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With the rapid development of complex equipment, such as airplanes, the appropriate design of the human-machine interface is
often upgraded, thus emerged many methods to evaluate whether such an upgrade is effective. Most researches focus on the time
accumulation effect of the human state during the interaction to evaluate the interface. However, in the aviation application, the
performance of the pilot’s instantaneous reactions also reveals the design efficiency of the interface, since the difficulty level of
obtaining the useful information would severely influence the reaction time in some voice command tasks or emergency
situations. Besides, there are so many flight scenarios that are impossible to be simulated in experiments or in a laboratory
environment. Also, voice commands are too numerous to be traversed simulated. This paper introduced predicted auditory
reaction time as an index to evaluate human-machine interface design. The proposed method has two advantages. On the one
hand, it effectively measures the pilot’s auditory reaction time based on the eye movement tracking; thus, the data can be taken
in flight task scenarios, and the experiment would not cause interference to the subjects. On the other hand, a prediction
model is proposed, in which the pilot’s reaction time under more generalized voice command can be estimated based on a
small-size sample set.

1. Introduction

Human-machine (computer) systems refer to the system
composed of humans and machines and fulfill some func-
tions through the interaction between humans and machines
[1]. With the rapid development of complex equipment,
such as airplanes and remotely piloted aircraft (RPA), the
appropriate design of the human-machine interface plays a
crucial role in harnessing the powerful capabilities of equip-
ment [2]. In common cases, the interface of upgraded equip-
ment is designed or modified based on the original interface
of the previous generation, while adding new functions.
However, the simple interface modification or updates will
not give full play to the capabilities of a new generation of
equipment. Sometimes, the interface design may cause user
failures to obtain critical information [3] or give rise to mal-
functions of cognition and decision-making among opera-

tors, which may lead to accidents [4]. Thus, many methods
called usability evaluation emerged, aimed at evaluating
whether such an upgraded human-machine interface is
effective.

There are methods based on analyzing the static attri-
butes of the interface. In [5], the color and luminance con-
trast in information coding was discussed in Air Traffic
Control (ATC) display systems. A prototype color palette
that used color coding to prioritize display information
while maintaining good legibility was presented. The
Human Algorithm Knowledge-based layout Design method
(HAKD) was proposed to deal with the problem of layout
design [6]. HAKD took the evolutionary algorithm (e.g.,
genetic algorithm) as the algorithm foundation, in which
human-provided artificial layout schemes (artificial solu-
tions) and layout diagrams afford prior knowledge solutions,
and the evolution algorithm produced novel algorithm
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solutions. Thus, human intelligence, computer intelligence
(evolution algorithm), and prior knowledge extracted from
layout diagrams were fused for problem-solving.

However, the researches above paid more attention to
the static attributes of the interface, and the dynamic factors
of humans were seldom taken into consideration. Thus,
researches based on the experiment which regarded human
performance, either from the aspect of work performance
evaluation or the mental workload evaluation, were adopted.

In performance evaluation, a cognitive walkthrough is
one method. The developers of an interface walked through
the interface in the context of core tasks that a typical user
would accomplish. The actions and feedback of the interface
were compared to the user’s goals and knowledge, and dis-
crepancies between the user’s expectations and the steps
required by the interface were noted [7]. With the develop-
ment of technology, eye-tracking became one of the most
precise and objective methods of usability studies [8] and
was believed to be an efficient method to evaluate the design
of the human-machine interface [9]. It was discovered that
well-organized functional grouping resulted in shorter scan
paths, covering smaller areas. An evaluation method called
DEMIS was demonstrated [10]. Two effectiveness measures
included the fixation-to-importance ratio (FIR) which repre-
sented attentional resources spent on an information source
compared to the importance of the information source, and
selective attention effectiveness (SAE) which incorporated
FIRs for all information sources was proposed. Then, diffi-
culties caused by a poor HMI design were evaluated by a
focused interview based on the FIR evaluation.

Several researches are grounded on measuring the men-
tal workload (MWL) of users to evaluate the user interface
design. In engineering application, the NASA Task Load
Index (TLX) was adopted as one of the indexes measuring
the MWL [11]. It collected subjective workload scores based
on a weighted average rating of six factors, which included
mental demand, physical demand, temporal demand, own
performance, effort, and frustration level. The results
showed that the design style of the human-machine interface
affected different factors of the operator’s workload. Another
multi-index evaluation method developed on performance
measures, subjective rating, and physiological measure was
used to evaluate MWL of operators [12]. It pointed out that
interface design had a significant effect on operators’ MWL
in nuclear power plants. Same in the domain of nuclear
power plant interface design, fuzzy comprehensive evalua-
tion theory was adopted in [13] for assessment of interface
designs. This method was validated in achieving the quick
and accurate assessment of different display interfaces when
considering the operators’MWL. In the domain of Air Traf-
fic Control (ATC), [14] used operator’s behavior and EGG/
ERP to measure the cognitive load and also achieved the
effective evaluation of the interface design.

Most of the previous methods based on operation per-
formance or mental workload evaluation considered the
time accumulation effect of the human state during the
interaction. However, the performance of human instanta-
neous reactions also reveals the design efficiency of the
interface, since the difficulty level of obtaining the useful

information would severely influence the response time
in some voice commands or emergency tasks. For exam-
ple, in the application of the flight control interface, for
some tasks, especially high maneuverability mission, after
voice receiving commands, it is critical for pilots to under-
stand the commands and perform quickly in highly
dynamic flight scenarios. The reaction speed may affect
the task performance of the whole mission [15]. Also, in
the case of special situation handling during the flight,
after receiving the auditory warning/alarming signal, the
pilot has to obtain useful information from the interface
as quickly as possible to avoid the accident [15]. There-
fore, in the above application scenario, it is very necessary
to propose the reaction time (RT) as one of the indexes to
evaluate the user interface.

The pilot’s RT is related to his proficiency; for example,
expert pilots show less RT [16]. But for the same expert pilot,
his RT for certain voice commands can reveal the accessibil-
ity of the useful information that the interaction interface
provides to the user [17]. RT is commonly defined as the
time interval between a stimulus and a reaction, which can
be used as an index to evaluate the human-machine inter-
face. In [18], RTs together with mental workload and subjec-
tive feedback were used to evaluate the agricultural machine
user-centered interface. Significant differences were found in
RT between two user interfaces, which showed that RT can
be an index to measure the usability of an interface. Consid-
ering that the interaction interface may impact the user’s
efficiency of obtaining useful information, the user’s
response time for answering the questions related to the
information presented on an interface was adopted to infer
the situation awareness attained by the user. Higher
response time was associated with lower situation awareness.
Besides the study on auditory RT, the RT of visual warning,
auditory warning, tactile warning, and any combination of
these three types of signals were regarded as the indexes to
assess the user’s interface [19].

Although these studies have certain practical significance
and provide good guidance to evaluate the design of a
human-machine interface, most of the studies designed the
experiment based on the virtual task or assumption task.
For example, to evaluate auditory attention in a human-
machine system, a choice RT experiment was organized, in
which the user must give a response that corresponds to
the stimulus [20]. In another research, to make ergonomics
recommendations for multisensory interface design in con-
trol consoles, a signal (visual or auditory)-press button task
was designed to evaluate the human-machine interface
under different conditions by measuring RT and error per-
centages [21]. Gerhardt-Powals [17] created a simple firing
task game. RT was obtained by recording the time interval
between information receiving and key-pressing. Several
principles based on the experiment are concluded to pro-
duce a “cognitive friendly” interface.

For the application of the human-machine interface
in aviation, the flight deck is sophisticated and contains
a lot of information [22]. The problem of human-
machine interaction can be viewed as two powerful
information processors attempting to communicate with
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each other via a narrow-bandwidth, highly constrained
interface [23]. Numerous experimental results indicate
that the bandwidth of human perception is severely lim-
ited [24], which means that only limited information can
be successfully acquired by users within a unit time.
Moreover, the pilot’s RT presents more task-related fea-
tures. Different auditory commands or warning tones
in different flight scenes and missions can seriously
affect the information requirement of users. For example,
in a conditionally automated driving experiment, the
group of participants who received commands on limita-
tions had a lower RT when the car approached the deer
than the control group [25]. Therefore, it is particularly
important to evaluate the human-machine interface in
aviation considering different auditory commands in
flight scenes as realistic as possible.

However, in the previous studies, either the experiment
was not set under the task state or the experimental mea-
surement of RT may disturb the subjects to complete the
original task. Besides, different from other applications,
flight tasks and scenarios are too complex to be simulated;
for example, in high maneuverability missions, it is hard
to generalize the proper voice command in experiments.
Also, different from warning/alarm signals, voice com-
mands are informative and too numerous to be traversed
simulated. But it is always desired that the proposed
method should be able to evaluate the interface design
under more generalized situations based on a small-size
experimental sample set.

This paper proposed predicted auditory RT as an index
to evaluate the console interface of remotely piloted aircraft
(RPA). Besides, the methods can be further applied in other
domains, such as interface evaluation of airplanes and com-
plex command and control systems. The work focused on
the following three problems:

(1) The experiment method to measure and evaluate the
auditory commands in the task state, which should
keep the subject in a normal operating state and
not influence the subject to execute the regular task

(2) The calculation method to predict the auditory RT of
more generalized voice commands with a small-size
sample set

(3) The analysis method to evaluate and analyze the
interface design is based on auditory RT

We try to solve the above problems, and this paper was
organized as follows: In Section 2, the architecture of the
proposed approach was explained. Section 3 represents the
method of auditory RT measurement, in which the experi-
ment was organized in the pilot’s flight task state. Section 4
was about the prediction method of voice command RT, in
which the RT was estimated for more general voice com-
mands based on the key words. Finally, the RT was used to
evaluate two flight console interfaces in Section 5, which
provided the idea of how to analyze the usability of the inter-
face with RT. In Section 6, conclusions and future work are
presented.

2. Architecture of Proposed Method

In the human reaction process, a stimulation induces a pro-
cess in which the stimulus activates the sensory apparatus,
which travels through the afferent nerve to the nerve center
of the brain, through complex processing, and from the
efferent nerve to the muscle, which contracts to perform
the operation. Although this process is latent in the body,
each step takes time. The sum time is called reaction time.
RT consists of perception time (i.e., the time from the pres-
ence of the stimulus to the beginning of the action) and
action time (i.e., the execution duration of action):

RT = tz + td , ð1Þ

where RT is the total reaction time, tz is the perception time,
and td is the action time. In terms of information acquisition
and processing, perception time refers to the time of audi-
tory information acquisition, while action time refers to
the time of active visual information acquisition.

In a flight task, after the pilot receives a voice command,
he/she does not produce the manual operation directly but
obtains the related visual information first to gather useful
information, then judges the situation based on the informa-
tion and experience, and finally performs the action. Based
on this phenomenon, eye movement tracking is adopted as
a measuring means of RT in flight tasks. From the informa-
tion perception aspect, the time interval between the ending
time of voice command and human firstly obtaining the use-
ful visual information indicates the time spent on processing
auditory information, while the time interval between gain-
ing first target information and all the useful visual informa-
tion that have been acquired represents the reaction
procedure of the information processing results. As this
work uses RT to evaluate the information display interface,
the manual operation time is not taken into account.

It is assumed that t1 and t2 represent the starting and
ending times of a voice command. t3 is the point-in-time
on which the pilot firstly forms the fixation on the Area of
Interests (AOIs) of the user interface. Because converting
the voice command to useful visual information and achiev-
ing this information takes time, t3 may not always equal to
the point-in-time of the first target AOI t4 for different inter-
faces. t5 indicates the time that all target AOIs have been
acquired by the pilot. The relationship of these time points
in the sequence can be expressed as

tz = t4 − t2,

td = t5 − t4:
ð2Þ

A pilot’s RT represents the difficulty of obtaining multi-
ple information under a certain command; thus, it can be
used as an index to evaluate the rationality of the layout of
multiple information in the interface.

The proposed approach mainly consists of three parts.
The first part is to obtain the template data of RT for typical
auditory commands based on eye movement tracking. The
pilot was asked to do the normal flight task in this part, while
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the typical voice commands were given randomly and eye
movement data were recorded at the same time. Since the
experiment was done without disturbing the pilot and flight
task, all data were gathered in the task state. The second part
developed the method of RT prediction based on small sam-
ples of experiments, which includes two steps. The first step
is key word extraction, which extracts key words from orig-
inal audio files. This step is constructed based on the fact
that experienced pilots usually respond to the voice com-
mand according to the acquired key words so that he/she
can give the response promptly. The combination of differ-
ent key words will determine the pilot’s RT to the command.
The second step is to predict RT, where we trained a neural
network that used the template data, which includes RT for
typical commands and template key words, to predict RT of
more general auditory commands. The significance of this
prediction model is that it can estimate the RT for different
commands without traversing all sample commands, since
not all the flight scenes can be simulated in the simulator,
and in some flight missions, the commands should be made
according to the real task situation which is hard to be sim-
ulated. Moreover, the human-machine interface can be eval-
uated in more general cases. The workflow of our work is
illustrated in Figure 1. The third part is to analyze the flight
console interface based on the predicted RT of different
voice commands.

This approach provides a new idea to predict the RT of
voice command under the task state for the aviation applica-
tion. Furthermore, the RT can be adopted as one of the
indexes to evaluate the efficiency of a flight console interface,
which offers perceptive information to users under various
and complex tasks.

3. Auditory Reaction Time Obtaining Based on
Eye Movement Tracking

In common cases, the interface of upgraded equipment is
designed or modified based on the original interface of the
previous generation. Assume that interface A is a new inter-
face whose usability needs evaluation. However, since its
usability has not been evaluated, we cannot measure it in a
real scenario for the sake of safety. At the same time, it takes
a lot of manpower and time to conduct experiments on all
auditory commands, so we construct a prediction model to
predict RT of more voice commands through experiments
of a small number of commands which can be simulated.
Suppose interface B is an old version interface, which has
more pilot’s RT data under voice commands. Through the
comparison of the pilot’s RT under each command, different
interfaces can be compared and evaluated. For example, for
combat missions, the interface that the pilot has smaller
RT with combat commands is better; for search and rescue
missions, the interface that the pilot has smaller RT with
searching commands is better.

3.1. Experimental Scheme and Platform. The experiments are
based on a search and rescue mission. All the experiments
were done on the simulator of the RPA operation platform
(as shown in Figure 2). The platform is composed of six

modules, which are the integrated situation module, flight
control module, CCD operation module, radar illumination
module, voice command module, and eye movement track-
ing module. Different flight tasks can be simulated on the
platform, such as “take-off,” “climb,” “cruise,” “search tar-
get,” and “flight return.” In the experiment, while the RPA
pilot executed certain flight tasks, the voice command mod-
ule broadcasts voice commands according to the current
flight situation, which was chosen from the command
library including commonly used commands from the
ground command center.

The eye movement tracking module recorded the RPA
pilot’s eye movement data at the same timeline with the
voice command and flight parameters with Tobii Pro
X3-120. Before the experiment, we used calibration soft-
ware to calibrate the eye tracker. During the calibration
process, we made sure that all the information on the
screen was accessible to the pilot. For the collected eye
movement data, the fixation time greater than 100ms
was selected as fixation points. In addition, multiple AOIs
(Figure 3) can be obtained by dividing functional areas on
the display, and eye movement points in corresponding
AOI indicate that corresponding AOI information is
obtained.

It is discovered that after receiving the auditory com-
mand or warning signals, instead of outputting the manual
actions immediately, the pilot obtains related visual infor-
mation firstly to gather useful information to know the
current situation or to prepare for the next operation.
Then, he finally performs the operation requested by voice
command. Based on this discovery, it is reasonable to
introduce eye movement tracking to evaluate the pilot’s
performance of response to the auditory command. More-
over, during the same flight task, to complete the proper
operation, for the same command, AOIs (Area of Inter-
ests) that expert pilots pay attention to are the same,
and these obtained AOIs are quite consistent for the
expert pilots. However, different pilots may focus on the
same group of AOIs when responding to one command;
each pilot may not focus AOIs in the same order. For
example, after the pilot got the voice command “encounter
storm, altitude 6000,” he/she can first obtain the “altitude”
information or the “track” information.

Therefore, in this work, the auditory RT is defined as the
time interval between the end of the voice command and the
acquirement of all target AOIs. The target AOIs are obtained
through experts’ knowledge. For example, after the pilot got
the voice command “encounter storm, altitude 6000,” he
needs to obtain the “altitude” information and the “track”
information. But there is no requirement on the order of
information acquisition. In this case, the experiment does
not disturb the pilot’s operation in flight mission, and the
data are recorded in the flight task state.

The subject is an expert pilot, has good flying experience
(three years of operating experience), does not wear glasses,
and can master the simulation platform proficiently.

After each trial of the experiment, the pilot can have a
short break to ensure that the RT is not affected by the
fatigue state.
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3.2. Auditory Reaction Time Obtaining. Through the mea-
surement of action time, the ability of the human-machine
interface to display mixed information to pilots is obtained.
Performing a command often needs to access several pieces
of information on current flight parameters, and this would
require the pilot to acquire multiple information either
within a single display or from multiple displays. According
to SEEV theory [26], the expectation is an important factor
affecting visual attention, so the pilot’s visual attention
should be properly considered and visual information
should be input to the pilot in an appropriate way. A good
human-machine interface should be reasonably planned;
thus, the pilot can quickly get the information with little
effort.

We take the flight task “cruise” as an example to illus-
trate how to gain the RT by eye movement data. The data
obtaining process was as follows.

The pilot did a normal flight task in the simulated flight
platform; then, he operated the aircraft to the required alti-

tude and started the cruise task. During the cruise phase,
the voice commands were sent to the pilot according to the
real situation and flight scenes at irregular intervals. The
platform can record the time t1i when voice comment i
was sent and the ending time t2i of the command i. The
pilot’s eye movements were recorded with the same time
label. The eye movement points were assigned into AOIs
as shown in Figure 4, in which the red blocks were the pre-
defined AOIs according to the functional area of the flight
console interface, and the green lines indicated the eye
movement trajectories from one AOI to the other. In this
case, each fixation point was labeled with the functional
information. After the end of voice command i, the time of
the first AOI acquired by the pilot was recorded as t3i, but
this firstly obtained information may not be the required
information prepared for the operation of commands. Thus,
the time of the first target AOI acquired by the pilot was
recorded as t4i. When all the target AOIs had been gained
by the pilot, the time was recorded as t5i. The total RT of
command i can be calculated by RTi = t5i − t4i.

4. Reaction Time Prediction

4.1. Extraction of Key Words in Voice Command. In the
flight mission, when the voice command is given by the
command center or ground station, the expert pilot usually
responds to the obtained key words involved in command
based on his experience. In this case, he can execute the
command as soon as possible to handle the complex situa-
tion. For example, when there was command “no. 02 CCD
on the target for 10 seconds,” where “02” is the code number
of his airplane, the pilot would pay his attention to the infor-
mation of CCD view in the user interface according to the
key word “CCD.”

In the flight mission, because the voice commands given
by the command center has very strict restrictions and is
commonly broadcast with certain frequency and tones, the
features of the same key words in different commands are

Target AOI
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model 
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Voice
command

files

Key word
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Reaction time
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Figure 1: Architecture of the proposed method.
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Figure 2: Flight mission simulation and reaction time
measurement platform.
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quite similar. Moreover, it is possible to collect the key words
appearing in the voice command file based on the experi-
ences of the expert pilot. Thus, the template base can be con-
structed to gather the extracted features of key words. Since
the amount of information contained in different key words
is different, which determines the difficulty level of informa-
tion processing for the pilot, a thesaurus is established
according to the word information content, which is also
provided by the expert pilots. Then, the detected key words
are classified according to the kind of thesaurus. In this case,
the template base is stored according to the information
category.

For any voice command during the flight task, the slid-
ing window method and dynamic time warping (DTW)
matching algorithm are adopted to automatically detect the
input key words. The recognition method of voice command
designed in this paper is illustrated in Figure 5. Besides the
preprocessing of input voice command, the process mainly
includes feature extraction of key words and template
matching, which will be explained in the following parts.

4.1.1. Feature Extraction of Key Words in Voice Command.
Before establishing the template base and recognizing the
input speech, it is necessary to preprocess the speech signal
to facilitate further processing, which commonly includes
the processing procedure, such as sampling and quantiza-
tion, preemphasis, framing, and windowing. The two most
commonly used characteristic parameters are MFCC (Mel
Frequency Cepstral Coefficient) and LPCC (cepstral linear
predictive coding). Among them, MFCC is a feature param-
eter widely used in speech recognition. The extraction pro-
cess of MFCC feature parameters [27] for key words in
voice command adopted in this paper is described as the fol-
lowing steps:

(1) The preprocessing adopted in this work contains the
procedure of preemphasis, framing, and windowing.
The preemphasis filter is applied to a signal x using
the first-order filter in the following equation with
the filter coefficient α:

x1 tð Þ = x0 tð Þ − αx0 t − 1ð Þ: ð3Þ

After preemphasis, the signal is split into short time
frames x2ðnÞ. Then, the Hamming window is applied to each
frame aimed at increasing the continuity of the left and right
ends of the frame. The chosen form is

w nð Þ = 0:54 − 0:46 cos
2πn
N − 1

� �
, ð4Þ

x nð Þ = x2 nð Þw nð Þ, ð5Þ
where N is the window length, 0 ≤ n ≤N .

(2) The power spectrum of the voice command signal is
calculated by Fourier transform:

P =
FFT xið Þj j2

N
, ð6Þ

where xi is the i
th frame of x.

(3) Then, we can convert between Hertz (f ) and Mel
(Mð f Þ) using the following equations:

M fð Þ = 2595 log10 1 +
f

700

� �
, ð7Þ

in which 2959 and 700 are empirical constants. The Mel
scale is aimed at mimicking the nonlinear human ear per-
ception of sound, by being more discriminative at lower fre-
quencies and less discriminative at higher frequencies.

The energy spectrum is passed through a set of Mel scale
triangular filter banks, and a filter bank with M filters is
defined as

Hm kð Þ =

0, k < f m − 1ð Þ,
2 k − f m − 1ð Þð Þ

f m + 1ð Þ − f m − 1ð Þð Þ f mð Þ − f m − 1ð Þð Þ , f m − 1ð Þ ≤ k ≤ f mð Þ,

2 f m + 1ð Þ − kð Þ
f m + 1ð Þ − f m − 1ð Þð Þ f mð Þ − f m − 1ð Þð Þ , f mð Þ ≤ k ≤ f m + 1ð Þ,

0, k ≥ f m + 1ð Þ,

8>>>>>>>>><
>>>>>>>>>:

ð8Þ

where ∑M−1
m=0‍HmðkÞ = 1.

(4) At last, we have to obtain the Mel Frequency Ceps-
tral Coefficients (MFCCs). The logarithmic energy
output of each filter bank is calculated by the follow-
ing equations:

Rec 2
Rec 5

Rec 6

Rec 9
Rec 8

Rec 4

Rec 15

Rec 11

Rec 1

Rec 10

Rec 13

Rec 7

Rec 14Rec 12

Figure 3: Eye movement trajectory responded to the voice
command in flight task.
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s mð Þ = ln 〠
N−1

k=0
‍ X kð Þj j2Hm kð Þ

 !
, 0 ≤m ≤M: ð9Þ

Discrete Cosine Transform (DCT) is applied to decorre-
late the filter bank coefficients and yields a compressed rep-
resentation of the filter banks:

C nð Þ = 〠
N−1

m=0
‍s mð Þ cos πn m − 0:5ð Þ

M

� �
, n = 1, 2,⋯, L,

ð10Þ

where L refers to the order of the MFCC coefficient.

4.1.2. Key Word Template Matching. When using the tem-
plate matching method for speech recognition, a single word
is generally regarded as a recognition unit. In the training
phase, the user said every word in turn, and each word’s fea-
ture vector is extracted as a template in the template base. In
the recognition phase, the similarity between the input
speech feature vector series and each template in the tem-
plate base is measured. The template owing the highest sim-
ilarity is picked as recognition results.

However, it is impossible to simply compare the input
parameter sequence with the corresponding reference tem-
plate directly, because the speech signal has considerable
randomness; even if the same person speaks the same word

at different times and makes the same sound, it cannot have
the same length of time. In template matching, these changes
of time length will affect the measurement estimation and
reduce the recognition rate. Therefore, the procedure of time
scaling for the voice command signal is essential.

DTW is a nonlinear regularization technique which
combines time regularization with distance measure calcula-
tion. For example, the test audio parameters are I-frame vec-
tor, and the reference template is a J-frame vector, I ≠ J ;
then, dynamic time warping is to find a time warping func-
tion j = ωðiÞ, which maps the time axis i of the test vector
nonlinearly to the time axis j of the template and makes
the function ω meet:

D =min
ω tð Þ

〠
I

i=1
‍d T ið Þ, R ω ið Þð Þ½ �, ð11Þ

where d½TðiÞ, RðωðiÞÞ� is the distance measurement between
the ith test vector TðiÞ and the jth vector RðjÞ. D is in the
optimal time warping case. The cost function is

D c kð Þ½ � = d c kð Þ½ � +min D c k − 1ð Þ½ �, ð12Þ

where d½cðkÞ� is the cost of cðkÞ. Thus, the total cost function
is the sum of the cost of the point itself and the cost of the
best path to that point.

Rec 2 Rec 3 Rec 3Rec 2
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Rec 6 Rec 7

SpeedAltitude

Rec 5

Rec 8

Rec 4

Rec 12 Rec 14 Rec 13

(a) (b)

Rec 15

Rec 10 Rec 9

Rec 8

Rec 6 Rec 7

Rec 4
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Rec 13Rec 14Rec 12
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Rec 15
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Figure 4: Flight console interface with eye movement: (a) interface A (new version); (b) interface B (old version).
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Because DTW continuously calculates the distance
between the two vectors to find the optimal matching path,
two-vector matching is the normalized function with the
minimum cumulative distance, which ensures the maximum
acoustic similarity between them.

4.2. Key Word(s) Vectorization. When a pilot performs a
task, his responding time to the voice command is actually
determined by the combination of multiple key words in
the command. He will pay attention to different combina-
tions of key words to complete the flight target task.

According to the command template, the identified
flight commands are converted into the input sample of
the prediction model. The specific method is described as
follows.

As it is difficult to determine the RT directly from the
text information, it is necessary to preprocess the obtained
text information. Inspired by the model of natural language
processing, we extract key words from the possible appear-

ing voice commands according to the experience of expert
pilots. These words are divided into different topics based
on the content similarity, and each topic is defined as one
of the dimensions in the feature vector. Thus, the feature
vectors corresponding to the commands are obtained. Then,
topic words are selected according to the probability; that is,
if a sentence appeared, several words that represent the sen-
tence are selected as the topic words. For example, when the
word “climb to 1000” is detected, there is a high probability
that the sentence belongs to the category of “climb to XX,”
while the word “to” is detected, there is not a high probabil-
ity that the command relates to the category of “climb to
XX.” Therefore, for this sentence, the topic word “climb” is
chosen to represent the topic of the command, and this word
covers most of the information of this sentence. Key words
with high correlation, that is, words with a high probability
of appearing together, words that are similar, or words that
can be replaced with each other, are classified as one topic.
Topic words are determined according to experimental
results. Since the structure of voice command in flight scenes
is specified and the command words are very standard, the
voice command can be vectorized through these topic
words. Here are some topic words used in the experiment
presented in Table 1. For the real scene, there will be more
topic words.

For example, if the above topic words appear in the voice
command, the vector of the corresponding dimension is
assigned as 1. If it does not appear, it is assigned as 0. Each
command is vectorized according to the selected topic
words.

Table 1: Topic words.

Topic no. 1 2 3 4 5 6 7

Key word CCD Hover Search target Fast feed Back Direction Climb (up) down

Topic no. 8 9 10 11 12 13 14

Key word Attitude Navigate Right left Team Unknown Quit Time second

Table 2: Topic word vectors of 14 typical commands.

No. Command Topic word vector

1 No. 02 hover at navigation point [0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]

2 Fast turn up [0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

3 All planes quit the mission and fly to the nearest airfield [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]

4 Fast turn down [0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

5 No. 01 11 o’clock direction target appears [0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

6 Fast turn left [0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]

7 Fast turn right [0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]

8 11 o’clock direction search targets [0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

9 Climb up to 1100 [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

10 Go back ten miles and return [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

11 No. 02 CCD on the target for 10 seconds [1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]

12 To landing altitude [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

13 Contact target within 10 seconds [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]

14 Climb up to 1300, attention on fuel pressure [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
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Input
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vectors
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Command
vector
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Figure 6: Structure of reaction time prediction model based on BP
neural network.
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Some typical command vectors are presented in Table 2.

4.3. Reaction Time Prediction. So far, the problem of RT pre-
diction can be regarded as a common prediction problem.
That is, the command vector of each voice command is
given to estimate the corresponding response time. Super-
vised learning algorithms can be used to solve this problem.

A BP neural network is constructed in this paper to
achieve the prediction of RT. The neural network structure
is shown in Figure 6. The input data is the vectorized voice
command, and the output data is the RT. All the data
obtained from the experiment are used to train the neural
network.

4.4. RT Prediction Results and Analysis. In this paper, we
gave an example of 14 voice commands used to train the

neural network to predict the RT. Prediction results are
depicted in Figure 7. The boxes represent the measured RT
data obtained from all the experiments. The yellow line rep-
resents the median value of all the experimental data, and
the blue dots are the predictive value of the neural network
for the commands.

Calculate accuracy δi for command i in cross-checking:

δi =
rpi − �rei

�rei
: ð13Þ

Total accuracy δ is computed as

δ =
Σn
i=1
n

, ð14Þ

where rpi represents the predicted RT for command i and �re
is the mean value of obtained RT for command i, while n
represents the total number of commands.

In this example, the overall result has the prediction
accuracy (δ = 0:904), shown in Figure 7. For some com-
mands, the prediction accuracy can hit up to 0.995. How-
ever, some only achieved 0.470. The reason can be
explained by Figure 8. In the figure, the blue bars represent
the number of times that those topic words are trained in
the condition of the combination topic words that appeared
in the voice command, while the orange bars represent the
number of times that those topic words are trained individ-
ually. For example, in command “hover at navigation point,”
“hover” and “navigation” belong to a different topic category
and were trained together. In command “climb up to 1100,”
“up” was trained independently, e.g., the command “contact
target within 10 seconds” has a bad prediction performance
(0.470), because the topic words in this command have not
been individually trained. The command “climb up to
1100” performs well (0.995), because the topic word “up”
is trained individually, which can achieve good prediction
accuracy for the combination of words as well. In this exam-
ple, topic words no. 11 and no. 12 do not appear in all 14
instructions, as shown in Table 2. However, in order to
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illustrate that our method can predict the reaction time of
larger samples of instructions based on training more topic
words, we keep these two topic words in Figure 8.

5. Interface Evaluation Based on Reaction
Time Prediction

In this section, two flight console interfaces are evaluated
based on the predicted voice command RT. Interface B is
the original version of the RPA operation interface, while
interface A is the updated version. The differences between
the two versions are listed below:

(1) Interface A (Figure 4(a)) displayed speed and alti-
tude information of RPA using the overlapping dis-
play on the front-view scene interface. For example,
“speed” is shown in Rec 6 and “altitude” is shown
in Rec 7. Rec indicates the previously defined AOI
and is presented as a red rectangle in the figure. Yel-
low dots are recorded pilots’ eye fixations during the
flight task

(2) Interface B (Figure 4(b)) displayed speed and alti-
tude information separately. For example, “speed”
and “altitude” are depicted in Rec 14 and Rec 15,
respectively, and they were shown independently
on the flight parameter monitoring interface

Except for the “altitude” and “speed” information, other
information on these two interfaces remains the same.

The operation platform is placed in a quiet and well-lit
experimental environment; the expert pilot has good flying
experience (three years of operating experience), does not
wear glasses, and can master the simulation platform profi-
ciently. Large head rotation during the execution of flying
tasks is avoided to ensure the accuracy of eye tracker data.

With interface A, the pilot’s RT experiments were con-
ducted on 14 groups of voice commands, 8 times for each

command. The total number of valid training RT data is
86. With interface B, the pilot’s RT experiments were exe-
cuted on the same 14 groups of commands, but 4 times for
each command. After removing the measured RTs that are
larger than 5 s as well as RT with a very large fluctuation
range, which is generally caused by the accuracy of the eye
tracker, the RT data from the experiment was obtained.
Figure 9 presents all measured RT of each voice command
for the two interfaces, respectively, in which the box depicts
the measured RT data distribution, the orange line repre-
sents the median value for all the trials, and the dotted green
line represents the mean value.

For both of the two cases, voice commands with nos. 1-8,
10, 11, 13, and 14 are training datasets, while nos. 9 and 12
are test sets (Table 2). RTs of voice command nos. 9 and
12 were predicted with the proposed model. The predicted
error rate is 5.5% and 15.9% for instructions no. 9 and
no.12, respectively, which refers to the mean value of RT
of all trials. From the RT predicted results present in
Figure 10, we can discover that for most instructions, the
RTs of two interfaces are quite close. Distinctively, for
instructions 4, 5, and 14, interface B performed better than
interface A. For instructions 6 and 7, interface A performs
better than interface B.

In Table 3, bold indicates that interface A or B per-
formed better in this voice instruction. “f” represents that
pilots obtained the visual information “front view,” “a” rep-
resents “altitude,” “s” is “speed,” “t” is “track,” “l” represents
“CCD information,” and “()” is this AOI appearing several
times. It reveals that with interface B, pilots spend much
time on “CCD information” (for example, instructions no.
6 and no. 7). The reason is that when the pilot needed
CCD information to respond to the voice command, in
interface A, the pilot uses his peripheral to roughly obtain
the CCD information because the speed and altitude infor-
mation is very close to the CCD view (CCD view is pre-
sented on the left interface in Figure 4). This can also be
discovered by the fact that there are more fixation points
formed on the CCD view of interface B compared with inter-
face A. However, in interface B, these pieces of information
are separated, which indicates that the pilot has to look at
the CCD information intentionally to obtain it.

For voice command no. 4, the AOIs required by the pilot
are the same in the two interfaces, while interface B shows
better performance. In our case, this indicates that the speed
and altitude information in interface B (displayed as overlay
mode) can be much easier obtained by the pilot than inter-
face A (displayed as digital numbers).
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Figure 10: Reaction time comparison.

Table 3: AOIs for instructions.

Instruction Interface A Interface B Comparison

4 f a s (t) f a s (t) Same

5 f t l f l A has t

6 f t (a) f l t (a) B has l

7 f t f l t B has l

14 f a (s) f a A has (s)
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As the CCD information can be easier obtained by pilots
with interface A, information display as interface A can be
used in search and rescue missions. Because the altitude
and speed information are relatively easier to be acquired
with interface B, information presented like interface B can
be used in high maneuverability missions.

6. Conclusions and Future Work

This paper proposed predicted auditory RT as an index to
evaluate the flight console interface. The proposed architec-
ture of the approach consisted of three parts RT measure-
ment under samples of voice commands, prediction
method to estimate RT under more general commands,
and interface evaluation with RT prediction, which obtained
the following achievement.

Firstly, the pilot’s auditory RT is effectively calculated by
eye movement tracking, which makes the experiment carried
out in a flight task state, and the measurement would not
influence the pilot to execute the normal task.

Secondly, the RT prediction model is built based on
the extracted key words that appeared in commands.
Then, a neural network is constructed, which made the
RT under more generalized commands be estimated with
small sample experiments. This can help to overcome the
dilemma that some flight scenes are hard to be simulated
and various voice commands are impossible to be tra-
versed simulated.

Finally, the voice command RT is adopted as one aspect
to evaluate the utilization of the new generation interface,
which considers not only the time accumulation effect of
the human state during the interaction but also instanta-
neous reactions to the input information of the interface.

This paper only presented the application in the evalua-
tion of the flight console interface; in fact, the proposed
approach can also be applied in other systems, such as the
human-robot interface and operation interface of the com-
mand center. For further applications, there are still several
works that need to be done in the future:

(1) The voice command library used in this paper is not
large enough, a bigger dataset can be used to
improve the prediction results, and more evaluation
indexes could be used to evaluate the human-
machine interface

(2) The features of instructions are not only included
key words but semantic structure. The relationship
between each key word can be considered, which
may help to increase the RT prediction accuracy in
a more general scenario

(3) The experiments were done under specific tasks, but
our work actually can resolve the prediction problem
under several different tasks. Thus, context informa-
tion can be input into the prediction model to
achieve the prediction under different tasks

(4) The target AOI base is based on experts’ knowledge.
However, while new technology emerges, new

instructions will emerge, which means no target
AOI knowledge to those instructions. Thus, an
experimental method can be proposed to extract
experts’ knowledge
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