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The brain is the most complicated organ, due to which many of its functional and evolutionary
processes still remain obscure despite the availability of a vast array of studies. Certain limitations
arise from the fact that we are using an organ in order to explain itself and moreover the brain is
not complex enough to understand its own complexity. What we do know well is that although
all vertebrates share a common basic brain organization, different species exhibit wide variability in
terms of volumes and proportional sizes of different subdivisions and neural systems. The variation
in the size and composition of the brain often correlates with diverse sensory, behavioral, social, and
cognitive skills (Butler and Hodos, 2005). However, the evolutionary mechanisms underlying these
functional links are unknown.

Presently, there are two theories attempting to explain the evolutionary patterns observed in
the brain of vertebrates. The hypothesis of mosaic brain evolution relies on the selective forces
acting on specific areas of the brain, whose adaptive responses do not involve other parts of
the brain (Barton and Harvey, 2000). In contrast, the hypothesis of concerted brain evolution
assumes that as the regions of the brain are physiologically and developmentally interconnected,
any evolutionary change (or a new acquisition) in the brain cannot advance without involving all
parts of the brain, thereby leading to a coordinated variation in size (Finlay and Darlington, 1995).
However, the factors favoring either of the models of brain evolution are still unclear. It should
be emphasized that the brain shows a wide array of functions and interconnections that could
have a certain amount of interdependence that is variable between different species. Therefore,
concerted or mosaic changes could be related to the degree of functional interdependence; thus,
two strictly interconnected brain structures are forced to change together in a coordinated manner,
despite the action of selective forces on only one of the two. Hence, the validity of both theories
appears to fluctuate between studies, which reduces their general applicability. On the other

side, although both the models offer distinct functional hypotheses about the mechanisms of
the creation of different neural architectures, they are not mutually exclusive. Indeed, there are
numerous examples that indicate a combination of mosaic and concerted evolution within the
same species (Gutiérrez-Ibáñez et al., 2014; Herculano-Houzel et al., 2014; Noreikiene et al., 2015;
Moore and DeVoogd, 2017).

Most of the studies aimed at understanding evolutionary processes are based on the
gross anatomy of the vertebrate brain, which provides evidence supporting both the theories.
In mammals, the evolution of the major brain subdivisions supports the concerted brain
evolution theory, as changes in their volumes are interconnected (Finlay and Darlington, 1995;
Whiting and Barton, 2003; Striedter, 2005). Analogous evidence supporting the concerted
brain evolution theory has also been obtained in birds (Gutiérrez-Ibáñez et al., 2014)
and cartilaginous fishes (Yopak et al., 2010). On the other hand, the mosaic evolution
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of the brain has also been recorded in certain parts of the
mammalian brain (Barton and Harvey, 2000; Brown, 2001;
Dobson and Sherwood, 2011; Hager et al., 2012) and in major
subdivisions of the brains of birds (Boire and Baron, 1994;
Iwaniuk et al., 2004) and bony fishes (Kotrschal et al., 1998,
2017; Gonzalez-Voyer et al., 2009). Mosaic and concerted brain
evolution were also studied in invertebrates. The volumes of
optic and antennal regions were positively associated in ants,
thus supporting a concerted brain size effect (Gronenberg and
Hölldobler, 1999). On the other hand, it appears from studies in
wasps that mosaic and concerted brain evolution could not be
exclusive alternatives (O’Donnell et al., 2018).

These results, together with the observations that variations
in the volume of brain subdivisions in fish are strictly linked
to contextual factors, such as habitat and feeding (Kotrschal
et al., 1998; Gonzalez-Voyer et al., 2009), social organization
(Pollen et al., 2007; Kotrschal et al., 2012), and sexual selection
(Gonzalez-Voyer and Kolm, 2010), underline the importance of
phenotypic plasticity.

Developmental processes during ontogeny appear also
important. For example, indirect support for the mosaic
model of brain evolution has been provided by experiments
demonstrating differential plasticity in different brain regions
in response to environmental conditions experienced during
development (Kihslinger and Nevitt, 2006; Gonda et al., 2011,
2012). Furthermore, studies on neurogenesis timing and cell
cycle rates during development lead to important insight
into evolutionary changes in adult brain region size. An
immunohistochemical study based on markers for the cell cycle
rates, such as proliferating cell nuclear antigen, phosphorylated
histone-3, and bromodeoxyuridine, compared the developing
brains of parakeets (Melopsittacus undulatus) and quails (Colinus
virginianus). The results showed that the telencephalic cell
cycle rates lengthening significantly later in parakeets than in
quail, thus explaining why the telencephalon of adult parakeets
occupies a larger part of the entire brain with respect the
quails (Charvet and Striedter, 2008). Similar studies in other
birds (Charvet and Striedter, 2009, 2010; Charvet et al., 2011)
and mammals (Dehay and Kennedy, 2007) drawn the same
conclusion. All these studies offer a cellular base for the mosaic
brain evolution.

Apart from studies on the relative size of the brain
subdivisions, some other contribution to the brain evolution
theories also arises from estimates of the phenotypic and genetic
correlations between brain regions using quantitative genetic
methods. Heritability, evolvability, and genetic correlation on
the relative size of the brain and its different regions in the
three-spined stickleback (Gasterosteus aculeatus) have indicated
that different brain regions show a high degree of evolutionary
independence due to a low genetic correlation, thus supporting
the theory of mosaic evolution (Noreikiene et al., 2015).
Likewise, quantitative trait locus mapping studies in mice have
demonstrated that brain part size can respond to selection in
a largely independent way, as predicted by a mosaic scenario
(Hager et al., 2012).

Could studies on the microscopic neuroanatomy in adult
samples contribute to the debate on mosaic and concerted

brain evolution? To this scope it is possible to rely on
immunohistochemical or histochemical studies allowing to
compare a suitable number of close species and focus the
observations on substances having a large brain distribution, in
order to relate different brain areas. Two neurochemicals respond
well to these requirements, nicotinamide adenine dinucleotide
phosphate–diaphorase (NADPH-d) in the brains of amphibians
and FMRFamide (FMRFa)-based immunohistochemistry in
bony fishes.

NADPH-d is involved in the production of nitric oxide
(NO) from L-arginine through a reaction requiring O2

and the mediation of the constitutive neuronal isoform
of nitric oxide synthase. NO is one of the most widely
distributed brain molecules, due to which NADPH-d-based
histochemistry appears extensively distributed in the brain. The
brain architecture of NADPH-d was studied in a number of
amphibian species belonging to three orders (Pinelli et al., 2014).
The latter authors carried out a meta-analysis that integrated all
the data related to the distribution of NADPH-d in the brains
of amphibians and performed a cluster analysis based on the
degree of dissimilarities between species. The results showed
that the complete brain dendrogram obtained by hierarchical
clustering was similar to that achieved using morphological
data (Ford and Cannatella, 1993) and molecular biological
studies on amphibians based on mitochondrial and nuclear
DNA (Roelants and Bossuyt, 2005; Zhang et al., 2005; Pyron
and Wiens, 2011), thus revealing the evolutionary history of
amphibians. However, when the same analysis was applied to the
major brain subdivisions, only the hindbrain was in line with the
phylogenetic tree of amphibians, whereas the other brain areas
showed similarities between distant species. For example, the
apodan Dermophis mexicanus had a more similar diencephalic
NADPH-d pattern to the anurans than the urodele Pleurodeles
waltl. A similar conclusion can be drawn after comparing the
other brain subdivisions with the hindbrain. In general, it appears
that the NADPH-d system in the forebrain of amphibians is
more variable than in the hindbrain, implying that convergent
evolutionary patterns based on specific adaptations occur in
the forebrain without involving the hindbrain. In a concerted
evolution, it is often expected that any evolutionary change in
an area of the brain will involve other brain areas, thus always
giving the same evolutionary dendrogram when performing a
hierarchical clustering. However, this does not actually happen.
The mosaic evolution better explains these results, owing to the
fact that the selective forces specifically act on certain brain areas
without involving the others.

Similar reasoning can be achieved while analyzing studies
describing the immunohistochemical distribution of FMRFa in
the fish brain. It is well-known that the brains of fish show
great morphological variability due to the high number of
ecological, behavioral, and social processes that they are subjected
(Kotrschal et al., 1998; Pollen et al., 2007; Lecchini et al., 2014).
Accordingly, different natural populations of the same species
can show variation in the relative brain size in response to the
habitat (Gonda et al., 2011). Among the most variable brain
areas are the olfactory bulbs (OBs), which, according to the
model of mosaic evolution, show positive bivariate allometry
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when compared with the other brain areas (Gonzalez-Voyer
et al., 2009). The OBs of teleostean can have three different
neuroanatomical relationships with the telencephalon. The type
I morphology relies on sessile conditions in which the OBs are
merged with the ventral telencephalic area (VTA). In the type
II morphology, OBs are closely connected to the VTA through
a short peduncle in a pseudo-sessile condition. In species with
type III morphology, OBs are stalked and connected with the
VTA through a long peduncle (D’Aniello et al., 2016). Based on
the number and size of FMRFa immunoreactive (FMRFa-ir) cells
and the topology of the OBs, the authors obtained a dendrogram
based on the similarities between the studied species. The results
showed several deviations from the formal teleost phylogenetic
tree (Betancur-R et al., 2013), thus supporting the theory that
the adaptive plasticity largely overlaps evolutionary constraints
in the olfactory system, allowing phenomena of divergence or
convergence among close species (Gonda et al., 2011, 2012;
Eifert et al., 2015). However, looking at the brain areas that
are unrelated to the olfactory system, the FMRFa-ir system
in fish appears quite constant irrespective of the topology of
the OBs. Indeed, FMRFa-ir cells are similarly arranged in the
diencephalon, with a distribution in the dorsal and ventral
hypothalamus and a comparable cell size (Bonn and König, 1989;

Batten et al., 1990; Ostholm et al., 1990; Fujii and Kobayashi,

1992; Rama and Subhedar, 1992; Pestarino and Vallarino, 1996;
Pinelli et al., 2000; unpublished data from D’Aniello et al., 2016).
Thus, FMRFa-ir neuronal changes in the olfactory system do not
involve central FMRFa-ir neurons, again supporting the mosaic
brain evolution theory.

The distribution of neuromarkers in the adult brains and
during development are only a few examples demonstrating
that studies on the microscopic neuroanatomy are highly
useful in evaluating evolutionary theories giving support
to mosaic brain evolution. In our opinion, similar studies
could provide important insights to identify trends in brain
evolution and should be considered and implemented
very carefully.
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