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Coronavirus disease 2019 (COVID-19) is caused by infec-
tion with severe acute respiratory syndrome corona
virus 2 (SARS-CoV-2), which enters human host cells via 

angiotensin-converting enzyme 2 (ACE2)1. COVID-19 ranges from 
asymptomatic infection to severe disease, including respiratory fail-
ure and death2–4, and has led to more than 5 million deaths worldwide 
since December 20195. Reported risk factors for severe COVID-19 
include male sex, older age, ethnicity, obesity and cardiovascular and 
respiratory diseases6–8, among others. Host genetic factors have also 
been shown to modulate the risk of infection and disease severity9–12. 
The largest human genetics study performed so far included data 
from 49,562 individuals infected with SARS-CoV-2 and >1.7 million  
individuals with no record of infection as controls, and identified 
13 independent common risk variants12, many located in or near 
immune-related genes, such as IFNAR2 and CXCR6. Genetic studies 
of rare variation assayed through exome or genome sequencing have 

also suggested a role in COVID-19 for genes in the type 1 interferon 
(IFN) pathway, including TLR713–15. Still, a complete understand-
ing of genetic susceptibility to SARS-CoV-2 infection and progres-
sion to severe COVID-19, and the applicability of these findings for 
risk prediction, are incompletely understood. In this study, we per-
formed a genome-wide association study (GWAS) meta-analysis to 
identify additional genetic variants associated with COVID-19 since 
these may help identify new therapies. We also tested the utility  
of genetic risk scores (GRS) to identify individuals at the highest  
risk of severe disease, who could be prioritized for vaccination or 
therapeutic interventions, which globally are in short supply.

Results
GWAS of SARS-CoV-2 infection identifies ACE2 association. 
We performed GWAS of COVID-19 outcomes across 52,630 indi-
viduals with COVID-19 and 704,016 individuals with no record of 
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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters human host cells via angiotensin-converting enzyme 2 
(ACE2) and causes coronavirus disease 2019 (COVID-19). Here, through a genome-wide association study, we identify a variant 
(rs190509934, minor allele frequency 0.2–2%) that downregulates ACE2 expression by 37% (P = 2.7 × 10−8) and reduces the 
risk of SARS-CoV-2 infection by 40% (odds ratio = 0.60, P = 4.5 × 10−13), providing human genetic evidence that ACE2 expres-
sion levels influence COVID-19 risk. We also replicate the associations of six previously reported risk variants, of which four 
were further associated with worse outcomes in individuals infected with the virus (in/near LZTFL1, MHC, DPP9 and IFNAR2). 
Lastly, we show that common variants define a risk score that is strongly associated with severe disease among cases and  
modestly improves the prediction of disease severity relative to demographic and clinical factors alone.
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SARS-CoV-2 infection aggregated from 4 studies (Geisinger Health 
System (GHS), Penn Medicine BioBank (PMBB), UK Biobank 
(UKB) and AncestryDNA; Supplementary Table 1) and 5 con-
tinental ancestries. Of the cases with COVID-19, 6,911 (13.1%) 
were hospitalized and 2,184 (4.1%) had severe disease; hospitalized 
patients were more likely to be older, of non-European ancestry and 
to have preexisting cardiovascular and lung disease (Supplementary 
Table 2). Using these data, we defined five case-control compari-
sons related to the risk of infection and two others related to disease 
severity among cases with COVID-19 (Table 1 and Supplementary 
Table 3). For each comparison, we performed ancestry-specific 
GWAS in each study using REGENIE (Methods) and then com-
bined the results using a fixed-effects meta-analysis. Genomic  
inflation factors (λGC) for the meta-analyses were <1.05, suggesting 
no substantial impact of population structure or unmodeled relat-
edness (Supplementary Table 4). Unless otherwise noted, all associ-
ation P values reported henceforth are from Firth (disease traits) or 
linear (quantitative traits) regression tests performed in REGENIE.

Our analysis provides independent support for several risk vari-
ants reported in previous GWAS of COVID-199–11 (Supplementary 
Table 5), including those recently reported by the COVID-19 Host 
Genetics Initiative (HGI)12, to which we contributed an earlier 
version of these data (Supplementary Table 6). Details for these 
replicated loci follow below, but first we looked for new genetic 
associations that might have been missed by the HGI. Across the 
seven risk and severity phenotypes, considering both common 
(minor allele frequency (MAF) > 0.5%, up to 13 million) and rare 
(MAF < 0.5%, up to 76 million) variants, we observed one previously 
unreported association at a conservative P < 8 × 10−11 (Bonferroni 
correction for seven phenotypes × 89 million variants). This asso-
ciation was between a lower risk of SARS-CoV-2 infection (52,630 
cases positive for COVID-19 versus 704,016 COVID-19 negative 
or unknown controls) and rs190509934:C on the X chromosome 
(MAF = 0.3%, odds ratio (OR) = 0.60, 95% confidence interval 
(CI) = 0.52–0.69, P = 4.5 × 10−13; Fig. 1). This rare variant is located 
60 base pairs (bp) upstream of the ACE2 gene (Fig. 2a), the primary 
cell entry receptor for SARS-CoV-216.

Given the potential significance of these findings, we studied  
the association between the ACE2 variant rs190509934 and  
COVID-19 outcomes in greater detail. We found that the variant 
was well imputed (imputation info score > 0.5 for all studies) and  
that there was no evidence for differences in effect size (hetero
geneity test P > 0.05) across studies (Fig. 2b) or ancestries (Supple
mentary Table 7). However, a significantly stronger association with 
SARS-CoV-2 infection (heterogeneity test P = 0.009) was observed 
in males (OR = 0.49, P = 7.0 × 10−11, explaining 0.085% of the vari-
ance in disease liability17, h2) when compared to females (OR = 0.72, 
P = 5 × 10−4; h2 = 0.017%). There were no associations between 
rs190509934 and 6 clinical risk factors for COVID-19 after mul-
tiple test correction (all with P > 0.05/6 = 0.008; Supplementary 
Table 8), suggesting these did not likely confound the analysis. 
We then investigated the association between rs190509934 and 
severity among cases with COVID-19 and found that carriers of 
rs190509934:C had a numerically (but not significantly) lower risk 
of worse disease outcomes when compared to non-carriers (for 
example, OR = 0.69, P = 0.16 when comparing 6,779 cases hospi-
talized with COVID-19 versus 44,968 cases not hospitalized with 
COVID-19; Supplementary Table 9). These results demonstrate that 
rs190509934 near ACE2 confers protection against SARS-CoV-2 
infection and potentially also modulates disease severity among 
individuals infected with the virus; since the variant is relatively 
uncommon, a definitive account of its role in disease severity 
requires assessing larger numbers of severe cases.

We speculated that the protective rare variant near ACE2 
(rs190509934:C) might regulate ACE2 expression. This vari-
ant was not characterized by the Genotype-Tissue Expression 
(GTEx) consortium18 or 51 other gene expression studies we  
queried (Supplementary Table 10). Thus, to test its association  
with ACE2 expression, we analyzed RNA sequencing (RNA-seq) 
data from liver tissue available in a subset of 2,035 individuals  
from the GHS study, including 8 heterozygous and 1 hemizygous 
carrier for rs190509934:C. After adjusting for potential confoun
ders (for example, body mass index (BMI), liver disease), we found  
that rs190509934:C reduced ACE2 expression by 0.87 s.d. units  

Table 1 | The seven COVID-19 phenotypes analyzed in this study

Broad phenotype 
category

Phenotype Description Group Sample size with 
genetic data

Risk of infection COVID-19 positive
versus
COVID-19 negative or unknown

Risk of infection Cases 52,630

Controls 704,016

COVID-19 positive
versus
COVID-19 negative

Risk of infection among individuals 
tested for SARS-CoV-2

Cases 52,630

Controls 109,605

COVID-19 positive and not hospitalized
versus
COVID-19 negative or unknown

Risk of infection that did not require 
hospitalization

Cases 45,641

Controls 704,016

COVID-19 positive and hospitalized
versus
COVID-19 negative or unknown

Risk of infection that required 
hospitalization

Cases 6,911

Controls 689,620

COVID-19 positive and severe
versus
COVID-19 negative or unknown

Risk of infection with severe  
outcomes

Cases 2,184

Controls 689,620

Risk of severe outcomes  
in individuals infected  
with the virus

COVID-19 positive and hospitalized
versus
COVID-19 positive and not hospitalized

Risk of hospitalization in individuals 
infected with the virus

Cases 6,911

Controls 45,185

COVID-19 positive and severe
versus
COVID-19 positive and not hospitalized

Risk of severe disease in individuals 
infected with the virus

Cases 2,184

Controls 45,185
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(95% CI = −1.18 to −0.57, linear regression test P = 2.7 × 10−8;  
Fig. 3a). When considering raw, prenormalized ACE2 expres-
sion levels, rs190509934:C was associated with a 37% reduction in  
expression relative to non-carriers (Fig. 3b). There was no associa-
tion with the expression of 8 other nearby genes (within 500 kilobases 
(kb), with detectable expression in our dataset) after accounting for 
multiple testing. These results are consistent with rs190509934:C 
lowering ACE2 expression, which in turn confers protection from 
SARS-CoV-2 infection.

In addition to its role in viral infections, the normal physiological 
role of ACE2 involves its hydrolysis and clearance of angiotensin II,  
a vasoconstrictive peptide that can lead to higher vascular tone or 
blood pressure19. Therefore, we investigated if rs190509934:C was 
associated with higher systolic blood pressure in the UKB study but 
found no significant association (Beta = 0.009 s.d. units, P = 0.56; 
Supplementary Table 11). There was a trend for higher blood pres-
sure among carriers of ultrarare coding variants in ACE2 that are 
predicted to be full loss of function (Beta = 0.219 s.d. units, P = 0.09; 
Supplementary Table 11) and which were assayed through exome 
sequencing20. These results need to be confirmed in larger datas-
ets but suggest that ACE2 loss of function may modestly increase  
blood pressure. This should be considered if ACE2 blockade is to 
be developed for COVID-19 treatment, although pharmacological  
inhibition of ACE2 in such a setting would be expected to be  
short term and elevations in blood pressure could be managed 
with antihypertensives. Of note, ACE2 expression in the airways 
was reported to be higher in smokers and patients with chronic 
obstructive pulmonary disease (COPD)21 and to increase with age22. 
Collectively, these observations and our genetic findings are consis-
tent with the hypothesis that ACE2 levels play a key role in deter-
mining COVID-19 risk.

Replication of previously reported associations. As noted, our 
GWAS also identified associations at several loci reported in previous  

GWAS of COVID-19 outcomes. To explore previously reported 
signals in detail, we first attempted to replicate 8 independent 
associations (linkage disequilibrium (LD) r2 < 0.05) with disease 
risk (Supplementary Table 5) reported in 3 recent GWAS9–11 that 
included >1,000 cases (Supplementary Table 6). After accounting 
for multiple testing, 6 variants had a significant (P < 0.0012) and 
directionally consistent association in at least 1 of our 5 disease 
risk analyses (Supplementary Table 12): rs73064425:T in LZTFL1 
(published OR = 2.14; strongest in our analysis of cases with severe 
COVID-19 versus COVID-19-negative or unknown controls; 
MAF = 7%, OR = 1.58, P = 2 × 10−18); rs2531743:G near SLC6A20 
(published OR = 0.92; COVID-19-positive versus COVID-19- 
negative; MAF = 42%, OR = 0.94, P = 3 × 10−12); rs143334143:A in 
the major histocompatibility complex (MHC) (published OR = 1.85; 
COVID-19-positive versus COVID-19-negative; MAF = 7%, 
OR = 1.06, P = 2 × 10−4); rs879055593:T in ABO (published OR = 1.17; 
COVID-19-positive versus COVID-19-negative or unknown; MAF =  
24%, OR = 1.10, P = 7 × 10−34); rs2109069:A in DPP9 (published 
OR = 1.36; cases hospitalized with COVID-19 versus COVID-19- 
negative or unknown; MAF = 31%, OR = 1.10, P = 3 × 10−7); and 
rs2236757:A in IFNAR2 (published OR = 1.28; cases hospitalized with 
COVID-19 versus COVID-19-negative or unknown; MAF = 29%, 
OR = 1.08, P = 7 × 10−5). The variants in LZTFL1 and SLC6A20 are 
located 63 kb apart at the 3p21.31 locus first reported by Ellinghaus 
et al.9, which contains a core risk haplotype that includes 13 variants 
in high LD with each other23. However, in individuals of European 
ancestry, this haplotype block (indexed by rs35044562) is in high LD 
with the LZTFL1 variant rs73064425 (r2 = 0.99) but not the SLC6A20 
variant rs2531743 (r2 = 0.02), indicating that these two signals—
for severe COVID-19 among infected individuals and for risk of 
SARS-CoV-2 infection compared with individuals who did not test 
positive for COVID-19, respectively—are likely independent.

There was no evidence for heterogeneity in effect sizes across 
studies (all with P > 0.05; Supplementary Table 12) or ancestries  

a
Common variants (MAF ≥ 0.5%)

b Rare variants (MAF < 0.5%)
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Fig. 1 | Summary of association results from a GWAS meta-analysis of risk of infection (n = 52,630 COVID-19 positive cases, n = 704,016 COVID-19 
negative or unknown controls). a, Results for common variants (MAF ≥ 0.5%). b, Results for rare variants (MAF < 0.5%).
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(all with P > 0.05; Supplementary Table 13) for any of the six variants. 
We also explored the possibility that the association between these 
six variants and COVID-19 could have been confounded by disease 
status for relevant comorbidities. We found that only two of the six 
variants were associated with a clinical risk factor: the MHC variant 
was associated with asthma (P = 6.8 × 10−9) and type 2 diabetes (T2D) 
(P = 1.5 × 10−5), while the ABO variant was associated with kidney  

disease (P = 1.4 × 10−4) and T2D (P = 9.7 × 10−5; Supplementary  
Table 8). Importantly, however, for both variants the association with 
COVID-19 was essentially unchanged after adjusting for the associ-
ated clinical risk factors (MHC: OR = 1.09 versus OR = 1.08; ABO: 
OR = 1.08 versus OR = 1.07; Supplementary Table 14). Therefore, we 
conclude that the association between the six variants and COVID-19  
is unlikely to be explained by these underlying comorbidities.

a
Association with variants at locus Xp22.2 near ACE2 in the meta-analysis of risk of infection

b
Association between risk of infection and rs190509934:C across 12 cohorts
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Fig. 2 | Association between variants near ACE2 and risk of infection. a, Regional association plot for locus Xp22.2 near ACE2 in the meta-analysis of  
risk of infection across 14 cohorts (n = 52,630 COVID-19-positive cases, n = 704,016 COVID-19-negative or unknown controls; Supplementary Table 4).  
b, Association between risk of infection and the most significant variant at the Xp22.2 locus (rs190509934:C, MAF = 0.3%) across 12 cohorts (n = 52,424 
COVID-19-positive cases, n = 701,237 COVID-19-negative or unknown controls). The variant was not tested in two cohorts due to low sample size 
(AncestryDNA, EAS ancestry; UKB, EAS ancestry). Associations were estimated in each cohort using Firth regression (two-sided test) as implemented in 
REGENIE37, with results combined across cohorts using an inverse variance meta-analysis.
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Associations with disease severity among cases with COVID-
19. We then investigated which replicated variants were associated  
with severity among cases with COVID-19. Among the 6 repli-
cated variants (in/near LZTFL1, SLC6A20, MHC, ABO, DPP9 and 
IFNAR2), 4 were significantly (P < 0.05) associated with worse 
outcomes among infected individuals (in/near LZTFL1, MHC, 
DPP9 and IFNAR2), while those in ABO and near SLC6A20 were 
not associated with COVID-19 severity (Extended Data Fig. 1 and 
Supplementary Table 15). Collectively, these results highlight four 
variants associated with both COVID-19 risk and worse disease 
outcomes, including respiratory failure and death. These variants 
may be used to identify individuals at risk of severe COVID-19 
and guide the search for genes involved in the pathophysiology of 
COVID-19.

Next, we evaluated whether variants identified by the COVID-19  
HGI, a large worldwide effort to identify genetic risk factors for 
COVID-19, could augment this set of four disease severity vari-
ants. The latest HGI analyses12 include data from 49,562 individu-
als infected with SARS-CoV-2 and use >1.7 million individuals 
with no record of infection as controls (Supplementary Table 16). 
To identify additional variants associated with severity, we started 
with variants associated with the phenotype ‘reported infection’ 
(infected versus no record of infection) which, despite the sample  
overlap between the HGI and our analyses, was statistically 
independent from severity among infected individuals because  
infection status (positive cases versus negative or unknown con-
trols) is uncorrelated with hospitalization status once infected 
(hospitalized versus non-hospitalized cases). We found that 
two variants were nominally associated with the risk of severe  
disease among cases (rs11919389 near RPL24, P = 0.029 and 
rs1886814 near FOXP4, P = 0.018; Supplementary Table 16), sug-
gesting that these loci also modulate disease severity after infection 
with SARS-CoV-2.

Likely effector genes of variants associated with COVID-19. 
Collectively, our association analyses highlighted six common vari-
ants identified in previous GWAS or by the HGI—in/near LZTFL1, 
MHC, DPP9, IFNAR2, RPL24 and FOXP4—that are associated with 
COVID-19 as well as disease severity among cases. To help identify 
genes that might underlie the observed associations, we searched 
for functional protein-coding variants (missense or predicted loss 
of function) in high LD (r2 > 0.80) with each variant. We found eight 

functional variants in five genes (Supplementary Table 17): IFNAR2, 
a cytokine receptor component in the antiviral type 1 IFN pathway, 
which is activated by SARS-CoV-2 and is dysregulated in cases with 
severe COVID-1914,24); CCHCR1, a P-body protein associated with 
cytoskeletal remodeling and messenger RNA turnover25,26; TCF19, a 
transcription factor associated with hepatitis B27; and C6orf15 and 
PSORS1C1, two functionally uncharacterized genes in the MHC. 
These data indicate that the variants identified may have functional 
effects on these five genes.

We then asked if any of the 6 sentinel variants colocalized  
(that is, were in high LD, r2 > 0.80) with published sentinel expres-
sion quantitative trait loci (eQTLs) across 52 studies (considering 
eQTLs associated with gene expression at a P < 2.5 × 10−9 in the 
original studies; Supplementary Table 10), specifically focusing on 
114 genes in cis (±500 kb). We found colocalization with sentinel 
eQTLs for eight genes (Supplementary Table 18): SLC6A20 (eQTLs 
from lung), a proline transporter that binds the host SARS-CoV-2 
receptor, ACE228; NXPE3 (esophagus), a gene of unknown func-
tion; SENP7 (blood), a SUMO-specific protease that promotes IFN 
signaling and that in mice is essential for innate defense against 
herpes simplex virus 1 infection29; IFNAR2 and TCF19 (multiple 
tissues), both discussed above; LST1 (blood), an immunomodula-
tory protein that inhibits lymphocyte proliferation30 and is upregu-
lated in response to bacterial ligands31; HLA-C (adipose tissue), a 
natural killer cell ligand, which is associated with HIV infection32 
and autoimmunity33; and IL10RB (multiple tissues), a pleiotro-
pic cytokine receptor associated with persistent hepatitis B and 
autoimmunity34,35. Collectively, analysis of missense variation and 
eQTL catalogs suggests 12 potential effector genes in COVID-19 
loci (ACE2, C6orf15, CCHCR1, HLA-C, IFNAR2, IL10RB, LST1, 
NXPE3, PSORS1C1, SENP7, SLC6A20 and TCL19), although func-
tional studies are required to confirm these predictions.

Using GRS to predict severe disease. Next, we proceeded to  
evaluate if common genetic variants can help identify individuals  
at high risk of severe COVID-19 once infected with SARS-CoV-2. 
To this end, we created a weighted GRS for individuals with a record 
of SARS-CoV-2 infection and then compared the risk of hospitaliza-
tion (hospitalized versus non-hospitalized cases) and severe disease 
(severe versus non-hospitalized cases) between those with a high 
GRS and all other cases, after adjusting for established risk factors. 
We considered different approaches to select variants for inclusion 

a
Normalized ACE2 expression

b
Raw ACE2 expression

0 1 0 1
–3

–2

–1

0

1

2

rs190509934 alternate allele (C) count

N
or

m
al

iz
ed

 A
C

E
2 

ex
pr

es
si

on
 (

s.
d.

 u
ni

ts
)

0 1 0 1

0.5

1.0

1.5

rs190509934 alternate allele (C) count

U
na

dj
us

te
d 

lo
g 1

0(
T

M
M

 +
 1

) 
A

C
E

2 
ex

pr
es

si
on

0.592

0.256

57%

Female Male Female Male

n = 1,625

n = 8

n = 401

n = 1

n = 1,625

n = 8

n = 401

n = 1

0.555

0.352

37%

Fig. 3 | Association between rs190509934:C and ACE2 expression in liver measured in the GHS study (n = 2,035 individuals). a, Association with 
normalized gene expression levels. b, Association with raw gene expression levels. The box plots show the median (center line), lower and upper quartiles 
(box boundaries), minimum and maximum (whiskers) and samples >1.5 s.d. units from the mean (individual data points).

Nature Genetics | VOL 54 | April 2022 | 382–392 | www.nature.com/naturegenetics386

http://www.nature.com/naturegenetics


ArticlesNature Genetics

in the GRS. First, we reasoned that variants most informative for 
prediction of severe disease were those associated with worse disease 
outcomes among infected individuals; thus, this was the approach 
taken for our primary GRS analysis. Of all published genetic risk 
factors for COVID-19, only one variant was associated with worse 
outcomes among infected individuals at P < 5 × 10−8 in our analysis  
(rs73064425 in LZTFL1) but this likely reflects low power due to 
the small number of patients with severe illness that were avail-
able for analysis. To address this limitation, we also included in the 
GRS five additional variants (in/near MHC, DPP9, IFNAR2, RPL24 
and FOXP4) that (1) had an association with risk of infection at 
P < 5 × 10−8 in published GWAS or by the HGI; and (2) were asso-
ciated with worse disease outcomes among infected individuals in 
our data (Supplementary Tables 15 and 16), albeit at the suggestive 
level with current sample sizes. The combination of a genome-wide 
significant association with risk of infection in previous GWAS  
and a suggestive association with worse outcomes among infected 
individuals in the current analysis minimizes the chance that  
these loci represent false positive associations for disease severity.  
Of note, we did not include in the GRS five additional variants 
discovered by the HGI for risk of hospitalization or severe disease 
(Supplementary Table 16) because the HGI analysis for those two 
phenotypes was not statistically independent from our analysis 
of disease outcomes among infected individuals (due to sample 
overlap). To calculate the GRS, the weights used for each of the six 
variants corresponded to the effect size (log of the OR) reported 
in previous GWAS. P values reported in this section were obtained 
from a logistic regression test (Methods), unless otherwise noted.

When considering cases with COVID-19 of European ances-
try (n = 44,958), we found that having a high GRS (top 10%) was 
associated with a 1.38-fold increased risk of hospitalization (95% 
CI = 1.26–1.53, P = 6 × 10−11; Fig. 4a) and 1.58-fold increased risk of 
severe disease (95% CI = 1.36–1.82, P = 7 × 10−10; Fig. 4b). In other 

ancestries, a high GRS also appeared to predict risk of hospitaliza-
tion—including among individuals of African ancestry (n = 2,598, 
1.70-fold risk for high GRS, 95% CI = 1.03–2.81, P = 0.038), 
Hispanic or Latin American ancestry (n = 3,752, 1.56-fold risk, 95% 
CI = 1.00–2.43, P = 0.05) and South Asian ancestry (n = 760, 1.42-fold 
risk, 95% CI = 0.72–2.82, P = 0.32; Supplementary Table 19).  
A similar pattern was observed in non-European ancestries for risk 
of severe disease, although sample sizes were considerably smaller 
(Supplementary Table 20).

We then compared the effect of the GRS between individuals 
with and without established risk factors for severe COVID-19. In 
Europeans of both the AncestryDNA and UKB studies, we found 
that a high GRS (top 10%) was associated with risk of severe dis-
ease both among individuals with and without established clinical 
risk factors for severe COVID-19 (Fig. 5). In the meta-analysis of 
the two studies, a high GRS was associated with a 1.65-fold (95% 
CI = 1.39–1.96, P = 1 × 10−8) and 1.75-fold (95% CI = 1.28–2.40, 
P = 4 × 10−4) higher risk of severe disease, respectively among indi-
viduals with (n = 22,045) and without (n = 22,913) established risk 
factors (Supplementary Table 21), with no evidence for heterogene-
ity of GRS effect with clinical risk factor status (P = 0.30). Similar 
results were observed for risk of hospitalization (1.35-fold versus 
1.39-fold; Supplementary Table 21 and Extended Data Fig. 2). We 
also performed this stratified analysis in individuals of Hispanic 
or Latin American ancestry (but not other ancestries due to small 
sample size) and found that a high GRS was associated with higher 
risk of severe disease in individuals with (n = 1,341; OR = 3.35,  
95% CI = 1.56–7.21, P = 0.002) but not without (n = 2,411; OR = 0.88, 
95% CI = 0.19–4.07, P = 0.873) clinical risk factors (Extended  
Data Fig. 3).

Next, we performed sensitivity analyses to understand the extent 
to which the GRS composition affected the association results 
described above. First, we expanded the GRS to include all 12 variants  
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reported to associate with the risk of COVID-19 in previous 
GWAS (8 variants) and by the HGI (4 new variants associated 
with reported infection). We found that associations between the  
12-SNP GRS and both risk of hospitalization and severe disease 
were similar to those obtained with the 6-SNP GRS (Extended Data 
Fig. 4). For example, using the 12-SNP GRS, we found that cases 
with COVID-19 in the top 10% of genetic risk had a 1.38-fold (95% 
CI = 1.26–1.52, P = 4 × 10−11) and 1.64-fold (95% CI = 1.43–1.90, 
P = 6 × 10−12) higher risk of severe disease, compared to 1.38-fold 
and 1.58-fold, respectively obtained with the 6-SNP GRS (above). 
Second, we expanded the GRS to include a larger set of variants 
associated with risk of infection but this resulted in weaker asso-
ciations when compared to the 6-SNP GRS (Extended Data Fig. 5). 
Overall, these results suggest that a GRS calculated using variants 
associated with disease risk and severity can potentially be used  

to identify cases with COVID-19 at high risk of developing poor 
disease outcomes.

To formally address this possibility, we assessed the value  
of using the 6-SNP GRS to predict the risk of severe disease in  
addition to demographic and clinical risk factors. For this analysis, 
each study was split 50:50 into a training set, which was used to  
estimate associations between disease severity and demographic, 
clinical and genetic risk factors, and a validation set, where risk 
scores were calculated based on the effect estimates from the train-
ing set and then used to predict disease severity (Methods). We  
found that the ability to predict disease severity improved some
what when the 6-SNP GRS was added to a baseline model that con-
sidered only age and sex, with the area under the receiving operator  
characteristic curve (AUC) improving by 0.7% in the AncestryDNA 
study and 0.5% in the UKB study (Fig. 6). This magnitude of 
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improvement in the AUC was comparable to that observed with 
some clinical risk factors individually, such as cardiovascular  
disease (CVD) (0.6% and 0.5%, respectively in AncestryDNA and 
UKB) and respiratory disease (1% and 0.8%, respectively). Similar 
results were observed when the 6-SNP GRS was added to a model 
that considered all non-genetic risk factors (Fig. 6), with the AUC 
for disease severity improving by 0.8% and 0.5%, respectively in  
the AncestryDNA and UKB studies. Overall, in our analyses, age 
and sex were the strongest predictors of poor outcomes in indi
viduals with COVID-19 and an elevated GRS enabled a modest 

improvement in predictions similar to that contributed by indivi
dual clinical risk factors.

Discussion
In summary, we performed a GWAS including 756,646 individuals 
aggregated across 4 cohorts and used both clinical and self-reported 
phenotypes to define risk and severity groups for COVID-19. Our 
analysis identified a new association between a rare variant near the 
ACE2 gene that decreases expression of the SARS-CoV-2 receptor 
and COVID-19 risk. This finding provides human genetic support  
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for the hypothesis that ACE2 expression plays a key role in 
SARS-CoV-2 infection and may constitute an attractive therapeutic 
target for prevention of COVID-19. We also confirmed six common 
variant associations with risk of infection and further showed that 
four of these variants modulate disease severity among cases. Lastly, 
we demonstrated that a GRS based on common variants validated 
in this study modestly improves the prediction of poor disease  
outcomes among individuals with COVID-19.

The following caveats should be considered when interpreting the 
results from this study. First, our study had greater power to identify 
associations with disease risk than with severity outcomes, given the 
relatively small sample size for the latter. Second, there was pheno-
typic heterogeneity among cases with COVID-19 and controls and 
associated risk factors across our studies. One likely reason for this is 
that survey respondents from the AncestryDNA study were enriched 
for healthier individuals and cases with milder COVID-19 compared 
to participants of the UKB, GHS and PMBB studies, who were ascer-
tained in clinical settings and so were enriched for hospitalized cases 
and cases with severe COVID-19. Other sources of heterogeneity may 
include regional and temporal availability of COVID-19 testing and 
the inability to control for viral exposure among controls. While our 
meta-analysis collectively spans a broad phenotypic spectrum, these 
individual differences may account for variability in results across 
reported studies. Third, we used expression levels measured in the 
liver to assess the impact of the ACE2 risk variant on gene expression. 
The liver is not the most disease-relevant tissue to assess ACE2 expres-
sion but we note that cis eQTLs are often shared across tissues18,36 and 
so our findings are likely predictive of decreased ACE2 expression in 
other tissues. Fourth, the association between GRS and risk of severe 
disease was strongest in European individuals of the AncestryDNA 
(OR = 1.72, P = 2 × 10−6) and UKB (OR = 1.65, P = 6 × 10−6) studies 
when compared to the smaller GHS study (OR = 1.03, P = 0.877). The 
lower effect size in the latter may be due to differences in ascertain-
ment of COVID-19-positive cases, as discussed above, or stochas-
tic, given the smaller sample size. We also noted that the impact of 
the GRS on risk of hospitalization was attenuated in comparison to 
severe disease, which may be a reflection of the weighting schema for 
the variants comprising the score; the four largest GRS weights were 
derived from an analysis of critically ill individuals10.

To date, SARS-CoV-2 has infected >230 million people globally,  
disproportionately affecting older, male individuals and those of 
non-European ancestry or with underlying cardiovascular and 
respiratory comorbidities with severe COVID-19 and death. Host 
genetic analysis, primarily of hospitalized cases and clinical data, 
have uncovered over a dozen loci associated with increased odds of 
severe COVID-1912. Our approach of coupling human genetics with 
both electronic health records (EHRs) and self-reported COVID-19 
data has strengthened our knowledge of COVID-19 host genetics 
and uncovered an additional COVID-19 locus in ACE2. Further 
analysis, including additional rare variants, may further elucidate 
the host genetic contribution to COVID-19 and sequelae.
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Methods
Ethical statement. UKB study. Ethical approval for the UKB study was previously 
obtained from the North West Centre for Research Ethics Committee (no. 11/NW/ 
0382). The work described in this study was approved by the UKB under 
application no. 26041.

GHS study. Approval for the DiscovEHR analyses was provided by the GHS 
institutional review board under project no. 2006-0258.

AncestryDNA study. All data for this research project was from individuals who 
provided prior informed consent to participate in AncestryDNA’s Human Diversity 
Project, as reviewed and approved by our external institutional review board, 
Advarra (formerly Quorum). All data were de-identified before use.

PMBB study. Appropriate consent was obtained from each participant regarding 
the storage of biological specimens, genetic sequencing and genotyping, and access 
to all available EHR data. This study was approved by the institutional review 
board of the University of Pennsylvania and complied with the principles set out in 
the Declaration of Helsinki. Written informed consent was obtained for all study 
participants.

Participating studies. AncestryDNA COVID-19 research study. AncestryDNA 
customers over the age of 18, living in the USA, who had consented to the 
research, were invited to complete a survey assessing COVID-19 outcomes 
and other demographic information. These included SARS-CoV-2 swab and 
antibody test results, COVID-19 symptoms and severity, brief medical history, 
household and occupational exposure to SARS-CoV-2 and blood type. A total 
of 163,650 AncestryDNA survey respondents were selected for inclusion in this 
study. Respondents selected for this study included all individuals with a positive 
COVID-19 test together with age- and sex-matched controls. DNA samples were 
genotyped on an Illumina array containing 730,000 SNPs. Sample quality control 
(QC) involved removing individuals with discordant sex (based on reported and 
genetically determined sex) and those with <98% sample call rate, as described 
previously38 Variant QC involved removing array variants with a difference in 
allele frequency >0.1 between any pair of array versions used, as well as variants 
with a call rate <98%. Genotype data for variants not included in the array were 
then inferred using imputation to the Haplotype Reference Consortium (HRC) 
reference panel. Briefly, samples were imputed to HRC v.1.1, which consists of 
27,165 individuals and 36 million variants. The HRC reference panel does not 
include indels; consequently, indels are not present in the imputed data. We 
determined best-guess haplotypes with Eagle v.2.4.1 and performed imputation 
with Minimac4 v.1.0.1. We used 1,117,080 unique variants as input; 8,049,082 
imputed variants were retained in the final dataset. Variants with a Minimac4 
r2 < 0.30 were filtered from the analysis.

GHS. The GHS MyCode Community Health Initiative is a health system-based 
cohort from central and eastern Pennsylvania (USA) with ongoing recruitment 
since 200639. A subset of 144,182 MyCode participants sequenced as part of 
the GHS-Regeneron Genetics Center DiscovEHR partnership were included 
in this study. Information on COVID-19 outcomes was obtained through the 
GHS COVID-19 registry. Patients were identified as eligible for the registry 
based on relevant laboratory results and International Classification of 
Diseases, Tenth Revision (ICD-10) diagnosis codes. Patient charts were then 
reviewed to confirm the COVID-19 diagnoses. The registry contains data on 
outcomes, comorbidities, medications, supplemental oxygen use, and intensive 
care unit admissions. DNA from participants was genotyped on either the 
Illumina Infinium OmniExpressExome or Global Screening Array (GSA) 
and imputed to the TOPMed reference panel (stratified by array) using the 
TOPMed Imputation Server. Before imputation, we retained variants that had a 
MAF ≥ 0.1%, missingness <1% and Hardy–Weinberg equilibrium test P > 10−15. 
After imputation, data from the Infinium OmniExpressExome and GSA datasets 
were merged for subsequent association analyses, which included an Infinium 
OmniExpressExome/GSA batch covariate, in addition to other covariates  
described below.

PMBB study. The PMBB contains approximately 70,000 study participants, 
all recruited through the University of Pennsylvania Health System (UPHS). 
Participants donate blood or tissue and allow access to EHR information40. The 
PMBB participants with COVID-19 infection were identified through the UPHS 
COVID-19 registry, which consists of quantitative PCR (qPCR) results of all 
patients tested for SARS-CoV-2 infection within the health system. We then used 
EHRs to classify patients with COVID-19 into hospitalized and severe (ventilation 
or death) categories. DNA genotyping was performed with the Illumina GSA and 
imputation performed using the TOPMed reference panel as described for the 
GHS study.

UKB study. We studied the host genetics of SARS-CoV-2 infection in participants 
of the UKB study, which took place between 2006 and 2010 and includes 
approximately 500,000 adults aged 40–69 at recruitment. In collaboration with  

the UK health authorities, the UKB has made available regular updates on  
COVID-19 status for all participants, including results from four main data types: 
qPCR test for SARS-CoV-2; anonymized EHRs; primary care; and death registry 
data. We report results based on phenotype data downloaded on the 4 January 
2021 and excluded from the analysis 28,547 individuals with a death registry event 
before 2020. DNA samples were genotyped as described previously41 using the 
Applied Biosystems UK BiLEVE Axiom Array (n = 49,950) or the closely related 
(95% variant overlap) Applied Biosystems UKB Axiom Array (n = 438,427). 
Genotype data for variants not included in the arrays were inferred using the 
TOPMed reference panel, as described above.

COVID-19 phenotypes used for the genetic association analyses. We grouped 
participants from each study into three broad COVID-19 disease categories 
(Supplementary Table 1): (1) positive, that is, those with a positive qPCR or 
serology test for SARS-CoV-2 or with a COVID-19-related ICD-10 code (U07), 
hospitalization or death; (2) negative, that is, those with only negative qPCR or 
serology test results for SARS-CoV-2 and with no COVID-19-related ICD-10 code 
(U07), hospitalization or death; and (3) unknown, that is, those with no qPCR or 
serology test results and no COVID-19-related ICD-10 code (U07), hospitalization 
or death. We then used these broad COVID-19 disease categories, in addition to 
hospitalization and disease severity information, to create seven COVID-19-related 
phenotypes for genetic association analyses, as detailed in Supplementary Table 3.

SARS-CoV-2 infection status (positive, negative or unknown) was determined 
based on a qPCR test for SARS-CoV-2 in the UKB, GHS and PMBB studies 
and self-reported results for qPCR or serology test for SARS-CoV-2 in the 
AncestryDNA study.

Hospitalization status (positive, negative or unknown) was determined based 
on the COVID-19-related ICD-10 codes U071, U072 and U073 in variable ‘diag_
icd10’ (table ‘hesin_diag’) in the UKB study, self-reported hospitalization due  
to COVID-19 in the AncestryDNA study and medical records in the GHS and 
PMBB studies.

Disease severity status (severe (ventilation or death) or not severe) was 
determined in the UKB study based on: (1) respiratory support ICD-10 code 
Z998 in variable ‘diag_icd10’ (table ‘hesin_diag’); (2) the following respiratory 
support ICD-10 codes in variable ‘oper4’ (table ‘hesin_oper’): E85, E851, E852, 
E853, E854,E855, E856, E858, E859, E87, E871, E872, E873, E874, E878, E879, 
E89, X56, X561, X562, X563, X568, X569, X58, X581, X588 and X589; or (3) the 
COVID-19-related ICD-10 codes U071, U072 and U073 in cause of death (variable 
‘cause_icd10’ in table ‘death_cause’). In the AncestryDNA study, disease severity 
was determined based on self-reported ventilation or need for supplementary 
oxygen due to COVID-19. In the GHS and PMBB studies, it was determined based 
on ventilator or high-flow oxygen use.

For association analysis in the AncestryDNA study, we excluded from the 
COVID-19 unknown group individuals who had (1) a first-degree relative who 
was COVID-19-positive or (2) flu-like symptoms.

Genetic association analyses. Association analyses in each study were performed 
using the genome-wide Firth logistic regression test implemented in REGENIE 
V2.0.1 (ref. 37). In this implementation, Firth’s approach is applied when the  
P value from the standard logistic regression score test is below 0.05. We included 
in step 1 of REGENIE (that is, prediction of individual trait values based on the 
genetic data) directly genotyped variants with an MAF > 1%, <10% missingness, 
Hardy–Weinberg equilibrium test P > 1 × 10−15 and LD pruning (1,000 variant 
windows, 100 variant sliding windows and r2 < 0.9). The association model used 
in step 2 of REGENIE included as covariates age, age2, sex, age-by-sex and the first 
10 ancestry-informative principal components (PCs) derived from the analysis of 
a stricter set of LD-pruned (50 variant windows, 5 variant sliding windows and 
r2 < 0.5) common variants from the array (imputed for the GHS study) data.

Within each study, association analyses were performed separately for five 
different continental ancestries defined based on the array data: African (AFR), 
Hispanic or Latin American (HLA; originally referred to as ‘AMR’ by the 1000 
Genomes Project; a subsequent study recommended the use of HLA to refer to 
this ancestral group42); European (EUR); and South Asian (SAS). We determined 
continental ancestries by projecting each sample onto reference PCs calculated 
from the HapMap3 reference panel. Briefly, we merged our samples with HapMap3 
samples and kept only SNPs in common between the two datasets. We further 
excluded SNPs with MAF < 10%, genotype missingness >5% or Hardy–Weinberg 
equilibrium test P < 10−5. We calculated PCs for the HapMap3 samples and 
projected each of our samples onto those PCs. To assign a continental ancestry 
group to each non-HapMap3 sample, we trained a kernel density estimator (KDE) 
using the HapMap3 PCs and used the KDEs to calculate the likelihood of a given 
sample belonging to each of the five continental ancestry groups. When the 
likelihood for a given ancestry group was >0.3, the sample was assigned to that 
ancestry group. When two ancestry groups had a likelihood >0.3, we arbitrarily 
assigned AFR over EUR, HLA over EUR, HLA over EAS, SAS over EUR and HLA 
over AFR. Samples were excluded from analysis if no ancestry likelihoods were 
>0.3 or if more than three ancestry likelihoods were >0.3.

Results were subsequently meta-analyzed across studies and ancestries using an 
inverse variance-weighted fixed-effects meta-analysis.
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Identification of putative targets of GWAS variants based on colocalization 
with eQTLs. We identified as a likely target of a sentinel GWAS variant any gene 
for which a sentinel eQTL colocalized (that is, had an LD r2 > 0.80) with the 
sentinel GWAS variant. That is, we only considered genes for which there was 
strong LD between a sentinel GWAS variant and a sentinel eQTL, which reduces 
the chance of spurious colocalization. Sentinel eQTLs were defined across 174 
published datasets (Supplementary Table 10), considering only eQTLs associated 
with gene expression in cis (±1 Mb) at a conservative P < 2.5 × 10−9 threshold 
as described previously43. We did not use statistical approaches developed to 
distinguish colocalization from shared genetic effects because these have very 
limited resolution at high LD levels (r2 > 0.80) (ref. 44).

Gene expression analysis in participants of the GHS study. For a subset of 
individuals from the GHS study (n = 2,035, ascertained through the Geisinger 
Bariatric Surgery Clinic), RNA was extracted from liver biopsies conducted 
during bariatric surgery to evaluate liver disease. Individuals had class 3 obesity 
(BMI > 40 kg m−2) or class 2 obesity (BMI 35–39 kg m−2) with an obesity-related 
comorbidity (for example, T2D, hypertension, sleep apnea, non-alcoholic fatty 
liver disease). RNA libraries were prepared using poly(A) extraction and then 
sequenced with 75-bp paired-end reads with two 10-bp index reads on the Illumina 
NovaSeq 6000 on S4 flow cells. RNA-seq data were then analyzed using the GTEx 
v.8 workflow18, using STAR v.2.7.3a (ref. 45) and rnaSeqQC v.1.2 (Code availability), 
except that GENCODE v.32 was used in lieu of v.26. Briefly: (1) raw expression 
counts were normalized with trimmed mean of M values (TMM) as implemented 
in edgeR v.3.13 (ref. 46); (2) a rank-based inverse normal transformation was applied 
to the normalized expression values; (3) PC analysis was performed on data from 
25,078 genes with transcripts per million > 0.1 in >20% samples to identify latent 
factors accounting for variation in gene expression; (4) gene expression levels were 
adjusted for the top 100 PCs to improve power to identify cis-regulatory effects. 
The association between adjusted ACE2 expression and the imputed genotypes of 
rs190509934 was then tested using linear regression, with the following variables 
included as covariates: age, age2, four ancestry-informative PCs, steatosis status, 
fibrosis status, diabetes status and BMI at the time of bariatric surgery.

GRS analysis of COVID-19 hospitalization and severity. First, in each study 
(AncestryDNA, GHS, UKB and PMBB), we created a GRS for each COVID-19- 
positive individual based on variants that were reported to associate with risk of 
COVID-19 in previous GWAS and that we (1) independently replicated (except 
variants identified by the HGI) and (2) found to be associated with COVID-19 
severity outcomes. We used as weights the effect (Beta) reported in previous GWAS 
(Supplementary Table 5). Second, we ranked individuals with COVID-19 based on 
the GRS and created a new binary GRS predictor by assigning each individual to 
a high (top 5%) or low (rest of the population) percentile group. Third, for studies 
with >100 hospitalized cases, we used logistic regression to test the association 
between the binary GRS predictor and risk of hospitalization (hospitalized cases 
versus all other cases), including as covariates age, sex, age-by-sex interaction and 
ten ancestry-informative PCs. In addition to age and sex, we included as additional 
covariates established clinical risk factors for COVID-19 that are outlined in the 
Emergency Use Authorisation treatment guidelines for casirivimab and imdevimab: 
BMI; chronic kidney disease (CKD); diabetes; immunosuppressive disease; COPD 
or other chronic respiratory disease; CVD; and hypertension. We repeated the 
association analysis (1) using different percentile cutoffs for the GRS (5, 10, 20, 30 
and 40%) and (2) to test the association with disease severity (severe cases versus all 
other cases). We then stratified COVID-19 cases by clinical risk (high versus lower) 
and evaluated the association between the top 10% by GRS (that is, high genetic 
risk) and risk of hospitalization or severe disease. The stratified analyses were 
performed with logistic regression, with sex and ancestry-informative PCs included 
as covariates. High clinical risk was defined as any one of the following: (1) age 
≥65; (2) BMI ≥ 35; (3) CKD, diabetes or immunosuppressive disease; (4) age ≥55 
and presence of COPD/other chronic respiratory disease, CVD or hypertension.

In populations with >100 hospitalized cases, we also evaluated the impact of 
the GRS relative to other non-genetic risk factors associated with increased risk 
of hospitalization and severe disease (for example, COPD, diabetes). The datasets 
were randomly split 50:50 into training and test datasets. In the training dataset, 
a logistic regression model with age, sex and ancestry covariates was fitted. The 
coefficients for age and sex from this model were then used to calculate a risk 
score in the other half of the population, which was fitted in a second model along 
with ancestry covariates. From this model, the AUC from a receiver operating 
characteristic curve (and 95% CI) was estimated. The process was repeated 
iteratively, adding other demographic and clinical risk factors one at a time to the 
baseline model with age, sex and ancestry covariates. Models were then fitted with 
just the baseline model plus GRS, all factors except GRS and a final model with all 
demographic/clinical risk factors plus the GRS.

Statistics and reproducibility. No statistical method was used to predetermine 
sample size. Individuals were excluded for the following reasons: if they were 
not assigned to one of the five continental ancestry groups based on principal 
component analysis (Methods), had previously passed away before January 2020 
(near the beginning of the COVID-19 pandemic), had an unknown COVID-19  

status but did have confirmed cases in their household or if the continental 
ancestry group had fewer than 25 cases and 25 controls (Methods). The 
experiments were not randomized. The investigators were not blinded to allocation 
during the experiments and outcome assessment. Unless otherwise noted, the 
association P values reported in this manuscript are from (1) Firth (disease traits) 
or linear (quantitative traits) regression tests performed in REGENIE for GWAS 
and (2) logistic regression, for the GRS analyses.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All genotype–phenotype association results reported in this study are available for 
browsing using the Regeneron Genetic Center (RGC) COVID-19 Results Browser 
(https://rgc-covid19.regeneron.com). Data access and use is limited to research 
purposes in accordance with the terms of use (https://rgc-covid19.regeneron.com/
terms-of-use). Gene expression levels derived from the liver RNA-seq data for 
ACE2 and the eight nearby genes analyzed in this study, as well as genotypes for the 
ACE2 variant associated with the risk of SARS-CoV-2 infection (rs190509934), are 
provided in Supplementary Data 1.

Code availability
REGENIE v.2.0.1 can be accessed at https://github.com/rgcgithub/regenie. The 
GWAS analyses were performed with REGENIE using automated pipelines. An 
R script that exemplifies how the genetic risk score analyses were performed is 
available at https://doi.org/10.5281/zenodo.5700998 and https://doi.org/10.5281/
zenodo.5748168. R can be found at https://www.r-project.org/. rnaSeqQC is 
available from GitHub (https://github.com/oicr-gsi/rnaSeqQC).
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Extended Data Fig. 1 | Comparison of effect sizes across COVID-19 risk and severity outcomes for six previously reported risk variants that validated 
in this study. Six variants were reported to associate with risk of COVID-19 in previous studies and replicated in our analysis. Of these, four variants 
also associated with disease severity among COVID-19 cases (in/near LZTFL1, CCHCR1, DPP9 and IFNAR2), whereas two variants did not (in ABO and 
SLC6A20). Sample size for each of the seven phenotypes is shown in Supplementary Table 3. Data are presented as odds ratio + /− 95% confidence 
interval.

Nature Genetics | www.nature.com/naturegenetics

http://www.nature.com/naturegenetics


ArticlesNature Genetics

Extended Data Fig. 2 | Association between a 6-SNP genetic risk score (GRS) and risk of hospitalization among COVID-19 cases of European ancestries 
after stratifying by the presence of clinical risk factors. a, Rate of hospitalization in the AncestryDNA study (n = 25,353 COVID-19 cases, including 1,484 
hospitalized). b, Rate of hospitalization in the UK Biobank study (n = 14,320 COVID-19 cases, including 3,878 hospitalized). High genetic risk (red bars): 
top 10% of the GRS. Low genetic risk (grey bars): bottom 90% of the GRS (that is all other COVID-19 cases). Data are presented as percent of individuals 
hospitalized + /- standard error (SE).

Nature Genetics | www.nature.com/naturegenetics

http://www.nature.com/naturegenetics


Articles Nature Genetics

Extended Data Fig. 3 | Association between a 6-SNP genetic risk score (GRS) and risk of hospitalization and severe disease among COVID-19 cases of 
Hispanic or Latin American ancestries (n = 3,752). a, Rate of hospitalization. b, Rate of severe disease. High genetic risk (red bars): top 10% of the GRS. 
Low genetic risk (grey bars): bottom 90% of the GRS (that is all other COVID-19 cases). Data are presented as percent of individuals hospitalized (a) or 
with severe disease (b) ± standard error (SE).
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Extended Data Fig. 4 | Association between a 6- and 12-SNP genetic risk score (GRS) and risk of hospitalization and severe disease among COVID-
19 cases of European ancestries. a, Associations with risk of hospitalization (n = 44,958 COVID-19 cases). b, Associations with risk of severe disease 
(n = 39,673). To evaluate if the association between the GRS and worse disease outcomes was dependent on the list of variants selected for analysis, 
we compared results between GRS calculated using different sets of variants. We considered a GRS calculated using: the six variants that were reported 
in previous GWAS of COVID-19 and that we further showed were associated with risk of hospitalization or severe disease among COVID-19 cases 
(four variants in/near LZTFL1, MHC, DPP9 and IFNAR2, see Extended Data Fig. 1; and two variants discovered by the HGI in/near RPL24 and FOXP4, see 
Supplementary Table 16). Analyses were performed separately in the UK Biobank, AncestryDNA and GHS studies (risk of hospitalization only) after 
stratifying COVID-19 cases by the presence of clinical risk factors, considering individuals with lower clinical risk (blue circles), high clinical risk (green 
triangles) or all individuals (grey squares). Association results were then meta-analyzed across studies. Data are presented as odds ratio + /− 95% 
confidence interval.
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Extended Data Fig. 5 | Association between risk of severe disease among COVID-19 cases of European ancestries and genetic risk scores (GRS) 
determined based on different criteria. a, Association results in the AncestryDNA study (n = 25,353 COVID-19 cases). b, Association results in the UK 
Biobank study (n = 14,320 COVID-19 cases). In each study, we compared GRS based on (i) variants that were reported in the literature and validated in 
this study (Literature.HGI.1var: rs73064425 in LZTFL1; Literature.HGI.5var: variants from our 6-SNP model, with the exception of rs73064425 in LZTFL1; 
Literature.HGI.6var: all six variants from our 6-SNP model; in green); and variants associated with the risk of infection phenotype reported by the HGI and 
obtained through (ii) approximate conditional analysis using GCTA-COJO, considering two association P-value thresholds (5 x 10-8 and 5 x 10-7; in orange); 
(iii) pruning and thresholding (P&T), using different association P-value and LD r2 thresholds (in purple); and (iv) the LDpred approach47, considering 
different 𝝔 parameters (in teal).
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