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SUMMARY

Bioweathering mediated by microorganisms plays a significant role in biogeo-
chemical cycles on global scales over geological timescales. Single processes
induced by specific taxa have been described but could rarely be demonstrated
for complex communities that dominate whole landscapes. The recently discov-
ered grit crust of the coastal Atacama Desert, which is a transitional community
between a cryptogamic ground cover and a rock-bound lithic assemblage, offers
the unique chance to elucidate various bioweathering processes that occur simul-
taneously. Here, we present a bioweathering scenario of this biocenosis including
processes such as penetration of the lithomatrix, microbial responses to wet-dry
cycles, alkalinolysis, enzyme activity, and mineral re-localization. Frequently
occurring fog, for example, led to a volume increase of microorganisms and the
lithomatrix. This, together with pH shifts and dust accumulation, consequently re-
sults in biophysical breakdown and the formation of a terrestrial protopedon, an
initial stage of pedogenesis fueled by the grit crust.

INTRODUCTION

Early development of terrestrial ecosystems often includes interactions between cryptogamic lithobiontic

communities (cyanobacteria, green algae, lichens, and fungi together with other heterotrophic organisms),

the lithomatrix of rocks and the given climatic conditions (Mergelov et al., 2018; Mitchell et al., 2019). Since

the occurrence of life on Earth, the interplay between the biotic and abiotic world is amongst the most

ancient processes shaping the earth’s surface. For example, the symbiotic interaction between algae

and fungi in lichens probably dates back to the Precambrian 400 million years ago (Taylor et al., 1995)

although there is evidence for a later origin of modern lichens dating back 320 million years (Lumbsch

and Rikkinen, 2017; Nelsen et al., 2020). However, the terrestrial organic carbon (Corg) pool of early soils

has been fueled to a large extend by the biological activity of cyanobacteria, later supported by algae

and fungi until land plants appeared roughly 300 million years ago.

Nowadays, lithobiontic communities are still well known from arid environments such as the Atacama Desert

(Azúa-Bustos et al., 2011), where not only external surfaces of hard rocks but also cracks and fissures may be

conquered by microorganisms using bioreceptive characteristics of the internal rock structure (Wierzchos

et al., 2015). In this region, fog and dew are the main water sources for photosynthetic activity (e.g. Lehnert

et al., 2018).Consequently, thealterationand transformationof the lithomatrixbymetabolismandbioweathering

processes of phototrophs can be expected (Weber et al., 2011). This was described for extreme habitats such as

Antarctica or ancientMayanbuildings (Ortega-Morales et al., 2016) and similar interactions are very likely tooccur

in the Atacama Desert, but reports are still missing. Single processes of biogeophysical and biogeochemical

weathering by (cyano-)bacteria, green algae, lichens, and fungi are well studied (reviewed in Salvadori and Mu-

nicchia, 2016; Chenet al., 2000). This includes, e.g., the biological transformation of clayminerals, e.g. byKdeple-

tion of interlayersofmica/illite andoxidationof structural Fe(II) of lessweathering resistant silicates such asbiotite

aswell as thedissolutionof phosphate salts such as apatite (Smith, 1978;Wierzchos andAscaso, 1998;Chenet al.,

2000). Many studies investigated the weathering of quartz, one of the most common minerals which is an oxide

where the atoms are linked in a framework of SiO4 that makes quartz one of the most stable minerals in terms of

weathering. Various microorganisms were found tomediate biochemical weathering processes of rock-forming

minerals such as the excretion of pH shifting substances that interfere with the lithomatrix (acidolysis or alkalinol-

ysis), the production of chelating compounds such as siderophores (complexolysis; Daghino et al., 2010) or the
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manipulation of the redoxpotential via extracellular enzymes (Włodarczyk et al., 2016).Althoughphototrophs are

a focal point of interest for bioweathering processes more and more studies are showing a hidden potential in

heterotrophic microorganisms such as basidiomycete fungi (Kirtzel et al., 2020) or bacteria (Matlakowska et al.,

2012). However, so far, no study has shown bioweathering activity as the sum of these complex biochemical

and biophysical weathering factors during the development of terrestrial ecosystems at the landscape scale,

but rather single processes have been documented (e.g. Souza-Egipsy et al., 2004; Büdel et al., 2004).

Contrary to lithobiontic communities which colonize rock surfaces, biocrusts establish on and between uncon-

solidated inorganic and organic soil compounds. This means that the biocrust organisms grow at the surface of

sediment and/or soil or within the upper few mm of the upper soil horizon, rather than directly on the more or

less weathered parent rock (Belnap, 2003; Garcia-Pichel et al., 2016). However, investigations on weathering

mechanisms and ratesmediated by biocrust organisms are still in their infancy. Thismay be due to a greater pre-

disposition of the lithic habitat to weathering and erosional processes, whereas the soil habitat is already a first

result of these processes (Garcia-Pichel et al., 2016). Estimations on weathering rates are not only hindered due

to erosional processes but also in cases where the original situation before biocrust formation cannot be recon-

structed (a prerequisite for calculation of mass balances) due to the presence of different shares of parent rock

materials, e.g. fromAeolian dust inputs fromdifferent petrological regions (local sources versus those from long-

distance transport). One of the few described processes in the context of biocrust-mediated weathering is the

leaching and re-localization of elements mobilized by biogenic processes in deeper soil horizons (Beral-

di-Campesi et al., 2009) as well as the accumulation of organic matter, which triggers further pedogenetic pro-

cesses such as the formation of organo-mineral associations (Dümig et al., 2014). Due to the fact that these are

permanent processes in biocrusts, Beraldi-Campesi et al. (2009) speculated that allochthonous (Aeolian dust)

inputs compensate for elemental loss in the upper soil mm to maintain the nutrition of biocrusts in the long

run. Some rock outcrops can be highly resistant against biochemical weathering due to its coarse mineral grain

size, low specific surface area, and the presence of less vulnerable minerals to (bio)chemical weathering such as

quartz, alkali feldspars and muscovite in granitic rocks. If this is the case fine-sized deposited Aeolian dust par-

ticles containing high shares of layer silicates and also organic compounds can be a major phase for element

mining and energy recovery by biocrust organisms.

Recently, a unique transitional community between lithobiontic and biocrust biocenoses, termed grit crust,

growing around and inside granitoid grit stones of about 6 mm in size (locally called maicillo) that are

paving the ground in broad areas of the coastal AtacamaDesert, was described (Jung et al., 2020). The vivid

colonization of the grits by mainly lichens causes a blackish pattern of several square meter large patches

on the ground that can be seen across the landscape (hereafter called black grit) right beside less colonized

grits forming patches that appear whitish (hereafter called white crust). The reasons for the scattered pres-

ence of the biocenosis in the landscape is still not clarified but seems to be more complex than the simple

relation between topography, fog water deposition, and colonization rate (Jung et al., 2020). So far, this

biocenosis has been detected to cover locally between 20 and 80% of the 350 km2 National Park Pan de

Azúcar, highlighting its significance in terms of ecosystem services such as nutrient acquisition, water reten-

tion or erosion prevention (Jung et al., 2020).

The tight relation between the organisms and the lithomatrix of the grits enabled us to describe a bio-

weathering scenario mediated by lichens, cyanobacteria, green algae, and fungi that potentially leads

to pedogenesis on landscape scales. We hypothesized that complex and various interactions between

the grit crust organisms and deposited dust, the soil compounds and grit interfaces lead to a physical

breakdown of the latter and an accumulation of fine soil particles. For these reasons, an interdisciplinary

approach consisting of soil analyses such as mineral composition, dust composition, bioweathering assays

such as long-term and short-term pH shifts induced by green algal lichen photobionts, enzyme activity and

the shrinking-swelling action of colonized grit stones induced by water was applied. In particular we A)

tested to which extend swelling and shrinking of the organisms induced by frequently occurring fog can

lead to the physical breakdown of the grit stones, B) tested whether pH shifts caused by the organisms

can in turn promote etching of substrate particles and C) characterized the texture and elemental content

of the accumulated material which contributes to pedogenesis.

RESULTS

Based on field observations in the National Park Pan de Aúzcar that is situated in the coastal range of the

Atacama Desert we found evidence which led to the following bioweathering chronosequence presented
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in Figure 1. This sequence depicts the idea of microorganisms such as lichens, algae, fungi, and other het-

erotrophic organisms colonizing boulders of parent rock in the landscape (Figures 1A and 1B). Subse-

quently the interplay between abiotic and biotic weathering processes led to the deterioration of the rocks

into smaller fragments that were also colonized till the current snapshot in time resulting in the ‘grits’ (Fig-

ure 1C). The grits have a size of roughly 6 mm and cover large areas at least in the National Park Pan de

Azúcar (Jung et al., 2020). They appear as blackish patterns on the ground in the landscape when they

Figure 1. Chronosequence of Bioweathering in the Landscape of the National Park Pan de Azúcar, Atacama

Desert

(A) Bedrock outcrop made of granitoid material. (B) Colonized rocks in close vicinity of the bedrock outcrop. Scale bar

indicates 20 cm. (C) Colonized coarse gravels in close vicinity of the rocks. Scale bar indicates 10 cm. (D) Grit stones

concatenated by organisms. (E) Colonized grit causing blackish patterns in the landscape.
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are colonized by microorganisms such as lichens. Our study investigated the bioweathering processes

mediated by this association of microbial life and the grits, also called grit crust.

Mineralogical Analyses of Black and White Grit Samples (First cm)

The electrical conductivity value observed for the white grit was 2.4-fold higher compared to the black grit

(Table 1). Also, the pH-value of the white grit was higher (8.0) compared with that of the black grit (6.9) (Ta-

ble 1). In the aqueous extracts of the samples, the most common anion was Cl�, and for the cations Na+

(Table 1). Comparing black and white grit samples, marked differences existed in the concentration of

different anions and cations.

Chemical analysis of the <2 and >2 mm fractions of black and white grits revealed highest SiO2 contents in

the >2 mm fraction, where the primary mineral quartz was typically observed (Table 2). K2O was highest in

the <2 mm fraction indicating that K was not only located in feldspars but also in illite. In this fraction, also

the percentage of P2O5, Fe, Mn, Cu, and Zn was higher compared to the >2 mm fraction.

For black and white grit samples, diffraction patterns for the <2 mm fraction revealed the presence of illite

(peak maximum at 0.99 nm) (Figure 2). In the black grit sample a 2:1 layer silicate phase was indicated by the

diffraction peak at 1.40 nm. Traces of kaolinite were indicated by small interferences at 0.713 nm. The pres-

ence of relatively high amounts of quartz could be deduced from strong interferences at 0.425 and

0.334 nm. Peak maxima at 0.323 and 0.318 nm could be assigned to feldspars and were most marked in

the <2 and >2 mm fraction of the black grit sample. The two clay minerals, typical for arid soils, palygorskite

with a strong X-ray diffraction peak at 1.04 to 1.05 nm and sepiolite with a strongmaximum at 1.24 nm, were

not identified in the samples. Carbonates were absent as well. In the >2 mm samples, the presence of quartz

was indicated in addition to the interferences at 0.425 and 0.334 nm bymaxima at 0.245 and 0.227 nm. From

the SiO2 content in the >2 mm fractions it was derived that quartz had higher shares in the white grit than

black grit sample (77.5 and 68.3% SiO2, respectively).

Texture and Elemental Composition of the First and Second cm of Substrate and of Dust

The texture of the first and second cm of the analyzed substrate (Figure 3A) was characterized by a high

proportion of coarse material (50% > 2 mm), which included the colonized grit stones in the first cm of

the profile (Figure 3B). The second cm of the profile mainly consisted of fine material (80% < 2 mm)

including 12% of clay-sized particles.

Element contents as gained from inductively coupled plasma – optical emission spectroscopy after acid

digestion were normally distributed at P % 0.05, except for zinc (Zn) which only was normally distributed

at P % 0.1. The total elemental contents of Al, Ca, Fe, Mg, Mn, P, Zn, and Cinorg were significantly higher

in the second cm compared to the first cm (Figure 3C). The increase in the second cm ranged between 2-

fold (Al, Fe) to 7-fold (Ca). The total P content was 3-fold higher in the second cm compared with the first

cm. Total C and Corg, as well as total N and S were similar in the first and second cm.

Sequential P-fractionation showed that stable P was the dominant P-fraction in both depths. In the second

centimeter, its proportion was significantly higher than in the first cm (Figure 3D). Labile and moderately

labile P were by trend higher in the first cm.

Sample F- Cl- NO2
- Br- NO3

- PO4
3- SO4

2- Ʃ Anions Clay [%]

[mmolc L
�1]

Black grit – 1.05 – – 0.026 0.044 0.138 1.258 3.0

White grit – 3.24 – – 0.038 – 0.248 3.526 6.4

Sample Na+ NH4
+ K+ Mg2+ Ca2+ ƩƩ cations EC [mS cm�1] pH

[mmolc L
�1]

Black grit 0.774 0.030 0.265 0.091 0.166 1.326 188 6.9

White grit 2.761 – 0.322 0.114 3.506 3.506 446 8.0

Table 1. Anion and Cation Concentration in the 1:10 Aqueous Extract, Electrical Conductivity (EC), and pH of Black and White Grit Samples
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Fluorescence Microscopy of Colonized Grit Stones

Fluorescence microscopy showed black, white and red patterns with black color as the lithomatrix, white

color as fluorescence of the fungus due to chitin in the cell walls and red color as chlorophyll fluorescence

of the green algae (Figures 4A and 4D). Autofluorescence of green algae would not be visible from dead

cells or remnants because chlorophyll rapidly degrades after cell death. Figure 4A demonstrates that li-

chens grew attached to the surface of the grit stones with single hyphae penetrating the grit. This phe-

nomenon was frequently observed. In addition, most tunnels of single grits were found to be colonized

by fungal hyphae and their green algal photobionts even reached the middle of the grits (Figure 4D).

Light microscopy of grit thin sections indicated lichen thalli with their green algal photobionts growing

tightly attached to the surface of the grit stones. Brown colored cavities beneath the lichens imply clay

or Fe-oxides accumulation (Figure 4B). Scanning electron microscopy (SEM) images indicated that the

lichen thalli (artificially colored in red) were embedded into the grit surface (artificially colored in green)

(Figure 4C).

X-Ray Microtomography

Comparative X-ray microcomputer tomography (mCT) scans of a colonized grit stone in an air-dry status

and after 12 hr of hydration revealed a change of lichen structure after wetting. Table 3 shows that the

volume of the whole grit (stone including lichen) increased about 21% (Figures 5A and 5B). The volume of

the lichen tissue alone, raised up to 55% of its initial value. The relative share of the lichen for the total

grit volume increased from 38% in the dry state to 49% when the lichen was hydrated. The fact that the

calculated volume of the stone enlarged only very slightly (by 0.13%) is an indicator for the reliability of

the mCT data.

The surface area of the whole grit enlarged by 24% (Table 3). This increase is mostly caused by the enlarge-

ment of the lichen surface, as the stone surface did expand only by about 2%, which corresponds to the very

small increase in the stone’s volume. Further, most of the surface expansion happened at the outer surface

of the grit. The internal surface area can be calculated when subtracting the surface area of the whole grit

from the sum of the surface of mineral phase and lichen, which also have internal surfaces. Interestingly,

while the whole grit surface expanded by 24%, the internal surface stayed almost the same with an increase

of less than 1% (dry: 677.27 mm2; wet: 683.69 mm2).

SEM-energy-dispersive X-ray spectroscopy and Element Composition Analyses

SEM with energy-dispersive X-ray spectroscopy (SEM-EDX) indicated high abundance of Cl and Ca at the

external surface of the lichen thalli while mainly potassium K was found at the surface of the grit (Figure 5C).

Light microscopy of a thin section of detached lichen thalli revealed high amounts of incorporated mineral

particles e.g. iron oxides (brownish colored) within the medulla of the thallus (whitish colored) underneath

the photobiont layer (greenish colored) (Figure 5D). Further, SEM images showedmineral particles of vary-

ing sizes embedded into the cortex and on top of the lichen thalli (Figure 6A). The elemental composition

of these particles included high abundances of Ca and P as revealed by SEM-EDX (Figure 6B). Dust con-

tained mainly Fe and Al but also 0.019 mg P cm�2 y�1 (Figure 6C).

Long-term pH Measurements of Photobiont Cultures and Enzyme Activity of Colonizing

Organisms

During long-term pH measurements of photobiont culture media, a continuous rise in pH from 6.7 up to

almost 9 was observed within 12 weeks (Figure 7A). Measurements with the oxygen electrode revealed

that all samples containing algal suspensions isolated from single grit crust lichens released oxygen into

Sample MgO Al2O3 SiO2 P2O5 K2O [%] CaO Ti Fe Mn Cu Zn

Black grit <2 mm 0.54 10.12 47.19 0.074 3.35 0.30 0.149 2.80 0.03 0.022 0.030

Black grit >2 mm 0.78 6.81 68.28 0.025 2.32 0.27 0.082 0.90 0.01 0.003 0.002

White grit <2 mm 0.92 7.32 55.08 0.060 2.52 0.23 0.098 2.20 0.04 0.013 0.019

White grit >2 mm 0.78 4.64 77.51 0.029 1.69 0.23 0.058 0.74 0.02 0.003 0.002

Table 2. Chemical Composition of the <2 mm and >2 mm Fraction
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the medium, and this process was accompanied by increasing alkalization with increasing light levels

(Figure 7B). Below a certain light intensity (the so-called compensation point, when photosynthetic oxygen

production compensates respiratory oxygen consumption), all samples started to acidify the solution.

For all samples, a clear correlation between oxygen uptake/release and the pH was given. All samples al-

kalized the medium already at relatively low light intensities (<40 mE). Light levels beyond 150 mE caused a

saturation in oxygen production. Black grit stones showed mean enzyme activities of 140, 165, and 221 mg

p-nitrophenol g�1 dw h�1 for alkaline phosphatase, acid phosphatase, and phosphodiesterase, respec-

tively (Figure 7C).

DISCUSSION

The availability of water provided by fog, dew, and high air humidity in the region of Pan de Azúcar National

Park in the Atacama Desert together with the presence of the grits as a substrate for colonization promotes

Figure 2. X-ray Diffraction Patterns of the Grit Soil Samples

(A) This represents the <2 mm fraction and (B) the >2 mm fraction of black and white grit samples. Mg-saturated samples

were used for the <2 mm fraction.
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the establishment of the grit crust as a landscape dominating aspect. As a consequence, this unique

constellation of microbial life is in turn able to mediate bioweathering processes leading to physicochem-

ical effects on the transformation of rocks. Considering the low amount of available water and relatively low

chemical weathering susceptibility of quartz and feldspars in the granitoid rock substrate, biological and

physical weathering appear to be the dominating processes during the very initial formation of soil. The

large diurnal temperature range, for example (e.g. Jung et al., 2019a), causes thermal stress (insolation

weathering) in the granitoid particles as differences in mineral expansion set up cause the polycrystalline

rocks to crack preferentially at grain boundaries (Vasile and Vespremeanu-Stroe, 2017) which offers a great

ecological niche for microbes of any kind. However, the bioweathering processes on which this study

focused were those mediated by lichens, cyanobacteria and fungi that support the deterioration of rocks

from a microscope to the landscape perspective and from the rock to the fine substrate as depicted in a

possible chronosequence in Figure 1. However, the investigated and described processes are just

observed in nature, as a result at the time of the sampling, not by following the course of development.

Below several bioweathering processes such as enzyme activity, pH alterations, the incorporation of min-

eral fragments, shrinking-swelling activity of whole colonized grits and the re-localization of mineral frag-

ments will be discussed on basis of the scheme summarized in Figure 8.

Pore Spaces in Grit Particles

A common observation in thin sections of black grit samples was the presence of large pore systems (Fig-

ures 3D, 4A, and 4B), which were connected and open to the external surface (Jung et al., 2020), thus pre-

senting a potential prerequisite for e.g. internal weathering reactions (Dultz et al., 2006). These pore sys-

tems may be the result of two different processes: (1) The pore system could at least in parts represent

relicts of previous fluid-rock interactions, which took place e.g. in the hydrothermal phase after formation

of the bedrock plutonite fromwhich the granitoid grit particles originated. For the formation of cracks, frac-

turing during cooling of the plutonite, pressure relief by erosion and insolation weathering has to be

considered (Wiggering, 1987). During dissolution of the minerals, a marked share of the parent material

could have been lost to the liquid phase, hereby increasing the porosity (Putnis, 2002). The formation

and precipitation of secondary phases (clay minerals and sesquioxides) may have counteracted this effect,

in particular if elements were supplied from the surrounding solution. The presence of clay minerals in the

Figure 3. Texture and Elemental Composition of the First and Second Centimeter of a Grit Crust Profile

(A) Upper centimeters of a terrestrial protopedon profile with accumulated fine material between and underneath the grit

stones; red and white scale bars represent 1 cm each; (B) Texture of the first and second centimeter of the profile; C =

coarse, M = middle, F = fine, Gr = gravel, Sa = sand, Si = silt, Cl = clay; (C) Elemental composition of the first and second

centimeter of the profile represented as mean +/� standard deviation; asterisks indicate significant differences between

an elemental concentration of the first and second centimeter, p% 0.1, paired t test; (D) P pools as percentage of total P in

the first and second centimeter of the profile; asterisks indicate significant differences between first and second

centimeter within one fraction at **p % 0.05, paired t test.
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pore system could have slowed down chemical weathering reactions as the surface of primary minerals

could have been covered and pore diameters could have been narrowed by clay-sized particles. (2) Existing

cracks can enable large diameter dissolution reaction by microbial colonization and relatively fast convec-

tive transport (Dultz et al., 2013) that may also have contributed to the observed pore system of the grit

stones.

Penetration of the Lithomatrix by Lichens

In Pan de Azúcar, lichen thalli established at the surface of granitoid substrate particles (Figure 4A), prob-

ably used the enhanced water condensation properties of the quartz containing substrate in a similar way

as it was described for cyanobacteria by Azúa-Bustos et al. (2011). Once established, it can be speculated

that the lichen started to alter the lithomatrix by drilling into the grit (Figure 8, gray hyphae inside grit)

causing tramlines (superficial grooves) and channel formation on the surface, as well as cuts, holes, and bor-

ings (Figure 4D). These processes have been described in many other studies (e.g. Adamo and Violante,

2000). Often a significant pH reduction in the vicinity of cells upon mineral surface attachment or a signif-

icant turgor pressure of around 10–20 MPa that is applied toward the lithomatrix can be observed (Howard

et al., 1991). This can lead to mineral mass loss at the interface of lithomatrices causing pits and tramlines.

Those mass losses were estimated to account for �40%–50% of the overall bioweathering (Li et al., 2016).

Additionally, the excretion of siderophores is also a common bioweathering strategy for microbes to over-

come Fe deficiency (due to the strong tendency of Fe3+ to precipitate at circum-neutral pH). Siderophores

chelate Fe-ions which can also lead to the dissolution of the lithomatrix (Neilands, 1995; Li et al., 2016). Near

surface structures were found such as the brownish appearingmaterial which was assigned to vermiculite or

smectite clay minerals in combination with Fe-oxyhydroxides. These were interpreted as neoformations

and are thus stable in longer terms due to the high insolubility of Al-dominated and Fe-dominatedminerals

Figure 4. Evidence for Penetration of the Lithomatrix by Lichens

(A) Fluorescence microscopy of grit stone showing fungal hyphae (white; chitin autofluorescence) penetrating the grit

surface and green algal photobionts (red; chlorophyll autofluorescence) indicating the microstructures that potentially

lead to a deterioration of the grit stones; (B) Light microscopy of grit cross section with lichen thalli (green) and cavities

filled with brown particles underneath that demonstrate that lichens accumulate fine material; (C) Artificially colored SEM

image with lichen thalli (red) embedded into the grit (green) showing that the lichen thalli are embedded into the surface

of the grits; (D) Fluorescence microscopy of whole grit stone showing fungal hyphae (white; chitin autofluorescence) and

green algal photobionts (red; chlorophyll fluorescence) inside of a grit stone. SEM, scanning electron microscopy.
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at neutral pH (Banfield et al., 1999). Similar drilling processes and traces have been observed for a variety of

fungi growing on e.g. limestone (Burford et al., 2003a, 2003b), but it remains unanswered if the grit crust

organisms are actively causing the cracks or if they start growing at preexisting fissures. Evidence of a side-

rophore related bioweathering can be found in a significant enrichment of Fe in the second cm of the grit

crust (Figure 3C) what might be the consequence of accumulated fine material.

The observed tunnels were not only colonized by fungi but also by phototrophs reaching deep inside of

grits (Figures 4D and 8 gray hyphae and green photobionts inside the grits). Interestingly they were able

to maintain their photosynthetic activity inside the grits due to the translucent character of the grits.

With time, the lichen thalli then could invade the stone, which can be observed as embedded thalli (Fig-

ure 4C). This can lead to a direct contact even between the green algal photobionts in inner parts of the

lichen thalli and the lithomatrix promoting additional types of bioweathring processes (Figure 8, inlet).

Alkalinolysis, Acidification and Enzyme Activity of Grit Crust Communities

The pH-value of the white grit was higher (8.0) compared with that of black (i.e. = densely colonized) grit

(6.9) (Table 1) indicating that the microorganisms might induce chemical weathering through the release

of protons and organic acids.

Interestingly, the complementary experiments with the isolated photobionts of the lichens showed that

trebouxioid green algae could increase the pH of a culture medium in the short-term, as well as in the

long-term and that this was related to their photosynthetic activity (Figures 7A and 7B). During photosyn-

thesis, green algae excrete OH� as a byproduct, which in turn alkalizes the medium, a process known as

alkalinolysis (Figure 8, inlet). This appears as a contradiction to the lower total pH of the black grit

compared to the white grit but one needs to take into consideration that experiments with the isolated

photobionts need to be interpolated to the in situ situation with care: for these experiments a high

amount of biomass was required that cannot be found in nature to a comparable extend. Nevertheless,

the process of alkalinolysis can be transferred to lichens because the photobionts were able to increase

the pH in the experiments which means it is likely that they could do this in the lichens as well even dur-

ing short terms of activity induced by e.g. fog (Jung et al., 2019a). This will result in alkalinolysis effects on

the microscale where, e.g., a quartz fragment is stuck in the lichen thallus touching a few photobionts,

which was indeed observed (Figure 5D). This will not cause a high pH in a bulk sample of several grams

but a high pH at a certain spot within the lichen thallus, close to such a mineral fragment. These alkalin-

olysis processes have been described mainly for trebouxioid green algae (Shiraiwa et al., 1993; Weber

et al., 2011) and some cyanobacteria such as Chroococcidiopsis (Büdel et al., 2004). These genera

were found among the grit crust community (Jung et al., 2020). Interestingly, quartz as the main com-

pound of the grit dissolves at pH > 7.5 (Brundsen, 1979) because here the solubility of mainly Si strongly

increases, what could happen during alkalinolysis in the interface between photobionts and the lithoma-

trix of the grits.

In contrast to alkalinolysis, Salvadori and Municchia (2016) reviewed several acidic metabolites excreted by

lichens and fungi as main weathering agents but also stated that this is depending on the lichen species

and the climate. Although we did not detect any acidification reactions in our experiment with green algae,

it is still possible that the fungal part of the lichen, the multicolonial fungi or other heterotrophic microor-

ganisms can excrete acids or lichen compounds to deteriorate specific minerals within the grit stones.

Dry Wet % change

Volume [mL] Surface area [mm2] Volume [mL] Surface area [mm2] Volume Surface area

Stone 41.21 453.70 41.26 461.52 G0.13 G1.73

Lichen 25.75 653.31 39.99 756.82 G55.29 G15.84

Whole grit 66.96 429.75 81.26 534.66 G21.35 G24.41

Table 3. Results of the Microcomputed Tomography Analysis

Volume and surface area of the colonized grit components (stone and lichen) and whole grit before and after wetting. Note that the surface area of the whole grit

is only referring to the outer surfaces.
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Interestingly, enzyme assays revealed a comparably high activity of alkaline, acidic and diester-phospha-

tases (Figure 7C), which indicates that both processes, alkalization as well as acidification may have

happened simultaneously but at different micro-sites. This may be explained by (i) the polycrystalline lith-

omatrix of the grit stones causing a scattered pattern of minerals with different probabilities of pH-shifts

into the one or the other direction and (ii) the diverse taxonomic composition of the grit crust community

which is not yet fully characterized.

Wet-Dry Cycles

The arid component of the National Park is interrupted by fog and dew providing water for organisms (Leh-

nert et al., 2018). This constantly causes several wet-dry cycles per day (Jung et al., 2020). Poikilohydric or-

ganisms, such as lichens, cyanobacteria green algae and other heterotrophic microorganisms are able to

use even these short periods of water availability e.g. with the help of excreted extracellular polymeric sub-

stances (EPSs). Swelling and shrinkingmovements of the organisms (Figure 8, whitish symbols) can cause or

at least reinforce mechanical disruption of the lithomatrix. Our observations showed that a single grit stone

colonized by lichens increased its volume by 21% upon wetting compared to air-dry conditions, with the

lichen tissue alone increasing its volume by 55% (Figures 5A and 5B and Table 3). This demonstrates the

high fragmentation potential of the microhabitat caused by the organisms in dependency of water input.

Figure 5. Effects of Fog and Dew Induced Wet-Dry Cycles and Mineral Accumulation on Colonized Black Grit

(A) Schematic output of the segmented 3D model for the grit before (left) and after wetting (right). While the stones

(green) did not change their volume, the lichen tissue (red) showed a considerable increase in volume, which is especially

obvious for the inner regions between the stone fragments.

(B) Gray scale tomograms of the grit before (left) and after wetting (right). Arrows indicate regions where swelling of the

lichen tissue was most pronounced.

(C) Artificially colored SEM-EDX image showing the presence of salts attached to a lichen thallus (arrowheads); (D)

Microscopic cross section of lichen thallus showing incorporated minerals (arrowheads) as weathered residues. SEM,

scanning electron microscopy; EDX, energy-dispersive X-ray spectroscopy.

ll
OPEN ACCESS

10 iScience 23, 101647, November 20, 2020

iScience
Article



Pure lichen thalli were reported to have water holding capacities up to 300% of their dry weight (Creveld,

1981), highlighting the deteriorating potential of lichens within such a system. The analysis of the surface

area revealed that its increase occurred mainly at the surface of the grit (that is, of the lichen), while the (in-

ternal) interface of lichen and stone increased by less than 1%. One possible explanation for this pattern

could be that the biomass of the organisms was probably much higher at the surface of the grits than in

the internal structures. This was supported by fluorescence microscopy of grit cross sections showing a

loose fungal network together with only a few green algae (Figure 4D). Here, the forces applied by shrink-

ing and swelling were probably much weaker, but as the fog and dew events are cyclic on a regular basis a

deterioration over time is likely. Meteorological records of the sampling sites for example showed that dew

occurred frequently, predominately during night-time providing between 0.025 and 0.088 mm of liquid wa-

ter per day but fog usually occurred during daytime providing higher water fluxes delivering 0.38–1.25 mm

per day (Jung et al., 2020). However, it should be stressed that the lichens in our laboratory study were

completely submerged in water for 10 min and then were given time to equilibrate overnight (12 h). It is

possible that the behavior of the lichens would be somewhat different if they were subjected to the realistic

environmental conditions (with water droplet supply from the gaseous phase) that they usually experience

in the field.

In order to get a better understanding of the actual processes that are occurring in the field, a more sophis-

ticated experimental design will be necessary in future studies. For example, the simulation of a changing

water availability during dew or fog events would be possible with an environmental chamber such as the

one described by Raanan et al. (2016). This would allow the quantification of the grit crust’s structural dy-

namics during and at the end of fog or dew events in the Atacama Desert. For example, biological disrup-

tion of grits can be enhanced by the crystallization of salts within pores and cracks within the lithomatrix

(Wellman andWilson, 1965). Here analysis of the aqueous extract revealed distinct amounts of soluble salts

in the samples (Table 1). In addition we observed Ca-containing phases accumulated next to the lichen

thalli (Figure 5C), whereby the Ca might originate from dissolution of minerals. Inside the grit stones,

Figure 6. Mineral Accumulation on Grit Surface and Elemental Dust Composition

(A) SEM image of lichen thalli attached to grit with mineral particles from dust on the cortex of the thalli; (B) Artificially

colored close-up SEM-EDX image of dust particle on top of lichen thalli showing a grain consisting of Ca and P

compounds; (C) Elemental deposition by dust. SEM, scanning electron microscopy; EDX, energy-dispersive X-ray

spectroscopy.
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Ca-containing P compounds may have been solubilized in water, ions been transported along the fungal

network before mineral re-crystallization within the lichen thalli or the lichen’s cortex as a consequence of

evapotranspiration (Figure 8, brownish and blueish arrow) (Banfield et al., 1999). Further, this Ca-enrich-

ment also could be a consequence of carbonatization performed by cyanobacteria or green algae.

Mineral Accumulation

Besides Ca-containing compounds on top of the lichen thalli, mineral fragments were also found to be

incorporated into the lichen thalli (Figure 4B). This was already described as mechanical action of crusta-

ceous lichens on shale, shist, gneiss, limestone and obsidian by Fry, 1927. Barker and Banfield (1996) found

that mineral fragments as small as 5 mm were incorporated into the lower thallus of lichens as a conse-

quence of bioweathering processes on amphibole syenite. Further, we observed airborne dust particles

which were embedded into the cortex of the thalli and which were concatenated by the fungal hyphae

and EPS (Figures 6A, 6B, and 8, triangles on lichen’s surface). Recently, it could be shown that up to 4 g

m�2 of dust can accumulate at comparable sites in the Atacama Desert already within one month (Azua-

Bustos et al., 2019). Comparable dust inputs have been shown to be trapped by cryptogamic ground covers

of the Colorado Plateau enriching the soils with P, Mg, Na, K, Mo, and Ca thus highlighting the role of these

surface consortia in fueling nutrient cycles (Reynolds et al., 2001). Dust at the Pan de Azúcar sampling site

mainly consisted of Fe and Al containing compounds (Figure 6C) suggesting that these compounds

Figure 7. Alkalinolysis and Enzyme Activity of Grit Organisms

(A) Long-term incubation of two isolated green algal photobionts (n = 3, for each photobiont and the control) indicating a

raise in pH over the course of 12 weeks; (B) Short-term experiment with isolated green algal photobionts (n = 6) showing

pH shifts depending on oxygen production during varying light conditions; (C) Enzyme activity of alkaline phosphatases

(ALP), acidic phosphatases (ACP), and phosphodiesterases (PDE) (n = 3). Data represent mean +/� standard deviation.
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probably originated from weathering products that were transported via dust over more or less long dis-

tances and thus could also be due to mining activities in the vicinity.

Nutrient elements suchasPwerepartof thedust particles andco-occurredwithCa (Figure6B) implying thepres-

ence of apatite (Ca5(PO4)3(F,Cl,OH)). Different lichen species interacting with apatite that carries P, one of the

most growth-limiting elements in arid ecosystems (Zhao and Zeng, 2005), have recently been reported by Bau-

mann et al. (2018) from another experimental site that was close to the sampling site of the present study.

Pedogenesis and Accumulation of Available P

In the field, we observed that colonized grit stones were located on top of finer substrate (Figure 3A).

Texture analysis revealed that almost 70 weight % in the second cm were substrate particles <2 mm (Fig-

ure 3B). We assume that this is a consequence of grit weathering during which parts of the lithomatrix broke

off in the first cm and deposited as second centimeter (Figure 8, triangles). Further, deposition of secondary

minerals may have contributed, as lichens were shown to be especially effective in altering feldspars to clay

minerals or clay-sized particles even if this was the result of a long-term effect (Jackson, 2015). This is sup-

ported by significantly higher elemental concentrations of almost all investigated elements underneath the

grits (Figure 3C). The enrichment in elements was also found for P, mainly occurring as relatively stable P

(Figure 3D), whichmay include e.g. apatite- and phythate-P, as well as P occluded within sesquioxides (Bau-

mann et al., 2018). These P-sources meet special demands of microorganisms as P supply is known to be

one of the limiting factors for biological growth in arid ecosystems (Zhao and Zeng, 2005).

Figure 8. Schematic Overview of Bioweathering Processes

Lichens consisting of a mycobiont and its hyphae (gray) together with green algal photobionts (green) colonize

polycrystalline grit stones (brown tones) that have a size of roughly 6 mm. The hyphae of the lichen penetrate the

lithomatrix causing tunnels induced by shrinking and swelling actions (white arrow) induced by fog and water input that

hydrate the lichen. Further bioweathering activity (depicted in the inlet) leads to solubilization of minerals during times of

hydration as a consequence of photosynthetic activity of the green algae photobionts. These excrete OH� as a byproduct

into the lithomatrix which causes alkalization that can promote the dissolution of e.g. quartz and other minerals. These

minerals can be relocated (yellow arrow) following the direction of evapotranspiration (blue arrow) and re-crystallize

(yellow triangles) on the surface of the lichen. On the surface of the lichens which is sticky due to excreted mucus like

substances, mineral particles can accumulate between the grit stones from where they can be re-transported by wind

(yellow arrow) which in turn can also lead to the accumulation of fine material on the lichen’s surface.
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However, total C, Corg andNwere only tendentially higher in the first compared with the second centimeter

of the profile although the biomass of at least the phototrophic organisms was visibly concentrated in the

first centimeter. In general, N accumulates in phototrophic communities because of the N fixing abilities of

heterocytous cyanobacteria (Elbert et al., 2012), which were also found among the grit crust community

(Jung et al., 2019b, 2020).

Also, the Corg concentration as a biomass proxy indicated similar biomass for both centimeters, which

could be due to a vivid phototrophic community in the first centimeter and a well-established community

of mainly heterotrophs in the second centimeter. In contrast, Cinorg was significantly higher in the second

centimeter, which is in line with higher concentrations of Ca-containing compounds. They may have

originated from grit stone weathering and/or dust deposition. Total C concentration, comprising Corg

and Cinorg was highly variable and thus similar between the first and second centimeter. In addition,

wind erosion in the Atacama Desert (McKay et al., 2003), leading to substrate input and output, may

have affected elemental concentrations in both centimeters. However, the enrichment of fine particles

appears to be the sum of (among others) bioweathering actions such as alkalinolysis of the lichen photo-

bionts, drilling of the lichen’s hyphae, dust trapping of biopolymers such as EPS and shrinking/swelling ac-

tions of microorganisms in internal structures of the lithomatrix. The bioweathering of rock material over

time led to the formation of a terrestrial protopedon (Figure 8, triangles on the right side) (Jung et al.,

2020), a young soil named in analogy to similarly young soils in aquatic ecosystems that are rich in

CaCO3 with high contents of sand, silt or clay but which are poor in organic C (Amelung et al., 2018).

Landscape Scenario and Significance

Considering that the climate of the Atacama Desert has been stable for 150 million years (Hartley at al.

2005) together with the ancient origin of lichens and algae it can be speculated that all of the described

and simultaneously occurring weathering processes are part of an ongoing dynamic that takes place

over geological timescales. Following this, the deterioration of rocks leads to the formation of smaller rocks

over the formation of grits and finally to the terrestrial protopedon as a chronosequence (Figure 1). This

appears to be a significant geomorphological process in parts of the Atacama Desert fueled by a commu-

nity of microorganisms such as those of the grit crust. In this sequence the colonized grits could be seen as a

snapshot of the present bioweathering stage at least in the landscape of Pan de Azúcar or there where the

grit crust will be detected in future. Although this study focusedmainly on lichens, algae and fungi it should

be stressed that they are by far not the only active microorganisms in this system. Even a single lichen nowa-

days needs to be understood as a self-sustaining ecosystem formed by the interaction of an exhabitant fun-

gus and an extracellular arrangement of one or more photosynthetic partners and an indeterminate num-

ber of other microscopic organisms (Hawksworth andGrube, 2020). Nevertheless we tried to assign specific

bioweathering processes to single types of organisms because there are always surprises: recently, the

extreme thermoacidophileMetallosphaera sedula, a metallophilic archaeon, was found to thrive on mete-

orite minerals (Milojevic et al., 2019) and other examples are Manganitrophus noduliformans and Ramli-

bacter lithotrophicus that were the first organisms that helped to untangle the mechanisms behind chemo-

lithoautotrophy via manganese oxidation (Yu and Leadbetter, 2020). The great and so far unstudied

diversity of microorganisms that are part of the grit crust biocenosis in the Atacama Desert might therefore

be an interesting source for further bioweathering studies.

Limitations of the Study

The authors want to clearly state that this study aims to give an overview on various interactions between

the lithomatrix and different microbes without quantitatively investigating single processes. Only a very

high number of replicates for each of the single weathering processes could be upscaled to the landscape

scale at which they are taking place and at which several follow-up studies should focus in future. One of

these studies will focus on a method to detect the shrinking and swelling actions of the grits induced by

fog and dew mimicking more natural conditions in contrast to the lab-based approach of this study.

The contribution of this study also ends at untangling the detailed community structure of the grit crust and

therewith cannot account for bioweathering activities of e.g. heterotrophic bacteria. Further, the degree to

which dust deposition, local physical weathering, or the mining activity in the area contribute to the finer

substrate layer could not be resolved here.
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Site description 

Pan de Azúcar National Park is located between 25°53′ to 26°15′S and 70°29′ to 

70°40′W along the coast of Chile and is characterized by an arid climate (Lehnert et 

al., 2018; Baumann et al., 2018). Here, a narrow pediment close to the coast is followed 

by a steep mountain ridge reaching elevations up to 850 m a.s.l.. After this first 

mountain ridge, the terrain descends slightly to elevations between 400 and 700 m 

a.s.l. towards the inland. This study was conducted in 2.5 km distance from the Pacific 

coast (Lat: 25.96636111°S, Long: 70.61521111°W), where granitoid is the bedrock. 

The igneous rock granitoid is coarse grained and composed mostly of quartz, alkali-

feldspar and plagioclase, whereas micas occur in minor amounts. Slightly altered 

granitoid rocks are exposed in the upper part of hills (Oeser et al., 2018; Bernhard et 

al., 2018), which have a conical shape due to weathering and erosion. On the bedrock 

as well as on rocks/stones of various sizes biocoenoses of lithobiontic communities 

were observed. On the grit-sized stones (‘grus’), this biocoenosis even caused 

abundant blackish patterns in the landscape (Fig. 1) thus forming the so-called grit 

crust (Jung et al., 2020; called black grit). The heavily colonized blackish parts could 

be distinguished from only very little colonized whitish appearing parts (Jung et al., 

2020; called white grit). 

 

Sampling procedure 

In July 2017, samples were collected from the grit-paved area. For petrographic 

descriptions, samples of black and white grit were collected. They were taken from 

three independent 25 x 25 cm plots each by removing the upper centimeter with a 

broad bristle brush. Similarly, samples for soil texture, element analyses and enzyme 



activity analyses were collected from plots of black grit. For soil texture, elemental 

analyses, the same procedure was applied to the same plots to remove the second 

centimeter. Samples for geological thin sections, microscopy and X-ray computed 

microtomography analyses as well as photobiont isolation were taken by pressing five 

sterile Petri dishes into the ground (black grit). All samples were shipped and stored 

air-dry until further analyses. 

Dust was collected from a plastic sheet (31 cm x 43 cm), which had been carefully 

attached to the ground by pegs. After 10 days of exposure to the open air, the dust 

was wiped off with a P-free filter paper, which was slightly wetted by double distilled 

water (ddH2O) and placed in a Falcon tube for transport. 

 
 

Mineralogical analyses of black and white grit samples 

For mineralogical analyses, three field replicates of black and white grit (first cm), 

respectively, were combined. To release contained fine particles in grit stones the 

samples were finely ground in a ball mill to < 0.5 mm before the clay fraction < 2 µm 

was separated quantitatively by the Atterberg method by repeated sedimentation (11 

times). Electrical conductivity (EC) and pH of the sample fractions were determined in 

a 1:10 aqueous extract (4.5 g sample and 45 mL deionized H2O). The EC of deionized 

H2O was 0.8 µS cm-1. The concentrations of F-, Cl-, NO2
-, Br-, NO3

-, PO4
3-, SO4

2-, Na+, 

NH4
+, K+, Mg2+ and Ca2+ in the 1:10 aqueous extracts were quantified with a Metrohm 

IC instrument (930 Compact IC Flex). The standard solution with the lowest 

concentration was 0.25 mg L-1. Measured values below this concentration were not 

evaluated. The validity of the determination of anions and cations was determined by 

calculating the charge balance (mmolc) of anions and cations. Chemical composition 

of the two particle size fractions was determined with an XRF analyzer (S1 TITAN, 

Bruker; Middlesex, USA). The > 2 µm samples were gently ground with a mortar before 



analysis of the dry powders. For identification of the clay minerals, the exchange sites 

of the < 2 µm fraction were saturated with Mg, transferred to glass slides and allowed 

to dry at room temperature. For the samples, X-ray diffraction patterns were obtained 

with an X-ray diffractometer (Siemens D500, Germany, Cu Kα radiation). The > 2 µm 

fractions were ground in a mortar and precipitated to glass slides before X-ray 

diffraction analyses. 

 
Soil texture and element content of grit stones and dust samples 

Soil texture was determined on a combined sample of three field replicates for black 

grit from the first and second cm, respectively, using sieving and sedimentation 

procedures after Blume et al. (2010). For elemental analyses, substrates of the first 

and second cm of three samples were ground to < 0.5 mm using a mixer mill (Retsch 

MM 200, Haan, Germany) operated at 30 Hz for 5 min with metal beads. Each sample 

was analyzed in duplicate. Total C, N, and S content was obtained by dry combustion 

using an elemental analyzer (VARIO EL, Elementar Analysensysteme GmbH, Hanau, 

Germany). Inorganic C (Cinorg) content was determined by Scheibler calcimeter and 

organic C (Corg) content was calculated by subtracting Cinorg from total C content 

(Blume et al., 2011).  

For total elemental analysis, 0.5 g dry substrate or the whole filter paper with adhering 

dust (dust sample), respectively, was extracted using microwave-assisted digestion 

with aqua regia solution (3:1 hydrochloric acid : nitric acid) (Chen and Ma, 2001; ISO 

standard 11466). The elemental concentrations were then determined by inductively 

coupled plasma optical emission spectroscopy (ICP OES) (JY 238 UL Trace, France). 

Sequential P fractionation was carried out after Hedley et al. (1982), with slight 

modifications. Solubility of the fractions was assigned to labile P (resin-P and NaHCO3-

P), moderately labile P (NaOH-P), relatively stable P (H2SO4-P) and non-extractable P 



(residual-P). Total P concentration in the fractionation extracts was determined by ICP 

OES at 214 nm wavelength.  

 

 

Scanning electron microscope – energy dispersive X-ray analysis (SEM-EDX) 

To visualize structures and elemental distributions on single black grit stones, a field 

emission scanning electron microscope (SEM, MERLIN® VP Compact, Carl Zeiss 

Microscopy GmbH, Oberkochen, Germany) equipped with an energy dispersive X-ray 

(EDX) detector (XFlash6/30, Bruker Nano GmbH, Berlin, Germany) was used. Before 

analysis, the grit-stones were fixed by hot glue on 0.5”SEM Pin Stubs (agar scientific; 

Plano GmbH, Wetzlar, Germany) and coated with carbon under vacuum (EM SCD 

500, Leica Microsystems GmbH, Wetzlar Germany). SEM images were taken at 5kV 

up to 25 kV and elemental distributions were analyzed using SEM-EDX Quantax Esprit 

software (version 2.0, Bruker Nano GmbH, Berlin, Germany). 

  
Preparation and microscopy of thin sections and cross sections of lichen thalli 

To visualize colonization of the grit stones, thin sections of single black grit stones were 

prepared. Grit stones including inhabiting organisms (n = 50) were fixed, dehydrated 

and embedded in acrylic resin (LR-white; London Resin Company, London, UK) 

according to Bungartz et al. (2004). All steps were conducted in a vacuum chamber. 

The embedded samples were polished on one side, fixed to glass slides and polished 

to a thickness of approximately 30 µm. In addition to light microscopy the thin sections 

were investigated under a fluorescence microscope (Axioskop; HBO 50; Carl Zeiss, 

Jena, Germany) with 200-fold magnification and AxioVision software (Carl Zeiss, Jena, 

Germany). The autofluorescence of the green algal photobionts (red) as well as of the 

fungal hyphae of the lichens (white) was visualized (blue-violet 395-440 nm excitatory 

577 filter; 460 nm chromatic beam). 



In addition to the thin sections, also cross sections of hydrated lichen thalli were 

prepared by using lichen thalli, which were detached from black grit stones. They were 

cut with a cryo-microtome to visualize the inner structure of the thalli. The 20 to 25 μm 

thin cross sections were transferred with a fine brush to a drop of water on an objective 

slide, covered with a cover slip and investigated by light microscopy (Axioskop, Carl 

Zeiss, Jena, Germany) using oil immersion and a 630-fold magnification. 

 

X-ray computed tomography analysis 

To investigate the swelling and shrinking potential of single black grit stones during 

wet-dry cycles, computed microtomography (µCT) scans were done using a Zeiss 

Xradia 520 versa (Jena, Germany). A single colonized grit stone was first scanned in 

a dry state, using 80 keV and 1600 projections with an acquisition time of 3 sec. The 

resulting voxel edge length was 13.41 µm. The projections were then reconstructed as 

an 8 bit greyscale tiff image stack with 1012 slices. After the first scan, the sample was 

submerged in tap water for 10 min, to allow the lichen tissue to become fully hydrated. 

Then, the grit stone was placed in a closed falcon tube and allowed to equilibrate in 

the dark overnight, in order to prevent the sample from swelling or shrinking during the 

second scanning process, as this would have resulted in blurred images. The same 

scanning parameters were used for the second scan of the hydrated grit stone. 

Image analysis was done using the software ImageJ (Schindelin et al., 2012). For noise 

reduction, we used the non-local means denoising algorithm (Buades et al., 2011) with 

default settings. This filter works like Gaussian blurring, but preserves edges and 

boundaries. The segmentation was done using the trainable WEKA segmentation 

plugin for ImageJ (Arganda-Carreras et al., 2017). This plugin is very effective for 

multiphase segmentation because it combines a collection of machine learning 

algorithms with a set of selected image features to produce pixel-based segmentation. 



Briefly, this plugin can be trained to learn from user input on a training dataset to later 

perform the same task on an unknown dataset. After manually selecting stone, lichen 

and pore space, the plugin needed three training runs until it produced a very precise 

classification of the three phases. 

After the segmentation, a median filter with a window size of 2 voxel was used to 

remove individual isolated voxel from the segmented image. The volume of the 

different phases was measured by counting the voxels and multiplying them with the 

voxel resolution. The surface was measured using the “isosurface” algorithm of the 

BoneJ plugin in ImageJ (Doube et al., 2010). This feature uses marching cubes to 

create a triangular surface mesh and calculates the object surface as the sum of the 

areas of the triangles (Lorensen and Cline, 1987). For the visualization of the scans, 

we used the Vaa3d Software Version 3.2 (Peng et al. 2014), as well as the volume 

viewer plugin from ImageJ. 

 
 

Photobiont isolation and culturing 

Two single lichen thalli from black grit stones of the first cm were picked manually and 

crushed in 100 μL ddH2O before plated on petri dishes with Bold’s Basal Medium 

(BBM; Bischoff and Bold, 1963) with 1.5 % agarose under sterile conditions. After four 

weeks two photobiont colonies were picked with a sterile needle under a binocular 

microscope and plated on fresh BBM plates with 1.5 % agarose. After additional four 

weeks the plates were checked for pureness and the two pure photobiont colonies 

were transferred to 200 mL liquid BBM medium as photobiont stocks. Both stock 

cultures were maintained at 20 μE m-2 s-1 and a light–dark regime of 16:8 hours at 17 

°C. The cultures were shaken several times per day to allow gas exchange with the 

atmosphere for four months. 

 



 

Long term pH development of photobionts 

To detect the pH development of lichen photobionts, 10 mL of each of the two 

photobiont stocks were added to 190 mL of liquid BBM media under sterile conditions. 

Three replicates for each lichen photobiont were prepared in this way and cultivated 

under the conditions described together with three replicates of 200 mL sterile BBM 

medium as controls. Every three weeks, 15 mL of each culture and of the controls were 

decanted into Falcon tubes and the pH was measured with a pH electrode (Meter Lab 

PHM210, ± 0.01; Radiometer Analytical SAS; Lyon, France). Each replicate was 

measured three times and a mean value was calculated. The measurements were 

done in week 0 (starting point of the experiment) and then repeated every three weeks 

up to 12 weeks. 

  
 

Short term O2 and pH development of photobionts 

To monitor short term O2 and pH development of photobionts, experiments were 

prepared adding 10 mL of each photobiont stock solution to 90 mL of liquid BBM. Three 

replicates for each photobiont were prepared in this way in glass bottles. During the 

experiments, which followed Weber et al. (2011), the suspensions were stirred by a 

magnetic mixer to ensure a gas exchange with the atmosphere in the culture room at 

17 °C. Each sample was kept in the dark for 30 minutes for adaptation and pH and O2 

was measured every 2 minutes during an interval of 10 additional minutes in the dark. 

Oxygen was measured with an O2 electrode (WTW FDO 925, 0.00-20.00 mg L-1 ± 

0.5% v. Mw.; Xylem analytics GmbH and Co KG, Weilheim, Germany) and pH with a 

pH electrode (Meter Lab PHM210; Radiometer Analytical SAS; Lyon, France), which 

were fixed to the glass bottle to have continuous measurements of both, oxygen and 

pH. Afterwards the suspensions were exposed to an LED-light panel (PG8 14W LED 



Plant Grow Light, Excelvan) as light source to measure pH and O2 development at 

different light levels (20, 40, 80, 120, 150, 200, 220 μE). The different light levels were 

achieved by altering the distance between the light panel and the samples which was 

controlled with a universal light meter (ULM-500, WALZ, Effeltrich, Germany) that was 

mounted to the glass bottle. The algal suspensions were allowed to adapt for 10 

minutes during exposure of the first light level (20 µE) and pH and O2 was measured 

at this light intensity every 2 minutes during additional 10 minutes. Afterwards the 

samples were exposed to the next light level with a one-minute adaptation period. After 

the experiments, 1 mL of each algal suspension was taken out and centrifuged. The 

pellet was re-suspended in 4 mL DMSO and the chlorophylla+b content was extracted 

and calculated following Ronen and Galun (1984) as a proxy for the biomass of each 

culture. 

  
 

Determination of enzyme activity 

From three replicates of each black grit sample (first cm, unground), alkaline 

phosphatase (ALP), acid phosphatase (ACP), and phosphodiesterase (PDE) activity 

were determined after Tabatabai and Bremner (1969) and Eivazi and Tabatabai 

(1977). The enzyme activity was measured in µg p-nitrophenol discharged from a pre-

given p-nitrophenylphosphate solution in 1 g material within 1h (µg p-nitrophenol (g h)-

1). 

  
 

Statistics 

The Shapiro Wilk and Levene’s test were used to test the elemental parameters of the 

first and second cm substrate for normal distribution and homogeneity of variances, 

respectively. A paired t-test was applied to reveal significant differences between the 

elemental concentrations of the first and second centimeter. All statistical analyses 



were performed using R software version 3.5.3 (R Core team, 2019). Unless otherwise 

noted, significant differences refer to P ≤ 0.05. 
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