
Frontiers in Genetics | www.frontiersin.org

Edited by:
Marco Milanesi,

São Paulo State University,
Brazil

Reviewed by:
Zhe Zhang,

South China Agricultural University,
China

Gregor Gorjanc,
University of Edinburgh,

United Kingdom

*Correspondence:
Jungjae Lee

jungjae.ansc@gmail.com
Dajeong Lim

lim.dj@korea.kr

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Livestock Genomics,
a section of the journal
Frontiers in Genetics

Received: 26 July 2019
Accepted: 04 February 2020
Published: 06 March 2020

Citation:
Won S, Park J-E, Son J-H, Lee S-H,

Park BH, Park M, Park W-C, Chai H-H,
Kim H, Lee J and Lim D (2020)

Genomic Prediction Accuracy Using
Haplotypes Defined by Size and
Hierarchical Clustering Based on

Linkage Disequilibrium.
Front. Genet. 11:134.

doi: 10.3389/fgene.2020.00134

ORIGINAL RESEARCH
published: 06 March 2020

doi: 10.3389/fgene.2020.00134
Genomic Prediction Accuracy Using
Haplotypes Defined by Size and
Hierarchical Clustering Based on
Linkage Disequilibrium
Sohyoung Won1†, Jong-Eun Park2†, Ju-Hwan Son2, Seung-Hwan Lee3, Byeong Ho Park2,
Mina Park2, Won-Chul Park2, Han-Ha Chai2, Heebal Kim1,4,5, Jungjae Lee6*
and Dajeong Lim2*

1 Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea, 2 National Institute of Animal Science,
RDA, Wanju, South Korea, 3 Department of Animal Science and Biotechnology, Chungnam National University, Daejeon,
South Korea, 4 Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National
University, Seoul, South Korea, 5 eGnome, Inc, Seoul, South Korea, 6 Jung P&C Institute, Inc., Yongin-si, South Korea

Genomic prediction is an effective way to estimate the genomic breeding values from
genetic information based on statistical methods such as best linear unbiased prediction
(BLUP). The used of haplotype, clusters of linked single nucleotide polymorphism (SNP) as
markers instead of individual SNPs can improve the accuracy of genomic prediction.
Since the probability of a quantitative trait loci to be in strong linkage disequilibrium (LD)
with a cluster of markers is higher compared to an individual marker. To make haplotypes
efficient in genomic prediction, finding optimal ways to define haplotypes is essential. In
this study, 770K or 50K SNP chip data was collected from Hanwoo (Korean cattle)
population consisted of 3,498 cattle. Using SNP chip data, haplotype was defined in three
different ways based on 1) the number of SNPs included, 2) length of haplotypes (bp), and
3) agglomerative hierarchical clustering based on LD. To compare the methods in parallel,
haplotypes defined by all methods were set to have comparable sizes; 5, 10, 20 or 50
SNPs on average per haplotype. A linear mixed model using haplotype to calculated the
covariance matrix was applied for testing the prediction accuracy of each haplotype size.
Also, conventional SNP-based linear mixed model was tested to evaluate the
performance of the haplotype sets on genomic prediction. Carcass weight (CWT), eye
muscle area (EMA) and backfat thickness (BFT) were used as the phenotypes. This study
reveals that using haplotypes generally showed increased accuracy compared to
conventional SNP-based model for CWT and EMA, but found to be small or no
increase in accuracy for BFT. LD clustering-based haplotypes specifically the five SNPs
size showed the highest prediction accuracy for CWT and EMA. Meanwhile, the highest
accuracy was obtained when length-based haplotypes with five SNPs were used for BFT.
The maximum gain in accuracy was 1.3% from cross-validation and 4.6% from forward
validation for EMA, suggesting that genomic prediction accuracy can be increased by
using haplotypes. However, the improvement from using haplotypes may depend on the
trait of interest. In addition, when the number of alleles generated by each haplotype
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defining methods was compared, clustering by LD generated the least number of alleles,
thereby reducing computational costs. Therefore, finding optimal ways to define
haplotypes and using the haplotype alleles as markers can improve the accuracy of
genomic prediction.
Keywords: genomic prediction, haplotype, hierarchical clustering, linkage disequilibrium, best linear unbiased
prediction, accuracy, Hanwoo
INTRODUCTION

Genomic prediction is an effective way to measure the genetic merit
and breeding values of livestock based on their genetic information.
Practically, genotype data of the animals particularly the single
nucleotide polymorphisms (SNP) and statistical prediction
methods such as the best linear unbiased prediction (BLUP) are
required to calculate the genomic estimated breeding values
(GEBV). The accuracy of genomic prediction depends on the
degree of linkage disequilibrium (LD) between the SNP markers
and real quantitative trait loci (QTL) (Goddard, 2009).
Fundamentally, linkage disequilibrium is a nonrandom
association between different loci in a certain population, which
can be calculated by measuring the frequencies of alleles and the
haplotype frequencies of the pair of alleles at the loci (Slatkin, 2008).

By using clusters of related SNPs as markers instead of
individual SNPs, the probability that a QTL is in strong LD with
a marker becomes higher (Goddard and Hayes, 2007). Thus, the
accuracy of genomic prediction can be improved by using clusters
of SNPs, which are referred to as haplotypes. With the higher LD
with QTLs, haplotypes better detect identity-by-descent structure
while making the genomic relationship matrix, resulting in
increased genomic prediction accuracy (Hess et al., 2017). To
make efficient use of haplotypes in genomic predictions, numerous
studies have focused on finding optimal ways to define a cluster of
SNPs as a haplotype. The simplest way is to consider equal sizes of
segments in the genome as haplotypes (Villumsen and Janss, 2009;
Sun et al., 2015; Ferdosi et al., 2016; Hess et al., 2017). By this
method, equal size can be determined through physical length in
base pairs (Ferdosi et al., 2016; Hess et al., 2017), the length in
centimorgans (Sun et al., 2015), or the number of SNPs (Villumsen
et al., 2009). In addition, methods to define haplotypes such as
combining information about identity by descent (IBD) with
clusters of adjacent SNPs (Calus et al., 2008; Calus et al., 2009),
and using predicted genealogy (Edriss et al., 2013) were studied.
Also, setting minimum pairwise LD cutoffs to grouped SNPs into
haplotypes was considered (Cuyabano et al., 2014).

Some of the methods to define haplotypes for genomic
prediction attempts to incorporate the LD structure of the
genome (Calus et al., 2008; Cuyabano et al., 2014; Cuyabano
et al., 2015). Lesser number of haplotype alleles brings an
advantage in LD based haplotypes since the number of
explanatory variables used for computation is reduce compared
to other methods (Cuyabano et al., 2014). Recently, the
application of some clustering methods originated in the data
mining field represent a more precise LD structure when
defining haplotypes (Dehman, 2015). Among these methods is
2

hierarchical clustering, which produces a tree that has nodes
representing clusters in a hierarchical order from, where each
element being each cluster is the leaf the all the elements being
one cluster is the root. Applying hierarchical clustering to make
SNP clusters based on LD was implemented to genome-wide
association study (Dehman, 2015).

In this study, agglomerative hierarchical clustering was used
to construct haplotypes based on LD from phased genotypes of
770K SNP chips. In addition, haplotypes were alternatively
defined as segments with given sizes. The length of a haplotype
in base pairs and the number of SNPs within a haplotype were
respectively used as criteria of sizes. Differently define haplotypes
were tested and compared with the accuracy of using individual
SNPs to find out whether which method can bring improvement
in genomic prediction. Also, to find out the optimal size of
haplotypes, various sizes of haplotypes defined by each method
were tested. To compare the methods in parallel, haplotypes
defined by all methods were set to have comparable sizes.
MATERIALS AND METHODS

Genotypic and Phenotypic Data
The genotypic and phenotypic information were collected from
the 3,498 Hanwoo (Korean cattle) population. Animal health
and welfare issues were followed according to the appropriate
guidelines approved by the Animal Care and Use Committee of
the National Institute of Animal Science, Rural Development
Administration, Korea. Available information such as sex and
slaughter age was used for analysis. The traits analyzed in this
study were carcass weight (CWT), eye muscle area (EMA) and
backfat thickness (BFT), measured after slaughter. Genotyping
was performed using Illumina BovineHD 770K Genotyping
BeadChip for 1,166 samples and Illumina BovineSNP50
Genotyping BeadChip for 2,332 samples. The 50K genotypes
were imputed to 770K using Eagle (https://data.broadinstitute.
org/alkesgroup/Eagle/) and Minimac3 (http://genome.sph.
umich.edu/wiki/Minimac3) pipeline.

For further analyses, SNPs having low minor allele frequency
(<0.01), low genotyping rate (<0.95), significant deviation from
Hardy–Weinberg equilibrium (p <0.001) were discarded, while
only one SNP was kept if multiple SNPs were located on the same
site. Individualswith lowgenotyping call rate (<0.95)were excluded
from the study. From the data collecting stage, phenotypes
including sex and slaughter age of some animals were not fully
recorded and were removed from the study. Moreover, two-sided
Grubb's test with alpha = 0.05 was performed to check whether
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therewere outliers in phenotypic data. Test results revealed that one
sample of BFT and two samples of EMA were considered outlier.
After the removal of identified outliers, none of the tests were
significant (p<0.05)withp=0.80 forCWT,p=0.14 forEMA, andp
=0.10 forBFT. Similarly, nine significantoutliers fromthe covariate
age were also removed.

Thus, the total number of SNPs used for genomic prediction
was 555,678 from 2,494 animals (821 males and 1,673 females)
The summary statistics of the phenotype data are presented in
Table 1, while the distributions of the phenotypes used in this
study are presented in Supplementary Figure 1. The total
genotyping rate was 0.9971. Genotypes were phased and
imputed using SHAPEIT2 with 200 states and a window size
of 0.5 Mb for haplotyping (Delaneau et al., 2012).

Defining Haplotypes
Threemethods todefinehaplotypeswere considered respectively in
this study. First, segments of the genome containing constant
number of SNPs were treated as haplotypes (method 1). Second,
segments of the genomewith equal sizes in basepairs were regarded
as haplotypes (method 2). Third, hierarchical clustering based on
LD was used to construct haplotypes (method 3). In these three
methods, the start and end points of haplotypes were designated
accordingly and the SNPs within the point formed haplotypes.

In each method, we varied the sizes of haplotypes to find out
the optimal size of haplotypes for accurate genomic prediction.
To compare the three methods in a comparable way, the average
number of SNPs per block were balanced to be approximately 5,
10, 20, or 50. Briefly, three haplotype defining methods with four
average size criteria, making twelve kinds of haplotype were
tested. The lengths of haplotypes in method 1 was calculated by
dividing the total length of the genome by the total number of
SNPs, then multiplying 5, 10, 20, or 50. In method 3, the number
of clusters (number of haplotype regions) were set as the total
number of SNPs divided by 5, 10, 20, or 50. The lengths of
haplotypes in method 1 and number of clusters in method 3 are
later shown in Table 2.

Hierarchical Clustering Based on LD
In hierarchical clustering based on LD, the pairwise LD between
SNPs were calculated as D', based on the following equation
(Lewontin, 1964).

DAB = pAB − pApB

Dmax =
 max −pApB,  − 1 − pAð Þ 1 − pBð Þð Þ  when  D < 0

 min pA 1 − pBð Þ,   1 − pAð ÞpBð Þ  when  D > 0  

(
D 0 = DAB=Dmax
Frontiers in Genetics | www.frontiersin.org 3
Clustering groups similar objects together. Here, SNPs
with high LD were regarded as similar SNPs and were
assigned to the same clusters. In other words, the measure
of LD, D' was set as the proximity measure of two SNPs and
(1 − D') was defined as the distance between two SNPs in the
clustering algorithm. To define the distance between two
clusters, complete linkage was used. In complete linkage
clustering, the link between two clusters contains all
element pairs, and the distance between two clusters is
measured as the maximum pairwise distance among all
elements in the clusters. Here, the distance between
clusters was defined as the maximum of 1 − D' between all
pairwise SNPs in two clusters. Agglomerative hierarchical
clustering is an iterative process of merging clusters starting
from each element being a cluster of its own (Rokach and
Maimon, 2005). First, two clusters with the closest distance
are found and are merged to form a new cluster. After two
clusters were merged, the distance between clusters is
updated by calculating the distances between the new
clusters and the others. This is repeated until the number
of clusters reaches the threshold, which was the total number
of SNPs divided by 5, 10, 20, or 50.

In this study, to make non-overlapping and linear clusters
using all the SNPs for defining haplotype, only physically
adjacent SNPs or clusters were merged by keeping a linear
distance list of adjacent clusters instead of a distance matrix.
TABLE 1 | Summary statistics of the phenotypes used for the study.

Minimum 1st Qt. Median Mean 3rd Qt. Maximum

CWT 197 335 374 377.5789 415 623
EMA 42 77 84 84.85138 92 126
BFT 1 7 10 11.02117 14 39
CWT, carcass weight (kg); EMA, eye muscle area (cm2); BFT, backfat thickness (mm).
TABLE 2 | Haplotype and allele statistics of each haplotype defining method at
different sizes.

SNP count-based haplotypes 5 SNPs 10 SNPs 20 SNPs 50 SNPs

Number of haplotype alleles 1,303,861 1,877,160 2,713,296 3,710,659
Number of haplotypes 111,123 55,554 27,768 11,099
Average number of SNPs per
haplotypes

5 10 20 50

Average number of alleles per
haplotypes

11.73349 33.78983 97.71305 334.3237

Minimum SNPs in haplotypes 5 10 20 50
Maximum SNPs in haplotypes 5 10 20 50
Length-based haplotypes 22.25 kb 44.5 kb 89 kb 222.5 kb

Number of haplotype allele
markers

1,364,861 1,867,261 2,621,574 3,581,059

Number of haplotypes 97,061 54,163 27,797 11,196
Average number of SNPs per
haplotypes

5.725038 10.25936 19.99057 49.63183

Average number of alleles per
haplotypes

14.06188 34.47484 94.31140 319.8516

Minimum SNPs in haplotypes 2 2 2 2
Maximum SNPs in haplotypes 29 47 71 136
LD clustering-based
haplotypes

K = N/5 K = N/10 K = N/20 K = N/50

Number of haplotype alleles 1,277,525 1,764,074 2,472,637 3,358,562
Number of haplotypes 111,123 55,554 27,768 11,099
Average number of SNPs per
haplotypes

5.000567 10.00248 20.01145 50.06559

Average number of alleles per
haplotypes

11.49649 31.75422 89.04628 302.6004

Minimum SNPs in haplotypes 1 1 1 1
Maximum SNPs in haplotypes 114 131 141 213
Mar
ch 2020 | V
olume 11 |
K is the number of clusters and N is the number of total SNPs.
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For example, when the ith and the (i + 1)th clusters were
merged as the I ∗ th, the distances between the (i − 1)th and
ith cluster, ith and (i + 1)th cluster, (i+1)th and the (I + 2)th
cluster are removed from the list and the distance of the (i −
1)th and the i ∗ th cluster, the i ∗ th cluster and the (i + 2)th
cluster are added to the list for updating. In this way, when
finding the closest two clusters from the list, only the
distances between adjacent clusters are being considered.

Haplotype Alleles and Diplotypes
After defining the start and endpoints of haplotypes throughout
the genome, the phased genotype was re-coded according to the
haplotype alleles. The individual diplotypes were then coded as 0,
1 or 2 for each haplotype allele in a haplotype region. This results
in an N × Hmatrix, where and N is the number of animals and H
is the total number of haplotype alleles. R package ‘GHap' was
used for this procedure (Utsunomiya et al., 2016).

Genomic Prediction
A linear mixed model was used to perform genomic predictions
using the haplotype markers defined in the previous stage. The
model was described as:

y = Xb + g +   ϵ,

where y is the vector of observations (CWT, BFT and EMA), b is
the vector of fixed effects including sex and slaughter age, g is the
vector of additive genetic effects, ϵ is the vector of residual errors,
and X is the design matrix for fixed effects. The additive genetic
effects g and residual errors ϵ were assumed as random effects
assuming that it follows the distributions specified bellow:

g   e  N 0,  Gs 2
g

� �
ϵ  e  N 0,   Is 2

e

� �
Here, G is the genetic relatedness matrix and I is an identity

matrix. G was calculated from the following equation.

G =  
MM0

2o pi 1 − pið Þ
M was the haplotype matrix obtained from the haplotyping

step (Haplotype Alleles and Diplotypes) adjusted for allele
frequencies. The ijth element of M is calculated as mij =
(xij − 2pj)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pj(1 − pj)

p
, where xij is the number of jth

haplotype allele carried by the ith animal and pj is the minor
allele frequency of the jth haplotype allele. For the SNP-based
model, M was the matrix of genotype adjusted for minor
allele frequency.

The BLUP solution of the linear mixed model, û was
computed using the equation û   =  M0G−1ĝ=N, from restricted
expectation maximization (REML). GCTA software was used for
computation (Yang et al., 2011). Heritability was also estimated
from REML by estimating the variance components s 2

g and s 2
e

with GCTA.
Then, the GEBVs were obtained as the following equation:

GEBV   = Mû
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Final ly , the performances of different haplotype
definitions were compared based on the accuracy of the
models, which was calculated as the correlation of the
GEBVs and pre-corrected phenotypes. Sex and slaughter
age were used for pre-correction. Five times of 5-fold
cross-validation (5 × 5 cross-validation) were performed to
access the accuracies of different methods.

In addition, forward validation was done to access the
performance of predicting breeding values of younger
animals from the data of older animals. Animals born from
January 2012 were assigned to test set and the remaining
animals were assigned as a training set. Training set and test
set consisted of 2,015 animals and 479 animals respectively.
The accuracy was calculated as the correlation between
predicted GEBVs and pre-corrected phenotypes as in
cross-validation.
RESULTS

Haplotype Construction
The statistics of haplotypes constructed by different haplotype
defining methods and the different average SNP number
criteria in each method are presented in Table 2 and
Supplementary Figure 2. The actual average numbers of
SNPs per haplotype were also obtained and evaluated to
check whether the haplotypes were constructed with
intended sizes. The average numbers of SNPs were
consistent with the intended numbers in LD clustering-
based haplotypes and length-based haplotypes with sizes of
44.5kb, 89kb and 222.5kb, while larger than intended in
length-based haplotypes of 22.25kb.

The total number of haplotype alleles were computed to
compare the number of explanatory variables used for
genomic prediction (Table 2). The number of alleles
increased as the average number of SNPs per haplotype
increased. However, the numbers of alleles from haplotypes
of similar sizes were where found to be smaller when LD
clustering was used to define haplotypes. The average number
of alleles per haplotypes showed similar tendencies with the
total number of alleles.

Genomic Prediction Accuracy
The genomic prediction accuracies from 5 × 5-fold cross-
validation of haplotypes defined by three methods were
higher compared to the SNP-based model except for
haplotypes with 50 SNPs in CWT and EMA (Figure 1).
For both CWT and EMA, LD clustering based-haplotypes
with an average of 5 SNPs showed the highest gain in terms
of accuracy. Prediction accuracy increased from 0.435 to
0.448 for CWT and 0.319 to 0.331 for EMA, which were 1.2%
and 1.3%, respectively. Conversely, there was no observed
improvement in prediction accuracy in BFT.

Meanwhile, when forward validation was used for testing
prediction accuracy, the tendency of accuracies was similar,
however, the overall accuracy was lower while the gain in
March 2020 | Volume 11 | Article 134
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FIGURE 1 | Genomic prediction accuracies from five time five-fold cross validation. Prediction accuracies of using various sizes of haplotypes defined by different
methods and using individual SNPs were compared for CWT, BFT and EMA respectively. The black lines on the bars show standard errors of the prediction
accuracies. Accuracies were calculated as the correlation coefficients of GEBVs and pre-corrected phenotypes.
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FIGURE 2 | Genomic prediction accuracies from forward validation. Prediction accuracies of using various sizes of haplotypes defined by different methods and
using individual SNPs were compared for CWT, BFT and EMA respectively. Accuracies were calculated as the correlation coefficients of GEBVs and pre-corrected
phenotypes.
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accuracy by using haplotypes was larger (Figure 2). LD
clustering-based haplotypes with 5 and 10 SNPs showed the
highest accuracy for both CWT and EMA, respectively.
Moreover, length-based haplotypes with five SNPs showed
the highest accuracy for BFT. Numerically, the maximum
increase in prediction accuracy was 3.5% for CWT, 4.6% for
EMA, and 2.1% for BFT.

The prediction accuracy of haplotype-based model tended to
decrease as the size of haplotypes became larger in all haplotype
defining methods. Overall, LD clustering-based haplotypes
showed the highest accuracy for all sizes except for 50 SNPs.

Paired t-tests were performed to determine whether the
increases in prediction accuracies by using haplotypes
compared to individual SNPs were statistically significant
(Table 3). Statistical tests were also performed for different
haplotype defining methods with different sizes for three
traits. Results revealed that an observed increase in
Frontiers in Genetics | www.frontiersin.org 7
prediction accuracy in haplotypes with 5 or 10 SNPs defined
by three methods were found to be statistically significant in
both CWT and EMA.

Also, the heritability of the three traits were estimated using
haplotypes and individual SNPs (Table 4). Estimated heritability
for each trait using individual SNPs was 0.36, 0.43, 0.31 for CWT,
BFT and EMA respectively. Interestingly, estimated heritability
estimate using haplotypes was higher in all traits with values
ranging from 0.38 to 0.43 for CWT, 0.44 to 0.52 for BFT and 0.33
to 0.38 for EMA.
DISCUSSION

Genomic prediction accuracy using haplotypes designed in this
study was mostly higher than using individual SNPs and was
statistically significant in the best performing haplotypes for
CWT and EMA. The increased accuracy by using haplotypes
may be due to higher LD between alleles and QTLs, better
detection of ancestral relationships (identity-by-descent), and
capturing of short-range epistatic effects (Hess et al., 2017).
Haplotyping and constructing genomic prediction models
using haplotype alleles can improve prediction accuracy
without any additional cost for data production though it may
cause some more computational cost. The maximum gain in
accuracy was more than 1% in 5 × 5 cross-validation and more
than 4% in forward validation, suggesting that genomic
prediction accuracy can be improved by using haplotypes.
However, improvement depends on traits of interest, some
traits may elicit the same results with the use of haplotypes for
the genomic predict ion but other tra i ts may also
result contrariwise.

In addition, although overall prediction accuracy was low in
forward validation, the used of haplotypes still brought higher
prediction accuracy. Only length-based haplotypes with 5 or 10
SNPs showed higher accuracy than SNP-based model in EMA
when 5 × 5 cross validation was used while all haplotypes with 5,
10 or 20 SNPs showed increased accuracy in forward validation.
Also, prediction accuracy increased using haplotypes with 50
SNPs for EMA in forward validation but not in 5 × 5 cross-
validation. This shows that haplotypes can be more effectively
used for predicting the breeding values of younger animals from
older animals, thereby making it more useful for animal
breeding purposes.

Haplotype defining method with highest accuracy were found
to differ in each trait, specifically LD clustering for CWT and
EMA, while length-based haplotypes for BFT. Explicitly, LD
clustering-based haplotypes showed the highest accuracies at all
sizes except 50 SNPs for both CWT and EMA, and 20 SNPs for
BFT. Generally, using LD clustering-based haplotypes resulted in
high prediction accuracies. However, the effect of haplotype size
was greater than the effect of haplotype defining method on
prediction accuracy. In terms of haplotype size, the average five
SNPs for all three traits preformed best. In general, the prediction
accuracy was higher when smaller haplotypes were used. In
larger haplotypes, some redundant markers may be present, for
TABLE 3 | P-values of paired t-tests comparing prediction accuracies using
individual SNPs and haplotypes defined by different methods and sizes.

Average number of SNPs
per haplotype

CWT 5 10 20 50
SNP count-based haplotypes 0.002** 0.01* 0.21 0.98
Length-based haplotypes 0.0008** 0.03* 0.23 0.92
LD clustering-based haplotypes 0.0005** 0.005** 0.09 0.98

EMA 5 10 20 50
SNP count-based haplotypes 0.00004** 0.004** 0.12 0.81
Length-based haplotypes 0.00007** 0.007** 0.09 0.58
LD clustering-based haplotypes 0.0002** 0.002** 0.07 0.86

BFT 5 10 20 50
SNP count-based haplotypes 0.64 0.67 0.77 0.99
Length-based haplotypes 0.07 0.20 0.74 0.99
LD clustering-based haplotypes 0.77 0.52 0.43 1.00
* and ** indicates significant at a = 0.05, 0.01 respectively.
TABLE 4 | Estimated heritabilities using haplotypes defined by different methods
and sizes and using individual SNPs.

Average number of SNPs
per haplotype

CWT 5 10 20 50

SNP count-based haplotypes 0.39 0.39 0.41 0.43

Length-based haplotypes 0.38 0.39 0.40 0.42

LD clustering-based haplotypes 0.39 0.39 0.41 0.43

Individual SNPs 0.36
EMA 5 10 20 50

SNP count-based haplotypes 0.33 0.34 0.35 0.38

Length-based haplotypes 0.33 0.34 0.35 0.38

LD clustering-based haplotypes 0.33 0.34 0.36 0.38

Individual SNPs 0.43
BFT 5 10 20 50

SNP count-based haplotypes 0.45 0.46 0.48 0.52

Length-based haplotypes 0.44 0.45 0.47 0.50

LD clustering-based haplotypes 0.44 0.45 0.46 0.50

Individual SNPs 0.43
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instance, haplotype alleles carried by only few animals which will
result in low prediction accuracy.

The optimal size to define haplotypes for genomic prediction
depends on the distance between SNPs and the LD structure of
the population (Calus et al., 2009). The mean distance between
SNPs was 4,118.24 bp and the mean LD (r2) was 0.43 in the
Hanwoo population used for the study. In this study, the
haplotype size of best performance was 5 SNPs, while in other
studies the optimal numbers of SNPs per haplotype were 4–10,
while genotype sizes ranged from 5,000 to 50,000 SNPs (Calus
et al., 2009; Villumsen and Janss, 2009; Hess et al., 2017).
Further study testing the haplotypes sizes ranging from 2 to 10
may be proceeded to find the optimal haplotype size in Hanwoo.

The number of haplotype alleles indicates the number of
explanatory variables used for genomic prediction. As the
number of explanatory variables increases, the dimension of
the design matrix in the equation becomes larger, taking more
time and memory to solve the mixed model equation. Thereby,
reducing the number of haplotype alleles enables more efficient
calculation of GEBVs. In this study, two methods are possible to
reduce the number of haplotype alleles. The first is LD clustering
to define haplotypes and the second is using smaller sizes of
haplotypes. However, the effect of haplotype size was larger than
the effect of haplotype defining method on number of alleles.
Considering both prediction accuracy and the number of
haplotype alleles, LD clustering was the optimal method for
CWT and EMA.

Higher heritability estimate values were obtained using
haplotypes compared to individual SNPs. Estimated heritability
tended to increase as the number of haplotype alleles increased. As
the number of alleles increases, more markers are used to explain
the phenotypic variance, thus a higher proportion of total variance
can be explained, resulting in higher heritability. However, caution
is needed to interpret genomic heritability since there may be bias
in the likelihood estimate of the variance components caused by
linkage equilibrium between some markers and QTLs (de los
Campos et al., 2015). In this study, the estimated heritabilities did
not differ much with the results of other studies regarding Hanwoo
where the estimated heritability of CWT, BFT and EMA were
0.30–0.33, 0.27–0.41 and 0.35–0.50, respectively (Yoon et al., 2002;
Park et al., 2013; Lee et al., 2014).

The estimation of GEBV from haplotype alleles depends on
the imputation and phasing results from genotypes. Errors from
imputation or phasing may produce wrong alleles that are not
actually carried by the sample. Especially in haplotypes defined
by LD clustering, inaccurate phasing may cause haplotype
boundaries to be differently defined resulting in lower
accuracy. Therefore, finding more accurate phasing methods
can further improve the prediction accuracy by using
haplotypes. Besides, methods modeling the genetic relatedness
from haplotype similarity can be considered to resolve such
inaccuracies occurring from phasing errors (Hickey et al., 2013).
In addition, discarding haplotype alleles of low frequencies by
regarding them to have zero effects can be considered, since the
generation of alleles having an extremely low frequency (e.g. only
Frontiers in Genetics | www.frontiersin.org 8
one in the population) can be a cause of overfitting, potentially
lowering the prediction accuracy. Also, this can reduce the
computational cost by lessening explanatory variables.

In this study, the advantage of using haplotypes in genomic
prediction was testes in the Hanwoo population. Some studies
that tested other livestock populations reported that haplotypes
can be advantageous for genomic prediction. Applying haplotype
to genomic prediction has been studied in Montbeliarde bulls
(Jónás et al., 2016), New Zealand dairy cattle (Hess et al., 2017),
Nordic Holstein (Cuyabano et al., 2014; Cuyabano et al., 2015),
and Danish Holstein bulls (Edriss et al., 2013). Although
different haplotypes were used in these studies and the design
of the studies may differ, their study still shows the benefits of
using haplotype for genomic prediction. Therefore, we expect
that applying the haplotypes defined in this study can bring
improvement to prediction performance not only in Hanwoo but
also in other livestock populations. However, the optimal size of
haplotype may vary from population to population and most of
the studies about haplotype and genomic prediction were tested
in dairy cattle or beef cattle. Thus, care should be taken when
applying to other species.

In conclusion, genomic prediction using haplotypes in the
Hanwoo population showed increase accuracy for three carcass
traits, CWT, BFT and EMA. Haplotypes used for genomic
prediction were defined by three methods, length, SNP count
and hierarchical clustering based on LD with four different sizes.
The haplotype defining method showing the highest prediction
accuracy was LD clustering-based haplotypes with five SNPs for
CWT and EMA and length-based haplotypes with 5 SNPs for
BFT. LD clustering-based haplotypes had the least number of
alleles, being favorable in terms of computation time. However,
haplotype optimization methods for various traits need to
be continuously.
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