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Cadmium (Cd2+) and mercury ions (Hg2+) are essential for the quality control of

food samples because of their serious toxicity to human health, but the effective

and simple strategy for their parallel detection remains challenging. In this

paper, a rapid and simple parallel detection method for Cd2+ and Hg2+ was

developed using carbon dots (CDs) as fluorescent sensors. A one-step

hydrothermal method with a single precursor L-arginine as both the carbon

and nitrogen sources was employed to prepare nitrogen-doped CDs (N-CDs).

N-CDs exhibited a uniform particle size and excitation-independent

fluorescence emission. The maximum emission wavelength of N-CDs was

observed at 354 nm with the excitation wavelength at 295 nm. The quantum

yield of N-CDs reached as high as 71.6% in water. By using sodium diphosphate

and phytic acid as masking agents, the fluorescent sensor can be quenched by

Cd2+ and Hg2+ in the linear range of 0–26.8 μM and 0–49.9 μM within 5 min.

Other common ions in farm products showed no significant effect on the

fluorescence intensity of the sensing system. The results demonstrated that the

sensing system had good selectivity and sensitivity for Cd2+ and Hg2+. The

detection limits for Cd2+ and Hg2+ were 0.20 and 0.188 μM, respectively. In

addition, the fluorescent sensor had been successfully applied for the detection

of Cd2+ and Hg2+ in fruits and vegetables, and the recoveries were

86.44–109.40% and 86.62–115.32%, respectively. The proposed fluorescent

sensor provides a rapid, simple, and sensitive detection method for Cd2+ and

Hg2+ in food samples and thus a novel quantitative detection method for heavy

metal ions in foods.
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Graphical Abstract

Highlights

1) Nitrogen-doped carbon dots (N-CDs) were prepared by

hydrothermal treatment of L-arginine.

2) N-CDs showed selective and sensitive determination

properties of Hg2+ and Cd2+.

3) N-CDs were successfully applied to apple and cabbage

samples.

Introduction

Cadmium (Cd) and mercury (Hg) are the most problematic

heavy metals, and both compounds are genotoxic. They cause

several health hazards, even at low concentrations, through food

(Chukwuemeka-Okorie et al., 2018). Toxic heavy metals can

inhibit many enzymatic activities, which can cause serious

damage to the reproductive, cardiovascular, and nervous

systems (Zhai et al., 2015). Cd is very toxic and probably

carcinogenic at low concentrations because of its very long

half-life (Xu et al., 2020). Hg is a global health threat and

causes impairments in the human nervous system

(Karthikeyan et al., 2021). Many terrible diseases such as

Minamata and Parkinson’s disease are related to the

overexposure and excessive accumulation of mercury (Cai and

Wang, 2022). The International Codex Alimentarius

Commission stipulates that the maximum residue limit for Cd

in vegetables is 0.1 mg kg−1, and China sets the limit for Hg at

0.01 mg kg−1. Therefore, low concentrations of Cd and Hg ions

should be detected for remediation and mitigation and thus

prevent serious health problems.

Various analytical methods have been reported for the

determination of Cd and Hg ions, including atomic

absorption spectroscopy (AAS) (Bagheri et al., 2012),

fluorescence spectroscopy (FS) (Prestel et al., 2000), and

inductively coupled plasma mass spectrometry (ICP-MS)

(Peng et al., 2017). Although these methods have very good

sensitivity and accuracy, most of them require high costs, highly

trained analysts, and rigorous experimental conditions (Malik

et al., 2019), thus restricting their popularity for their field

application. Carbon dots (CDs), as novel fluorescent

nanocarbon materials with many advantages such as low

toxicity, good selectivity, high sensitivity, and stable

photostability, have received intense attention in the field of

heavy metal detection (Chen et al., 2020). Generally, CDs could

interact with heavy metals differently, resulting in quenching

mechanisms, such as static, dynamic, inner filter effect, and

fluorescence resonance energy transfer. The

photoluminescence changes allow the quantification of heavy

metal concentrations (Ng et al., 2021). Nevertheless, in many

cases, CDs have multi-step and time-consuming synthesis

procedures (Wei et al., 2012), need a final functionalization/
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passivation on their surface (Tian et al., 2009), or require the

utilization of sophisticated instruments for preparation (Hu et al.,

2009). In the field of food safety supervision, a rapid,

simultaneous, and qualitative detection of multiple pollutants

is easy for scale-up, exhibiting very promising practical

application. Therefore, methods with easy preparation, high

selectivity, and quick response are aimed.

To date, many synthetic methods have already been

developed to perfect CDs’ functionality for various

applications. Among these methods, the hydrothermal

synthesis route based on the water system is among the

simplest and most cost-effective methods owing to its cheap

apparatus, simple manipulation, low energy consumption, good

selectivity, and preparation can be achieved in a single step

without complex control (Liang et al., 2013; Sun et al., 2022).

Furthermore, heteroatom doping can effectively improve the

fluorescence performance of CDs (Jana et al., 2019). Notably,

nitrogen has a similar size and structure to carbon, and its lone

pair electrons easily bond to carbon-based materials, thus

remarkably improving the optical properties of CDs (Sun

et al., 2021; Xu et al., 2021; Wang et al., 2022).

Apart from the synthesis method, an appropriate carbon

precursor should be considered. Many raw materials,

including less harmful organic chemicals, solvents, or

natural precursors, are used to produce CDs (Wang et al.,

2021; Xu et al., 2022). Considering the natural or less harmful

chemicals as a precursor for CDs synthesis, the use of amino

acids is an option. Amino acids are rich in carboxyl and amino

functional groups and are one of the ideal carbon sources for

CDs preparation. L-arginine is often used as a carbon source

by scientific researchers for the preparation of unique CDs

because of its highest nitrogen content within 20 essential

amino acids. In most of these studies, CDs-based sensors are

prepared for the detection of single heavy metal ions rather

than multiple targets (Yarur et al., 2019). Li et al. (2015)

prepared nitrogen and sulfur co-doped CDs through a facile

one-step microwave-assisted method and used the CDs as

fluorescence probe for Hg2+ detection. Besides, these studies

are focus on the detection of Cd2+ and Hg2+ in aqueous

solution based on carbon dots, while few reports were

related to the detection in food samples by using carbon

dots. Cd2+and Hg2+ frequently coexist in many

environmental samples with potential danger to humans

through the food chain. Therefore, new methods for

synthesizing CDs should be developed for the

simultaneous, rapid, and qualitative detection of

Cd2+and Hg2+.

In the present work, we report novel N-doped CDs (N-CDs)

prepared by an easy one-step hydrothermal method with

L-arginine as precursors. The fluorescent property of N-CDs

was found independent of the excitation wavelength and

sensitive to Cd2+ and Hg2+. N-CDs showed remarkable

sensitivity and selectivity when used as the fluorescent sensor

for Cd2+ and Hg2+ with the masking agents. The application of

the sensor for the detection of heavy metals in food was improved

by applying it for the detection of food samples with a good

recovery ratio. Notably, L-arginine is commercially available and

could be used to synthesize CDs directly. The complex synthesis

of starting materials was not needed, and the synthesis procedure

was easy to carry out. To the best of our knowledge, a sensor that

can simultaneously detect Cd2+ and Hg2+ is rare, and research in

the detection of Cd2+ and Hg2+ in food samples by using carbon

dots is also sparse.

Materials and methods

Materials

L-arginine and standard reserve solutions of Cd2+

(892.9 μM), and Hg2+(498.5 μM) were obtained from Aladdin

(Aladdin, Shanghai, China). Potassium chloride (KCl), sodium

chloride (NaCl), magnesium chloride (MgCl2), calcium chloride

(CaCl2), manganese chloride (MnCl2), zinc chloride (ZnCl2),

aluminum chloride (AlCl3), nickel chloride (NiCl2.6H2O),

sodium nitrate (NaNO3), sodium nitrite (NaNO2), sodium

dihydrogen phosphate (NaH2PO4), sodium sulfate (Na2SO4),

1,10-phenanthroline, Rochelle salt, EDTA, sodium

diphosphate, phytic acid, potassium iodide, acetate buffer, and

trisodium citrate dihydrate were obtained from Sinopharm

Chemical Reagent (Shanghai, China). All the reagents and

solvents of analytical grades were used without further

purification. All the experiments were carried out using

deionized water.

Preparation of N-CDs

N-CDs were synthesized using the typical one-step

hydrothermal method. In short, 0.2 g of L-arginine was

dissolved in 40 ml of deionized water and sonicated for

20 min. The mixture was transferred to the reaction kettle,

heated at a given temperature for a given time, and cooled at

room temperature. Afterward, the solution was filtered through a

0.22 μm filter membrane to remove the precipitate. Finally, the

obtained solution was then diluted for 20 times with deionized

water. After freeze-drying, the purified N-CDs were obtained.

The N-CDs showed bright blue luminescence under a UV

illuminator.

Characterization of N-CDs

Fluorescence was detected using Infinite M200 Pro (Tecan,

Switzerland). UV-vis spectroscopy was carried out using Cary

60 UV-Vis (Agilent, America). FT-IR spectroscopy was carried
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out using Nicolet 6,700 (Nicolet, America). X-ray photoelectron

spectroscopy (XPS) was conducted using AXIS UltraDLD

(Shimadzu, Japan). TEM was performed using Talos F200X

G2 (FEI, America). HRTEM images were collected using a

JEM-2100F (JEOL, Japan). XRD was performed using a

D8 ADVANCE Da Vinci (Bruker, German). The Raman

spectra were determined using the inVia Qontor Confocal

Raman microscope (Renishaw, UK). The pH-dependent

photoluminescence sensitivity of N-CDs was studied at

different pH values by using different buffer systems (citrate

buffer, pH 5.0–11.0). N-CDs were irradiated with a 365 nm UV

lamp to investigate their photostability against photobleaching.

Quinine sulphate in 0.1 M H2SO4 was used as the standard

sample to measure the QY of N-CDs.

Selectivity of N-CDs and screening of
making agents

Approximately 10 mg L−1 of K+, Ca2+, Na+, Mg2+, Mn2+, Zn2+,

Al3+, Hg2+, Ni2+, and Cd2+ ions were added into 100 μL of N-CDs

solution to study the selectivity of N-CDs. To screen the

appropriate masking agents, we added 20 mg of various

masking agents to 100 ml of 446.45 μM Cd2+ (Hg2+ ions,

249.25 μM), and then vortexed for 30 s. Approximately 50 μL of

the supernatant, 20 μL of N-CDs, and 230 μL of citrate buffer

(pH 7.0) were mixed, and the fluorescence intensity wasmeasured.

Detection of Cd2+ and Hg2+

The detections of N-CDs toward Cd2+ and Hg2+ were

evaluated in the aqueous solution (pH 7.0) by using Cd2+ and

Hg2+ concentrations at room temperature. For Cd2+ and Hg2+

sensing, 180 μL of citrate buffer (pH 7.0), 20 μL of N-CDs

solution, and 100 μL of different concentrations of Cd2+ and

Hg2+ ions were mixed and incubated at room temperature for a

certain time. Then, the fluorescent intensity was tested.

Detection of Cd2+ and Hg2+ in food
samples

Apples and cabbages were obtained from a local supermarket

to verify the reliability of the detection method. Heavy metal

digestions were performed as previously described (Liu et al.,

2016). Each of the samples (1 g) was digested in 10 ml of nitric

and perchloric acids (9:1) solution and heated on a hot plate to

150°C until brown fumes ceased to evolve, and the mixture was

concentrated almost to 1–2 ml. The solution was made to a total

FIGURE 1
Fluorescence spectra of resultant CDs under different conditions: (A) different reaction temperatures with reaction time of 4 h; (B) different
reaction temperatures with reaction time of 6 h; (C) different reaction temperatures with reaction time of 8 h; (D) different reaction times with
reaction temperature of 180°C.
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volume of 25 ml by using 10% nitric acid after being cooled to

room temperature. For real sample detections, a certain volume

of standard reserve solutions of Cd2+ and Hg2+ ions was added to

the digestion solution, then the samples were detected.

Results and discussion

Preparation for the optimization of N-CDs

The preparation conditions of the N-CDs were optimized by

varying the prepared temperature and time. As shown in Figure 1,

no variation was observed in the shape of the fluorescence

emission spectra (excitation wavelength at 295 nm) with

different reaction conditions. The optimum temperature was

determined by keeping the reaction time constant (4, 6, and

8 h) and changing the temperature. The results showed that the

fluorescence intensity of N-CDs increased first and then decreased

with increasing temperature, indicating that the reaction

temperature played an important role in influencing the optical

properties of N-CDs (Figures 1A–C). The strongest fluorescence

intensity under prepared temperature is 180°C, which was selected

as the best prepared temperature. Then, the most efficient reaction

time was determined at 6 h by varying the reaction time while

keeping the temperature constant at 180°C (Figure 1D). Therefore,

the reaction temperature of 180°C and reaction time of 6 h were

determined as the optimal conditions to study their further

application in fluorescence sensing.

FIGURE 2
Characterization of N-CDs: (A) TEM images. Inset: Size distribution diagrams of N-CDs; (B) FT-IR spectra of L-arginine and N-CDs; (C) Full
survey XPS spectra of N-CDs; (D) C 1s XPS spectra of N-CDs; (E) N 1s XPS spectra of N-CDs; (F) O 1s XPS spectra of N-CDs.
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Characterization of N-CDs

The morphology of N-CDs was observed and

characterized by TEM and HRTEM. As shown in

Figure 2A, the N-CDs were nearly spherical in shape and

had good dispersion. Approximately 110 dots were randomly

selected for particle size statistics. The inset in Figure 2A

showed that the particle size of N-CDs was in the range of

1–5 nm, with an average diameter of 2.68 ± 0.67 nm, which

conformed to the general characteristics of carbon quantum

dots. The results of HRTEM were shown in Supplementary

Figure S1, it was observed that N-CDs had a discernible lattice

structure. The lattice fringes on N-CDs with an interplanar

spacing of 0.234 nm could be indexed to the facet of graphitic

carbon (100). Supplementary Figure S2 showed the X-ray

diffraction (XRD) pattern of the N-CDs. It showed a single

broad peak centred at 2θ = 19.68°, which was consistent with

the (002) lattice spacing of carbon-based materials with

abundant sp3 disorder. The Raman spectrum of the N-CDs

exhibited two peaks at 1,353 cm−1 and 1,586 cm−1,

corresponding to the D and G bands, respectively

(Supplementary Figure S3). The D band is mainly due to

the defective vibration of disordered graphite, and the G band

is related to the vibration of sp2-bonded CDs. The ratio of ID/

IG is the characteristic of the disorder extent and the ratio of

sp3/sp2 carbon. ID/IG in this study was 1.30, which indicated

the large number of structural defects in the N-CDs. The

above results showed that the nanoparticles formed were

mainly amorphous carbon dots and not graphene quantum

dots. (Raveendran et al., 2019).

The surface functional groups of the precursor (L-arginine)

and product (N-CDs) were compared by FT-IR spectra.

Figure 2B presents many similar peaks in the FTIR spectra of

L-arginine and N-CDs, which confirmed that most of the

nitrogenated and oxygenated functional groups of N-CDs

were derived from L-arginine. The most prominent chemical

bond vibration peaks of N-CDs were mainly distributed at 3,418,

2,951, 1,642, 1,493, 1,402, 1,206, and 1,108 cm−1. Absorption

bands at 3,418 cm−1 indicated the vibrations of O–H and N–H,

and the C–H stretching vibration could be proved by the

absorption band at 2,951 cm−1 (Zhang et al., 2019). The peak

at 1,642 cm−1 may indicate the stretching of the C=O groups of a

carbonyl group derived from amide and carboxylic acid or C=N

stretching vibrations (Wang et al., 2017). The presence of C–N

stretching vibration may lead to the appearance of a peak at

1,402 cm−1 (Wang et al., 2016). The band that appeared at

1,206 and 1,108 cm−1 indicate the stretching vibration of

C–O–C (Xu et al., 2014).

FIGURE 3
(A) Fluorescence emission spectra of N-CDs under different excitation wavelengths ranging from 265 to 315 nm; (B) UV–vis absorption,
maximum fluorescence excitation, andmaximumemission spectra of N-CDs. Inset: photographs of N-CDs solution under 365 nmUV light (left) and
visible light (right); (C) Effect of pH on the fluorescence intensity of the N-CDs; (D) Effect of irradiation time with a 365 nm UV-lamp on the
photostability of N-CDs.
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XPS analysis was carried out to further study the surface

element analysis and functional groups of N-CDs. The XPS

full-scan spectra exhibited the presence of peaks for carbon

(284.96 eV), nitrogen (399.36 eV), and oxygen (531.86 eV),

which was also in good agreement with the results of FT-IR

(Figure 2C). The atomic percentages of C, N, and O were 84.7,

5.54, and 9.76%. In the expanded XPS spectra, the C1s peaks at

284.48, 285.25, 286.27, and 288.44 eV shown in Figure 2D can be

attributed to carbon in the form of C–C, C–N, C–O, and C=O/

C=N (Yang et al., 2014). The N1s spectrum (Figure 2E) shows

three peaks at 399.27, 400.57, and 401.82 eV, which are assigned to

the C–N–C, N–(C)3, and N–H bands (Liu et al., 2017). The XPS

spectrum of O 1s exhibited two apparent peaks centered at

531.23 and 533.05 eV, which were related to the C–O and

C–O–H/C–O–C groups (Figure 2F) (Prasannan and Imae., 2013).

Based on the above results, the nitrogen-doped CDs from

L-arginine were successfully synthesized. N-CDs retained a part

of properties and the functional groups with O and N from

L-arginine, which endowed their excellent water solubility.

Optical properties of N-CDs

The optical properties of N-CDs were characterized in terms

of the fluorescence spectra and UV-vis. Figure 3A showed that

the fluorescence emission spectra of N-CDs were changed with a

series of excitation wavelengths ranging from 265 to 315 nm. The

emission peaks of N-CDs at various excitation wavelengths did

not shift, and the maximum emission wavelength at different

excitation wavelengths remained at 354 nm. The property of

excitation-independent emissions was different from most of the

previously reported CDs (Atchudan et al., 2020; Tang et al.,

2021), which can avoid autofluorescence during their

applications. This finding was obtained, because N-CDs had a

relatively uniform particle size distribution and localized surface

state band structure (Chandra et al., 2017). As shown in

Figure 3B, the maximum emission wavelength of N-CDs was

located at 354 nm at an excitation wavelength at 295 nm. N-CDs

FIGURE 4
Selectivity of N-CDs toward different metal ions.

TABLE 1 Masking agent screening results.

Masking agents Hg2+ Cd2+

1,10-Phenanthroline − −

Rochelle salt + +

EDTA − −

Sodium diphosphate + −

Phytic acid − +

Potassium iodide + +

Sodium sulphate + +

Acetate buffer + +

Trisodium citrate dihydrate + +

“+” denotes not masked, “−” denotes fully masked.
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aqueous solution showed a UV absorption peak at 288 nm

(Figure 3B), which corresponded to the π–π transition of C=C

and the n-π transition of C=O (De et al., 2013). The photographs

inserted in Figure 3B show that the N-CDs solution appears

bright blue under an ultraviolet lamp with UV (365 nm) and

solution is brown in visible light.

Photostability tests were carried out to evaluate the feasibility

of N-CDs in real environments. As shown in Figure 3C, the

fluorescence intensity of N-CDs was partially affected by

pH values. Under neutral non-acidic pH conditions

(7.0–11.0), the N-CDs had relatively stable optical properties

and exhibited a remarkable fluorescence intensity. Their PL

intensity decreased under acidic pH conditions (5.0–6.0)

possibly because of the presence of oxygen-containing

functional groups such as carboxyl groups on their surfaces.

In a strongly acidic environment, carboxyl groups may lead to the

formation of hydrogen bonds and obstruct the electron-hole pair

recombination, thus destroying the electronic transition of the

luminescent center and causing quenching fluorescence intensity

(Kundu et al., 2012). While in neutral or basic solutions, the

functional groups of N-CDs remained stable. Therefore, in

subsequent detection experiments, phosphoric acid buffer

solution was used as the solvent to eliminate the influence of

pH changes.

The QY was determined at an excitation wavelength of

320 nm using equation (Ma et al., 2017):

Φx � Φs (As /Ax)(Ix / IS)(η2X/ η2S)

where s and x refer to the standard sample (quinine sulfate) and

the sample to be tested, respectively; Φ is QY, Φs = 54%; A is the

absorbance at the excitation wavelength (295 nm); I is the

integrated area of fluorescence in the emission region at

295–600 nm; η is the refractive index of solvent, ηx/ηs = 1. All

the samples were diluted to ensure an absorbance value of less

FIGURE 5
(A) Selectivity of the N-CDs detection to Cd2+ (B) Incubation time of N-CDs with Cd2+; (C) Fluorescence emission spectra of N-CDs under
different concentrations of Cd2+.
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than 0.10 measured. The QY of N-CDs was calculated to

be 71.6%.

Additionally, the fluorescence intensity of N-CDs did not

vary obviously after continuous irradiation under a UV lamp

for several hours. At 480 min after irradiation, the

fluorescence quenching ratio F/F0 (F and F0 are the

fluorescence intensities of N-CDs in the presence and

absence of heavy metal ions) of N-CDs did not exceed 10%

(Figure 3D), indicating the excellent resistance to

photobleaching of N-CDs. Besides, N-CDs showed excellent

salt-resistant stability (up to 1.8 mol L−1) and long-term

storage stability (up to 8 weeks) (Supplementary Figures S4,

S5). The effects of different batches, long-term storage and

salinity on the stability of N-CDs were also studied. In order to

study the reproducibility of N-CDs, different batches of

L-arginine were used to synthesize N-CDs. As shown in

Supplementary Figure S6, the PL intensities of different

batches of N-CDs had no significant change. Hence, N-CDs

had a good stability and application prospect for the analysis

of complex matrixes as fluorescent probes.

Selective detection of Cd2+ and Hg2+

Figure 4 shows the effect of variousmetal ions on the fluorescence

performance of N-CDs based on the metal ion-induced quenching of

fluorescence. The result indicated that the fluorescence of N-CDs was

strongly quenched by Cd2+ andHg2+ but not the other physiological or

environmentally relevantmetal ions, suggesting the potential ofN-CDs

for the fluorescence detection of Cd2+ and Hg2+.

FIGURE 6
(A) Selectivity of N-CDs detection to Hg2+; (B) Incubation time of N-CDswith Hg2+; (C) Fluorescence emission spectra of N-CDs under different
concentrations of Hg2+.
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Considering the mutual interference in the detection of Cd2+

and Hg2+, a series of masking agents were studied to selectively

detect only one ion species in Cd2+ and Hg2+ mixture. As shown

in Table 1, various masking agents were screened. 1,10-

Phenanthroline and EDTA exerted a strong masking effect on

Cd2+ and Hg2+, while Rochelle salt, potassium iodide, sodium

sulphate, acetate buffer, and trisodium citrate dihydrate showed

little masking effect. Furthermore, 20 mg of sodium diphosphate

and phytic acid can fully mask 44.65 mmol of Cd2+ and

26.79 mmol of Hg2+, respectively. The addition of the masking

agents had no significant effect on the detection of other ions

(Figure 5A, Figure 6A). Hence, phytic acid and sodium

diphosphate were determined as the masking agents for Cd2+

and Hg2+ detection, respectively.

Quenching mechanism investigation

The fluorescence quenching mechanism of fluorescent

materials is usually divided into the inner filter effect (IFE),

the static quenching and dynamic quenching, or both of static

quenching and dynamic quenching (Iqbal et al., 2016). Generally,

IFE occurs when the absorption spectra of the quencher overlap

with the excitation and/or emission spectra of CDs (Zheng et al.,

2013). As shown in Figure 7A, the absorption of Hg2+ and Cd2+

did not overlap with the excitation and emission spectrum of

N-CDs. Hence, we can infer that the quenching mechanisms of

N-CDs/Cd2+ and N-CDs/Hg2+ were not the IFE.

In order to explore the quenching mechanism, the

fluorescence lifetimes of N-CDs, N-CDs/Cd2+, and N-CDs/

FIGURE 7
(A)UV–vis absorption spectra of Cd2+ and Hg2+ solutions. Maximum fluorescence excitation andmaximum emission spectra of N-CDs; (B) The
fluorescence lifetime curves of N-CDs, N-CDs/Cd2+, and N-CDs/Hg2+system.

TABLE 2 Comparison of different methods for the detection of Cd2+ and Hg2+ using CDs as sensing probes.

Precursors of
CDs

Ions QY
(%)

Linear range LOD Real sample Reference

Chopped scallions Cd2+ 18.6 0.1–3 μM,
5.0–30.0 μM

15 nM Tap water Dan et al. (2018)

Melamine, 2,4-difluorobenzoic
acid

Cd2+ 65.5 0–30 μM 0.34 μM Tap water Zeng et al. (2022)

Citric acid,
o-phosphorylethanolamine

Cd2+ 8.17 0.5–12.5 μM 0.16 μM Serum and urine Lin et al. (2019)

Auricularia auriculawere Cd2+,
Hg2+

23.57 0–50 μM 101.55 nM,
77.21 nM

Dendrobium Dai and Peipei Wei. (2021)

L-Cysteine Hg2+ 12.6 0.5–20 μM 500 nM Lake water Wei et al. (2018)

Sodium citrate, urea Hg2+ 67 0.001–5 μM 0.65 μM Lake water Ren et al. (2018)

Citric acid, urea, thiourea Hg2+ 19.2 0.1–20 μM 62 nM Tap, river, and mineral water, and
canned fish

Tabaraki and Sadeghinejad.
(2018)

Citric acid, melamine Hg2+ 44 2–14 μM 0.44 μM Human milk Pajewska-Szmyt et al. (2020)

L-arginine Cd2+,
Hg2+

71.6 0–26.8 μM,
0–49.9 μM

0.201 μM,
0.188 μM

Apples and cabbages This work
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Hg2+system were measured. Usually, the fluorescence lifetime of

the fluorophore changes in dynamic quenching process, but

remains stable in static quenching process (Orte et al., 2013).

As shown in Figure 7B, the fluorescence decay curves of the

N-CDs presented different route after the addition of Cd2+ and

Hg2+. The single exponential formula could fit the fluorescence

attenuation curve very well. And the fluorescence lifetime of

N-CDs, N-CDs/Cd2+, and N-CDs/Hg2+system is 3.58 ns, 1.63 ns,

and 1.71 ns, respectively. Fluorescence lifetime changes can be

indicative of the dynamic quenching.

As shown in Supplementary Figure S7, the absorption peak of

N-CDs at 288 nm showed a red shift effect and the peak intensity

was significantly reduced after the addition of Cd2+ and Hg2+,

which confirmed the formation of new complex. This

phenomenon could result from the chelating effect between

the functional groups of N-CDs and Cd2+ (Hg2+). The oxygen

atom in the–COOH, –OH, and nitrogen atom in the–NH2 of

N-CDs coordinated Cd2+ and Hg2+ ions, donating lone pairs

electrons into their empty orbitals, and then led to the

fluorescence quenching of N-CDs (Lin et al., 2019).

Additionally, zeta potential was measured to further elaborate

the detection mechanism. The results showed N-CDs had a large

potential of -24.67 mV because of the presence of carboxyl and

O-functional groups on the N-CDs. After the addition of Cd2+

and Hg2+, the zeta potential of N-CDs increased to the positive

potential of 6.10 and 1.57 mV, respectively, which confirmed that

the N-CDs were combined with the Cd2+ and Hg2+ ions by the

ligand-to-metal charge transfer (Wu and Tong., 2019). The

results of UV-vis absorption spectra and Zeta were the

characteristics of static quenching (Wang et al., 2020).

The Stern-Volmer (SV) equation can be used to describe the

quenching mechanism as follows.

F0/F � 1 + Kq τ0[Q] � 1 + KSV[Q]

Where F0 and F are the steady-state FL intensities without and

with the presence of a quencher, respectively; KSV is the

Stern–Volmer constant, [Q] is the concentration of Cd2+

(Hg2+) and τ0 is the lifetime. According to Stern-Volmer (SV)

equation, the SV plot during a single static quenching or dynamic

quenching should be a straight line. While it can be seen from

Supplementary Figures S8A, S9A that the SV diagram (298K)

was not a straight line, suggesting a joint of dynamic and static

quenching for the detectionmechanism of Cd2+ (Hg2+) by N-CDs

(Li and Tong., 2020).

Fluorescence detection of Cd2+ and Hg2+

The sensitivity of N-CDs detection was adjusted to a

neutral pH value (7.0) for the optimum detection of Cd2+

and Hg2+ ions. N-CDs’ anti-interference capability was

studied to further check the selective quenching behavior

toward other kinds of common disruptors in fruits and

vegetables, including Na+, K+, Ca2+, Mg2+, Cl−, NO3
−, NO2

−,

H2PO4
−, and SO4

2- (Webster, 1981; Yang et al., 1998;

Henríquez et al., 2010). As shown in Figure 5A, Figure 6A,

these ions had little effect on the detection of Cd2+ and Hg2+

ions. The multiple active sites of N-CDs including

carboxylate, hydroxyl groups and abundant amino-groups,

TABLE 3 Analytical results for determination of Cd2+ and Hg2+ in real samples.

Ions Sample Spiked (mg
L−1)

Found (mg
L−1)

Recovery (%) RSD (%)

Cd2+ Apple 1 0 — — —

Apple 2 10 9.74 97.40 2.4

Apple 3 50 48.32 96.64 2.6

Apple 4 250 241.43 96.57 3.7

Cabbage 1 0 0 — —

Cabbage 2 10 10.94 109.40 3.0

Cabbage 3 50 43.22 86.44 3.9

Cabbage 4 250 248.13 99.25 4.5

Hg2+ Apple 1 0 — — —

Apple 2 50 49.22 98.44 1.8

Apple 3 100 115.32 115.32 3.3

Apple 4 500 433.10 86.62 2.5

Cabbage 1 0 — — —

Cabbage 2 50 51.14 102.28 3.3

Cabbage 3 100 112.41 112.41 2.1

Cabbage 4 500 513.50 102.70 4.8
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may explain the high selectivity of N-CDs to Cd2+ and Hg2+.

Those functional groups led to the interaction between N-CDs

and Cd2+ or Hg2+ through an effective electron transfer

process, which caused the fluorescence quenching of

N-CDs (Xie et al., 2021). Therefore, most common ions in

fruits and vegetables do not interfere with the detection of

Cd2+ and Hg2+ ions. N-CDs were highly selective toward Cd2+

and Hg2+ ions and had excellent anti-interference even when

other metal ions were present.

The quantitative detection of Cd2+ and Hg2+ were tested under

the optimized detection conditions. The incubation time and

sensitivity of the detection system were tested. As exhibited in

Figure 5B, Figure 6B, the reactions finished rapidly within 5 min.

As shown in Figure 5C, Figure 6C, with the graduated addition of

the heavy metal ions, the fluorescence spectra of N-CDs decreased

gradually. The relationships with Cd2+ and Hg2+concentration were

y = 0.00987x + 1.00851, R2 = 0.9909, in the range of 0–26.8 μM, and

y = 0.01057x + 0.9965, R2 = 0.9981, in the range of 0–49.9 μM,

respectively (Supplementary Figures S8B, S9B). The limits of

detection (LOD) were calculated following a curve-fitting model

(LOD = 3δ/k, δ represented the intensity standard deviation of the

blank samples that wasmeasured 10 times and kwas the slope of the

curve). The LOD values of Cd2+ and Hg2+ were 0.201 and 0.188 μM,

respectively. Compared with other All the above excellent features

clearly reveal that the N-CDs as fluorescent probes have great

potential for the analysis of Cd2+ and Hg2+. As shown in Table 2,

the QY of N-CDs is higher than most of those in other reports.

Compared with other methods for the detection of Cd2+ and Hg2+,

N-CDs showed a wider detection linear range and a higher

sensitivity than that reported in other methods.

The possible application of N-CDs in actual sample detection

was evaluated by recovery experiments determined in apples and

cabbages. As shown in Table 3, little Cd2+ and Hg2+ were detected

in the digestion solution of apples and cabbages by N-CDs. Then,

the standard addition method was performed on the samples

spiked with heavy metal ions at different concentrations. Besides,

the detected recovery rates for Cd2+ and Hg2+ were

86.44–109.40% and 86.62–115.32%, respectively, with the RSD

below 5%, suggesting the good accuracy and recovery of the

method and promised to detect Cd2+ and Hg2+in real samples.

Conclusion

In summary, a fast and cheap route to construct N-CDs was

obtained using a one-step hydrothermal method with L-arginine as

precursors. The prepared N-CDs showed stable, favorable

fluorescence properties, and excellent resistance to photobleaching

with a high QY of 71.6%. N-CDs exhibited good linear range,

sensitivity, tolerance level towards Cd2+ and Hg2+ ions, and low

detection limit. Furthermore, for the detection of heavy metal ions

in real food samples, this method has shown high recovery with good

reproducibility, which possessed the potential for the rapid and

reliable detection of heavymetal ions in agricultural products samples.
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