harmonizing individual-level data from the most recent nationally representative

Demographic and Health Survey in Bangladesh, Nepal, and India. The variables

included blood pressure (BP), sociodemographic and economic factors, height, weight,

hemoglobin, and random blood glucose. Hypertension was defined based on JNC-7

criteria. We applied six common ML-based classifiers: decision tree (DT), random forest

(RF), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), logistic

regression (LR), and linear discriminant analysis (LDA) to predict hypertension and its

risk factors.

Results: Of the 8,18,603 participants, 82,748 (10.11%) had hypertension. ML models

showed that significant factors for hypertension were age and BMI. Ever measured

BP, education, taking medicine to lower BP, and doctor’s perception of high BP was

also significant but comparatively lower than age and BMI. XGBoost, GBM, LR, and

LDA showed the highest accuracy score of 90%, RF and DT achieved 89 and 83%,

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2022.839379
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2022.839379&domain=pdf&date_stamp=2022-03-31
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:shariful.islam@deakin.edu.au
https://doi.org/10.3389/fcvm.2022.839379
https://www.frontiersin.org/articles/10.3389/fcvm.2022.839379/full


Islam et al. ML for Hypertension in South Asia

respectively, to predict hypertension. DT achieved the precision value of 91%, and the

rest performed with 90%. XGBoost, GBM, LR, and LDA achieved a recall value of 100%,

RF scored 99%, and DT scored 90%. In F1-score, XGBoost, GBM, LR, and LDA scored

95%, while RF scored 94%, and DT scored 90%. All the algorithms performed with good

and small log loss values <6%.

Conclusion: ML models performed well to predict hypertension and its associated

factors in South Asians. When employed on an open-source platform, these models are

scalable to millions of people and might help individuals self-screen for hypertension at

an early stage. Future studies incorporating biochemical markers are needed to improve

the ML algorithms and evaluate them in real life.

Keywords: Demographic and Health Survey, blood pressure, algorithms, risk factors, South Asia, artificial

intelligence, cardiovascular diseases

INTRODUCTION

Hypertension is the leading cause of cardiovascular disease
attributing to 8.5 million deaths globally, with 88% deaths in
low-income and middle-income countries (1, 2). In South Asia,
the prevalence of hypertension has been increasing primarily
due to increased access to unhealthy foods, sedentary lifestyles,
and rural-urban migration (3, 4). South Asia also has the lowest
rates of hypertension detection, treatment, and control, with
little improvement in these outcomes over the past three decades
(2). Many people with hypertension remain largely undetected
in South Asia due to decreased screening awareness among
the general population (5). Hypertension can lead to coronary
artery disease, stroke, heart failure, kidney failure, and premature
mortality (6), which are mostly preventable through low-cost
medications and timely interventions.

Several factors contribute to this higher prevalence of
hypertension in South Asia, including physical inactivity,
decreased awareness, smoking, unhealthy diet, access to
healthcare, cost of medications (5, 7–9). However, most of the
studies lacked population representativeness, had a small sample
size, and used a wide range of tools to measure risk factors.
Several risk prediction models have been successfully used to
identify and stratify patients according to their risk factors
and initiate preventative therapies, for example, Framingham
Risk Score for predicting coronary heart disease (10) and
American College of Cardiology/American Heart Association
(ACC/AHA) Pooled Cohort Equations Risk Calculator (11).
However, these models have several limitations, including
non-representative populations, inadequate ethnic diversity,
selected endpoints, and poor reliability (11). There is a need to
develop population-specific risk prediction models for people in
South Asia.

In recent years, machine learning (ML) techniques have
been shown to outperform traditional statistical approaches in
developing risk stratification tools for diagnosing cardiovascular
diseases (12–15).ML is a branch of computer science that broadly
enables computers to “learn” without being directly programmed
(13) and process large data with complex interactions. Although
ML algorithms are not based on causal inference compared

to traditional statistical methods, it is still a critical approach
to estimating causal effects in observational studies. ML often
shows superior performance compared to traditional ststistical
techniques for reducing bias, automatic managing of missing
variables with less manipulation of original data, controlling
for confounding and data balancing- a key factor that leads to
improved results (13). ML provides accuracy values, for example,
85% accuracy for a model suggest that the algorithm correctly
identified 85 out of 100 participants which can aid in decision
making. In addition, ML techniques excel in analyzing “big data”
problems where commonly used statistical approaches struggle.
Thus, ML methodologies can help develop automated tools for
disease prediction, decision-aids, and identifying likely rates of
hypertension in a population (13).

A recent review identified and examined ML techniques
in hypertension detection and reported a a lack of studies
combining sociodemographic and clinical data with signal
processing which could increase model performance (16). A
previous study used ML algorithms for automatic classification
of hypertension using personal features but failed to include
sociodemographic data (17). Another study in India developed
ML risk stratification algorithms for diabetes and hypertension
using data from 2,278 patients collected by community health
workers (18). Two studies in China used ML to detect
hypertension using electronic health records (19, 20). Despite
the advancement in ML models for individual risk prediction for
different diseases, no studies have used ML models to predict
hypertension at a population level and validated the models
using large datasets in South Asian countries. We, therefore,
aimed to use ML approaches to identify factors associated with
hypertension diagnosis and compared the model’s performances
to predict hypertension in three South Asian countries.

METHODS

Study Design
A retrospective study using ML analyses to detect
hypertension using cross-sectional nationally representative
population-based surveys.
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Data Source and Variables
We obtained individual-level de-identified data from the most
recent nationally representative and internationally comparable
Demographic and Health Survey (DHS) in Bangladesh (2017–
18), Nepal (2016), and India (2015–16). We created a single
dataset by harmonizing data from each survey to a standard data
specification. We included 818,603 respondents who provided
consent for measurement of blood pressure, weight, height
and had complete data for the analyses. Participants with
incomplete data were excluded. The details on DHS survey
design, data availability is available on the DHS website (https://
www.dhsprogram.com) (21). In brief, the DHSs are periodic
nationally representative household surveys that collect data for
a wide range of variables on population, health, and nutrition.
These surveys usually are conducted by a national implementing
agency in collaboration with the Ministry of Health and technical
assistance provided by ICF International USA and USAID.
Participants in DHSs are generally selected using stratified two-
stage cluster sampling. Firstly, sampling census enumeration
areas are selected using probability proportional to size sampling
technique through statistics provided by the respective national
statistical bureaus. Secondly, the administrative wards at the
community level are considered primary sampling units (PSUs).
Following systematic random sampling, the households are
selected from the sampled PSUs. Data are provided by the
household head or a member who has detailed information
about the household and family members. Subsamples of eligible
participants are chosen for biomarker testing (e.g., height,
weight, and blood pressure) (22). DHS surveys have a very
high response rate, usually more than 90%. We used the
household member record dataset, which has one record for
every household member.

Blood Pressure Measurement and Hypertension
Blood pressure (BP) was measured for participants using the
DHS standard protocol (23, 24). In brief, three measurements
were taken by trained health workers, at seating position, at
about 10min intervals. The mean of the second and third
measurements was used to record systolic BP and diastolic BP.
We defined hypertension based on the cut-offs provided by the
Seventh Report of Joint National Committee on Prevention,
Detection, Evaluation, and Treatment of High Blood Pressure
(JNC7) guideline (25) where an individual was categorized as
hypertensive if they had systolic BP ≥ 140 mmHg or diastolic
BP ≥ 90 mmHg or reported to use antihypertensive medication
during the survey.

The Biomarker Questionnaire
The biomarker questionnaire collected details on height, weight,
hemoglobin, BP, and random blood glucose for women aged 15–
49 and men aged 15–54. The response rate for BP measurements
was 97% among women and 92% among men. Furthermore,
irrespective of their BP, all participants were asked, “Were you
told on two or more different occasions by a doctor or other
health professional that you had hypertension or high blood
pressure?” If they responded in the affirmative, they were asked
a follow-on question, “To lower your blood pressure, are you
taking a prescribed medicine?”.

Other Covariates
DHS collected information on a wide range of variables from the
selected households and the respondents from those households
using face-to-face interviews conducted by trained personnel.
Data on sociodemographic and economic factors like age, sex,
education, and household wealth index were included. The
education categories are defined based on the number of years of
education completed by an individual: 0 year as “no education”;
1–5 years as “primary education”; 6–12 years as “secondary
education”; and more than 12 years of educational attainment
categorized as “higher studies”. For household wealth index,
each national implementing agency constructed a country-
specific index using principal components analysis from data
on household assets including durable goods (i.e., bicycles,
televisions, etc.,) and dwelling characteristics (i.e., sanitation,
source of drinking water, and construction material of the house,
etc.,) (14). This wealth index was then categorized into five
groups (i.e., poorest, poorer, middle, richer, and richest) based on
the quintile distribution of the sample.

Data Analysis
Data were presented as mean ± SD for continuous variables
and frequency (%) for categorical variables. We performed the
chi-square test to assess the difference between hypertension
and non-hypertension individuals for each categorical variable.
P-value < 0.05 was considered significant. The wealth index
was converted into a dichotomous variable; the bottom 60%,
is, “poorest”, “poor” and “middle” were combined into one
group (low SES). The remaining two categories were clubbed
into the other category (high SES). The following risk factors
of hypertension were included in all the ML models: age, BMI,
education, wealth, systolic BP, diastolic BP, taking medicine for
high BP, and ever told by a physician to take BP medications
based on data availability. Data analyses were performed using
SPSS version 24 and Matlab software.

We then experimented with the six most commonly used
supervised ML models to measure their predictive effectiveness
to diagnosis hypertension using a classification task. In this task,
we included hypertension as a independent variable and the
other factors as independent variables. After model training,
we measured the accuracy, precision, recall f1 score, and log
loss values. The higher accuracy, precision, recall, and f1-score
suggested comparatively better models. On the other hand, lower
log loss value represented a better model. All the evaluation
matrices used were within the range 0–100. In addition, we
included feature ranking (considering the coefficient values of
the features) suggesting factors that were mostly contributed
for hypertension.

Decision Tree (DT)
ADT algorithm can be used for both classification and regression
on a given dataset. Each node of the tree represents a specific
condition on one of the dataset attributes. The decision process
starts from the tree root. Each node’s condition is checked
based on which node edges are chosen, and the decision process
continues to the next tree level. This trend continues until a leaf
node is reached based on which the final decision is presented
(1). A high-information-gain parameter at a node can partition
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the training data to increase classification accuracy. Entropy (E)
and information-gain (IG) is calculated as

E (Y) = −
∑

k pklog2(pk), (1)

IG (D, X) = E (D) −
∑

v∈Values(X)

|Dv|

|D|
.E(Dv), (2)

where Y and X are variables, D is data, pk is the probability of
observing value k for variable Y.

Random Forest (RF)
RF employs multiple decision trees to improve classification
and regression performance. RF creates bootstraps by random
resampling from the training dataset, and in the end, it combines
the results (2). Bootstrap aggregation is used during training in
RF algorithms. After training, the model can predict output given
an unseen sample x’ by averaging the predictions performed by all
decision trees:

− f =
1

B

∑

B
b=1 fb(x

′

) (3)

where B is the total number of decision trees of the random forest,
fb(x

′) is the prediction of b-th decision tree give input x′.

Gradient Boosting Machine (GBM)
GBM is another fixed-size tree-based algorithm that also can be
used for classification and regression. It uses boosting strategies
for better performance (3).

Extreme Gradient Boosting (XGBoost)
XGBoost is another tree-based algorithm that uses a gradient
boosting framework. This algorithm can solve large-scale real-
world problems using comparatively fewer resources than
GBM (4).

Logistic Regression (LR)
LR is one of the classification methods in ML which uses logistic
functions for binary dependent variables (5). The generalized
fundamental linear equation for LR is,

g(E(y)) = α + βx1 + γ x2 (4)

where the link function is denoted as g (.), the target variables
expectation is denoted as E(.), and the right side of the equation
is the linear prediction.

Linear Discriminant Analysis (LDA)
LDA is used in machine learning, statistics, and pattern
recognition problems. LDA is similar to regression analysis and
analysis of variance (ANOVA) (5).

Model Evaluation
We compared the performance of the ML-classifiers using
accuracy, precision, recall, F-1 score, and log loss, respectively.
Using 10-fold cross-validation, the whole dataset was split into
10 subsets. In each fold, one of the subsets was used for
model testing and the remaining subsets for model training.

The training/testing process is repeated 10 times, corresponding
to 10 folds. The evaluation metrics are calculated using the
following equations:

Precision =
TP

TP + FP
, (5)

Recall =
TP

TP + FN
, (6)

F1 = 2 ×
Precision × Recall

Precision+ Recall
(7)

Hp

(

q
)

= −
1

N

∑

N
i=1yi . log (p(yi)) (8)

+ (1− yi) . log (1− p(yi)) (9)

where TP is true positive rate, FP is false positive rate, FN is
false-negative rate, y is target variable level, p (y) is predicted
probability and Hp(q) is log-loss.

Ethics Approval
DHS surveys received ethical approval from the ICF Institutional
Review Board and country-specific review boards. Informed
consent was taken from each participant to participate in the
study. The DHS program authorized researchers to use relevant
datasets for analysis upon submission of a brief research proposal.
The data used in this study were anonymized to protect privacy,
anonymity, and confidentiality. Therefore, no ethics approval is
required for this research. More details on survey design, ethical
approval, data availability can be found on the DHS program
website (https://dhsprogram.com/).

RESULTS

Of the 8,18,603 participants included in the analyses, 82,748
(overall 10.11%) had hypertension. The majority of the
participants were from the 15–24 years age group (33.68%),
followed by the 25–34 years age group (28.90%), 35–44
years age group (23.85%), and 45 + years age group
(13.57%). The majority of the participants (58.60%) had
normal BMI, while 21.78% were underweight, 14.95% were
overweight, and 4.67% were obese. Nearly half of the study
participants received secondary education (47.43%) and were
from a low-income family (44.91%). More than 90% of
the respondents were informed about their high BP by a
doctor, and 96.82% reported taking prescribed medicine to
lower BP. However, only 60.28% measured their BP regularly.
Participants’ characteristics and significant variables are listed
in Table 1.

Participants in the higher age groups (>45 years) were
more likely to be hypertensive, compared to the younger
age groups (24 years) (23.33 vs. 2.94%). Participants with no
education were more likely to be hypertensive (13.02%) than
those with higher education (8.02%). Further, participants in
the rich wealth index were more likely to be hypertensive
compared to the poor wealth index (12.64 vs. 8.05%). All of
these differences were statistically significant (p-value < 0.001).
The prevalence of hypertension was 11.01% among respondents
who ever measured BP and 13.46% among those who had high
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TABLE 1 | Background characteristics of the participants (N = 8,18,603).

Variables Total Level of hypertension p-value

No-hypertension Hypertensive

n (%) n (%) n (%)

Age of the respondent

15–24 2,75,719 (33.68) 2,67,605 (97.06) 8,114 (2.94) p < 0.001

25–34 2,36,583 (28.90) 2,18,453 (92.34) 18,130 (7.66)

35–44 1,95,200 (23.85) 1,64,615 (84.33) 30,585 (15.67)

45+ 1,11,102 (13.57) 85,183 (76.67) 25,919 (23.33)

Total 8,18,604 (100.00) 7,35,856 (89.89) 82,748 (10.11)

Level of BMI

Thin 1,78,284 (21.78) 1,69,855 (95.27) 8,429 (4.73) p < 0.001

Normal 4,79,687 (58.60) 4,37,626 (91.23) 42,061 (8.77)

Overweight 1,22,414 (14.95) 99,659 (81.41) 22,755 (18.59)

Obese 38,218 (4.67) 28,715 (75.13) 9,503 (24.86)

Total 8,18,603 (100.00) 7,35,855 (89.89) 82,748 (10.11)

Level of education

No education 2,12,323 (25.94) 1,84,683 (86.98) 27,640 (13.02) p < 0.001

Primary 1,12,656 (13.76) 99,095 (87.96) 13,561 (12.04)

Secondary 3,88,283 (47.43) 3,55,180 (91.47) 33,103 (8.53)

Higher 1,05,342 (12.87) 96,898 (91.98) 8,444 (8.02)

Total 8,18,604 (100.00) 7,35,856 (89.89) 82,748 (10.11)

Wealth status

Poor 3,67,661 (44.91) 3,38,073 (91.95) 29,588 (8.05) p < 0.001

Middle 1,62,088 (19.80) 1,45,454 (89.74) 16,634 (10.26)

Rich 2,88,854 (35.29) 2,52,329 (87.36) 36,525 (12.64)

Total 8,18,603 (100.00) 7,35,856 (89.89) 82,747 (10.11)

Ever measured blood pressure

No 3,14,579 (39.72) 2,88,775 (91.80) 25,804 (8.20) p < 0.001

Yes 4,77,383 (60.28) 4,24,845 (88.99) 52,538 (11.01)

Total 7,91,962 (100.00) 7,13,620 (90.11) 78,342 (9.89)

Told by a doctor to have high blood pressure

No 7,22,313 (91.21) 6,53,345 (90.45) 68,968 (9.55) p < 0.001

Yes 69,648 (8.79) 60,275 (86.54) 9,373 (13.46)

Total 7,91,961 (100.00) 7,13,620 (90.11) 78,341 (9.89)

Taking prescribed medicine to lower blood pressure

No 7,66,754 (96.82) 6,92,265 (90.29) 74,489 (9.71) p < 0.001

Yes 25,208 (3.18) 21,356 (84.72) 3,852 (15.28)

Total 7,91,962 (100.00) 7,13,621 (90.11) 78,341 (9.89)

BP diagnosed by a doctor. 15.28% of the respondents taking
medication for BP had hypertension. Results of the bivariate
analysis show that all the sociodemographic variables had a
statistically significant relationship with hypertension (P < 0.05)
(Table 1).

According to performance metrics presented in Table 2, all
the algorithms performed with a reasonable accuracy score
(>80%). XGBoost, GBM, LR, and LDA achieved the highest
accuracy of 90%, while RF and DT achieved 89 and 83%,
respectively. DT reached the precision value of 91%, and the rest
performed with 90%. XGBoost, GBM, LR, and LDA achieved
the highest recall value, 100%, while RF scored 99% and DT

scored 90%. Regarding the F1-score, XGBoost, GBM, LR, and
LDA scored 95%, the highest, while RF scored 94%, and DT
scored 90%. All the algorithms performed with good and small
log loss values for the last evaluation criteria log loss values
<6%. Figure 1 shows that GBM provided the highest mean
accuracy, followed by LR and XGBoost (XGB in Figure 1).
Unlike the boxplot, the entire distribution of the 10-fold accuracy
can be visualized in the violin plot (Figure 1). The significant
features determined by the algorithms after training are shown
in Figure 2. Most of the algorithms found that the significant
factors for hypertension were age and BMI. Ever measured BP,
education, taking medicine to lower BP, and doctor’s perception
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TABLE 2 | Performance indicators of all selected machine learning algorithms.

Algorithms Accuracy Precision Recall F1 score Log loss

Random forest 0.89 0.90 0.99 0.94 3.63

Decision tree 0.83 0.91 0.90 0.90 5.92

XGB 0.90 0.90 1.00 0.95 3.52

GBM 0.90 0.90 1.00 0.95 3.33

LR 0.90 0.90 1.00 0.95 3.55

LDA 0.90 0.90 1.00 0.95 3.57

XGB, XGBoost; GBM, Gradient Boosting Machine; LR, Logistic Regression; LDA, Linear

Discriminant Analysis.

of high BP was also significant but comparatively lower than age
and BMI (Figure 2).

DISCUSSION

To our knowledge, this is the first study to apply ML approaches
to predict hypertension and its associated factors using
population-representative data in three South Asia countries.
We identified seven risk factors associated with hypertension
in the South Asian population: age, BMI, education, wealth
status, ever measuring BP, being diagnosed by a doctor, and
taking medication to lower BP. After applying ML algorithms,
we observed that XGBoost, GBM, LR, and LDA had the
highest accuracy and recall with a score of 90 and 100%,
respectively. DT achieved the highest precision value of 91%.
ML models are superior to traditional statistical techniques
where complex relationships between variables may not be fully
explained using standard statistics. Our work has implications
for hypertension prevention by applying these ML models
to population-level data for hypertension screening among
the population and automating the tasks without substantial
human labor.

Several recent studies have proposed ML models to predict
hypertension using a variety of demographic, biomarker, fitness,
and spirometry data in various combinations (26–28). Ture
et al. used age, gender, smoking, lipoprotein, and triglyceride
levels and evaluated the performance of three three decision
trees, four statistical algorithms, and two neural networks
on 694 participants (29). Radial Basis Function showed the
best performance for sensitivity (95.24%), specificity (66.67%),
and predictive rate (81.48%). Similarly, Heo and colleagues
developed hypertension prediction ML models using obesity,
biomarkers, and spirometry data. They identified that obesity
indices were most closely related to the risk of developing
hypertension where wrapper-based feature selection methods-
LR model showed the best performance (sensitivity and
specificity of 0.813 and 0.401, respectively (30). A study in
Canada using medical records and demographics used a neural
network model for predicting hypertension with about 82%
accuracy (26).

Several recent studies have demonstrated that ML models
might be feasible and valuable for predicting and managing
hypertension (27, 31). However, despite the growing interest,

FIGURE 1 | Violin plot of the 10-fold cross-validation (Violin plots representing

the entire distribution).

ML-informed BP prediction is yet to be implemented in clinical
practice due to limitations such as lack of ML algorithms,
consistency, accuracy, and reliability (31). Recently, a study in
Korea utilized three different classification methods, namely LG,
LDA, and classification and regression tree for hypertension
risk prediction using an extensive database. All three methods
performed reasonably well, with LR only marginally better with
58% accuracy (32). A similar study applied ML algorithms on
patients with hypertension using 12-year longitudinal data from
a nationwide cohort with 55 variables, where RF showed the best
performance (F1-score = 0.772) in terms of generalization to
detect high-risk patients (33).

Our study found BMI to be a good predictor of hypertension.
Previous studies have shown obesity is strongly related to
the risk of developing hypertension (34–36). Studies in the
United States, China, and India have shown that BMI is a risk
factor for hypertension (37–39), whereas waist circumference
is correlated with cardiovascular diseases (34, 38). Another
study in China using ML identified high education, sedentary
job, a positive family history, overweight, physical activity,
and unhealthy diets as risk factors for hypertension (40).
A prospective cohort of 33,000 people from India, Pakistan,
and Bangladesh reported a significantly higher prevalence
of hypertension among urban-dwelling, higher education,
and higher wealth index participants (41). We found a
significant association of hypertension with BMI, wealth
status, and education in the South Asian population. These
disparities might be due to lack of access to healthcare
facilities, poor BP screening, recording, reporting, lack of
awareness regarding risk factors, and inappropriate treatment
(42, 43).

Several mathematical techniques and ML models have been
used to develop risk prediction models in healthcare (44,
45). Ture and colleagues’ used DTs, statistical algorithms,
and neural networks and identified that neural networks
have the best predictive ability for hypertension using risk
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FIGURE 2 | Significant features for hypertension in three South Asian countries.

factors as inputs (30). However, a limitation to this study
was the missing obesity data which is known to be associated
with hypertension (29). Heo and colleagues also developed
hypertension prediction models using DT, LR, and NB classifiers
using obesity, biomarkers, and spirometry indices as variables
in creating these models. An important limitation of this
study is the lack of data on wealth index, education levels,
smoking, alcohol use, and physical activity (30). We utilized non-
invasive data to develop ML models to predict hypertension
in the South Asian population. Previous studies in South Asia
have shown the effectiveness and cost-effectiveness of mobile
phones and digital technologies (46–50). However, there is
a need for demographic representativeness in training data,
model transparency and standardized frameworks for using
these ML prediction models to improve representativeness and
reproducibility (51).

The following limitations should be considered when
interpreting the findings. First, a limited number of variables
are included in the models. Data on risk factors such as family
history, race, alcohol consumption, waist-hip ratio, physical
activity levels, dietary intake, and biochemical parameters
(e.g., blood glucose, lipid profile) were unavailable for all
countries, which might have affected the measurement precision
of our models. Second, the risk factors may have changed
since some study data were from the 2016 survey. Third,
ML models have an inherent weakness in making claims
about causation. Finally, we could not externally validate

our models using other data sources from these countries.
Therefore, our results should be interpreted with caution.
Despite these limitations, the primary strength of this study
is the use of large-scale nationally representative survey data
from 3 South Asian countries using ML approaches to
predict hypertension.

Future research on developing country-specific risk
assessment tools and validation are essential since risk factors,
particularly demographics, education level, and wealth index, are
not the same among different countries. These models can also
be made available online or via mobile phone applications where
individuals can check their risks of developing hypertension at
home by answering simple questions such as their age, BMI,
and sex. Models based on robust biochemical data, electronic
health records (52) and external validation are recommended
in the future A two-stage approach can be put into clinical
practice, where ML model identifies individuals who are at risk
of hypertension and in the second stage, at-risk individuals
undergo evaluation by a physician for a confirmed diagnosis and
appropriate treatment (53).

CONCLUSION

Our study suggests that using simple, non-invasive information,
ML models can predict hypertension among the South Asian
population with high accuracy. Age and BMI were the most
significant risk factors associated with hypertension in our study
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population. Further research is needed to include other risk
factors and biomarkers associated with hypertension. MLmodels
can then be trained and incorporated into the dataset to develop
population-based hypertension risk assessment tools.
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