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Abstract: Crystalline ceramics are intensively investigated as effective materials in various nuclear
energy applications, such as inert matrix and accident tolerant fuels and nuclear waste immobilization.
This paper presents an analysis of the current status of work in this field of material sciences.
We have considered inorganic materials characterized by different structures, including simple oxides
with fluorite structure, complex oxides (pyrochlore, murataite, zirconolite, perovskite, hollandite,
garnet, crichtonite, freudenbergite, and P-pollucite), simple silicates (zircon/thorite/coffinite, titanite
(sphen), britholite), framework silicates (zeolite, pollucite, nepheline /leucite, sodalite, cancrinite,
micas structures), phosphates (monazite, xenotime, apatite, kosnarite (NZP), langbeinite, thorium
phosphate diphosphate, struvite, meta-ankoleite), and aluminates with a magnetoplumbite structure.
These materials can contain in their composition various cations in different combinations and
ratios: Li–Cs, Tl, Ag, Be–Ba, Pb, Mn, Co, Ni, Cu, Cd, B, Al, Fe, Ga, Sc, Cr, V, Sb, Nb, Ta, La, Ce,
rare-earth elements (REEs), Si, Ti, Zr, Hf, Sn, Bi, Nb, Th, U, Np, Pu, Am and Cm. They can be
prepared in the form of powders, including nano-powders, as well as in form of monolith (bulk)
ceramics. To produce ceramics, cold pressing and sintering (frittage), hot pressing, hot isostatic
pressing and spark plasma sintering (SPS) can be used. The SPS method is now considered as one of
most promising in applications with actual radioactive substances, enabling a densification of up to
98–99.9% to be achieved in a few minutes. Characteristics of the structures obtained (e.g., syngony,
unit cell parameters, drawings) are described based upon an analysis of 462 publications.
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1. Introduction

Crystalline ceramics, aiming to immobilize high-level radioactive waste (HLW), are important for
the current stage of development of modern nuclear technology in the world.

The crystal-chemical principle is used to design multicomponent ceramics with needed structures.
The approach to designing mineral-like crystalline materials is based upon the structural features of
materials and isomorphism concept. The choice of the structural forms of compounds for discussion
here was based upon the following criteria:

(1) The ability of the structure to include various cations in different combinations and ratios.
(2) Known high stability of structure to the action of the destructive factors of the environment during

their prolonged exposure (“mineral-like” compounds preferred while “the nature suggests”)
such as high temperatures, thermal “stresses”, radiation levels, the corrosive action of water and
other chemical solutions. Criteria for the resistance of materials to such effects are justified by
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the features of the crystal structure of materials including small interatomic distances, and the
possibility of their controlled variation in the desired direction when cations and/or anions
of given sizes are included in the crystallographic positions. Most of the crystalline matrices
discussed in the present work meet these criteria in full or in part. Herewith the classification
criteria for crystalline ceramics were based on considering first simple and then more complex
structures, e.g., starting with oxides (from simple oxides to complex oxides) and moving to salt
compositions (from simple salt to complex ones).

The concept of immobilizing the radioactive elements of nuclear waste in an assemblage of
mineral phases was originally introduced by Hatch [1] at Brookhaven National Laboratory in 1953.
The feasibility of making a ceramic of natural, mineralogically-stable phases was demonstrated by
McCarthy [2,3] and Roy [4] at the Pennsylvania State University between 1973 and 1976. Since that
time, a number of other mineralogic-ceramic assemblages have been developed [5]. Among these are
the Sandia titanate-based ceramic [6], the Australian ceramic “SYNROC” [7–10], the silicate-phosphate
supercalcine ceramics [11], the alumina-based tailored ceramics [12,13] and the Pu pyrochlores [14,15].
The structural types of monazite, kosnarite (NZP), langbeinite and other ones were considered as
matrices for the incorporation of simulated wastes containing f-elements and that also contain uni-,
bi-, and trivalent elements involved in radiochemical processes [16–27]. Cold pressing and sintering,
as well as hot isostatic pressing often result in ceramics containing an intergranular glassy phase
with radionuclides preferentially migrating to the glassy phase [28–36]. The radionuclides that are
incorporated in the intergranular glassy phase(s) will then have leaching rates at about the same order
as those from a glassy waste-form.

Crystalline waste-forms synthesized at moderate temperatures such as within 700 to 750 ◦C have
not been investigated as intensely as those formed at high temperatures [11], although crystalline
waste-forms made from clay have been studied almost continuously since the 1953 work of Hatch [1,11].
Supercalcine ceramics synthesized at high temperatures often contained sodalite-cancrinite mineral
assemblages. Roy [37] proposed in 1981 a low solubility phase assemblage as a waste-form [37] using
a low temperature hydrothermal process. The assemblage consisted of micas, apatite, pollucite,
sodalite-cancrinite and nepheline, many of which could be produced using various clay minerals
such as kaolin, bentonite and illite mixed with radioactive waste. However there were no continuous
commercial technologies available at that time that could process the waste/clay mixtures in a
hydrothermal environment, and clay-based crystalline waste-forms were not pursued. The situation
changed in 1999 when Studsvik had built in Erwin a commercial facility to continuously process
radioactive wastes by pyrolysis at moderate temperatures in a hydrothermal steam environment [38,39].
This facility utilizes Fluidized Bed Steam Reforming (FBSR) technology to pyrolyze 137Cs- and
60Co-contaning spent organic ion exchange resins produced by commercial nuclear facilities.
FBSR technology can also process a wide variety of solid and liquid radioactive wastes, including
spent organic ion exchange resins, charcoal, graphite, sludge, oils, solvents and cleaning solutions with
contaminations up to radiation levels reaching 4 Sv/h (400 R/hr). The waste organics are destroyed,
creating steam and CO2. The clay serves in the FBSR process as a mineralizing agent, and feldspathoid
minerals (sodalite, nosean and nepheline) are formed by the nanoscale reaction of waste components
with clay. The phases formed act as hosts for waste contaminants such as Cl, I, F, 99Tc from SO4

alkali (Na, K, Cs) bearing wastes [40–44]. The mineralization occurs at moderate temperatures used
within the range when most clays become amorphous at the nanoscale level, e.g., kaolin, bentonite
(montmorillonite), and illite. The octahedral Al3+ cation in the clay structure is destabilized, and clays
become amorphous as confirmed by X-ray diffraction (XRD) analysis, losing their hydroxyl (OH–)
groups. The alkalis from waste act as activators of unstable Al3+ cations, and form new mineral phases
catalyzing the mineralization. In the absence of steam many of these mineral phases can only be
formed if temperatures are above 1200 ◦C.

Many of the compounds under consideration have structures similar to those of natural minerals
(the so-called mineral-like compounds). Others of the discussed ones are not structural analogs of
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any known minerals (that its, of what is known today, as there are examples of compounds being
developed for the radioactive waste immobilization that were obtained synthetically, and many years
later a mineral was discovered, whose structural analog they became. For example, the mineral
kosnarite KrZr2(PO4)3 was discovered in 1991, and then kosnarite-like compounds (for example, NZP
and NASICON) were synthesized and investigated many years before the discovery of this mineral).

Ceramic waste-forms can range from single phase, i.e., UO2 and single phase solid solutions, i.e.,
(U, Th, Pu)O2, to multiphase ceramics formulated in a such way that each waste radionuclide can
substitute on a given host lattice in the various phases used.

2. Theoretical Aspects of Substitution

The crystal-chemical substitutions in crystalline waste-forms must be electrically balanced [45,46]
which is important when relying on the long range order (LRO) of crystals accounting for the size
and coordination of the crystallographic site, which will act as host to a given radionuclide, or its
decay product upon transmutation (see [15] for natural analogs). Moreover, if a monovalent cation
transmutes to a divalent one, the substitutions must be coupled to retain the electrical balance of the
host phase without destroying the integrity of the phase. It means that the lattice site must be of
suitable size and have a bond coordination able to accept the cation resulting from transmutation.
The bond system of a crystalline ceramic can only maintain its charge balance if:

(1) Sufficient lattice vacancies exist in the structure or,
(2) A variable valence cation such as Fe or Ti is present in a neighboring lattice site balancing

the charge.

Both above ways assume that the variable valence cations do not change lattice sites, and that
the charge balancing cations are in the nearby lattice sites of the same host phase. The lattice site
must be of close size flexible enough to accommodate the transmuting cation. Better flexibility is
characteristic to host phases with lattice sites having irregular coordination or are distorted, as shown
in some examples below. The flexibility (solubility) of waste-form mineral phase(s) as hosts for a
different valence substituted cation can be analyzed by performing coupled substitutions. When the
number of cations changes during the substitution, a vacancy is either created or consumed, however
the substitution must maintain electrical neutrality. These types of substitution are characteristic for
polymorphic changes such as [47], where � denotes a vacancy:

� + Ba2+
→ 2K+, or � + Ca2+

→ 2Na+, or � + Na+ + 2Ca2+
→ 3Na+ + Ca2+

In these coupled substitutions it is implicit that the exchanging cations occupy the same lattice sites,
have the same coordination, and thus the crystallographic symmetry is maintained. These substitutions
are typically written using Roman numerals that designate the number of oxygen atoms that coordinate
around a given cation, e.g., VIIICa designates the octahedral VIII-fold coordination for the Ca2+ lattice
site in oxyapatites:

3Ca2+︸ ︷︷ ︸
host phase

→ 2Nd3+ + �︸        ︷︷        ︸
substituted phase

Calcium-neodymium-coupled substitutions were proven successful in the apatite (Ca6[SiO4]3)
structure, resulting in a completely substituted Nd4�2[SiO4]3, where 2/3 of the lattice sites have
Nd3+ and 1/3 are vacant [45–47]. Ca2+ is normally in VIII-fold coordination in the apatite and has a
1.12 Å atomic radius [47–50]. The Nd3+ cation in VIII-fold coordination also has an atomic radius of
1.11 Å [50], which is very close to the Ca2+ atomic radius in VIII-fold coordination. It has been shown
that the rare earth elements from La3+ through Lu3+ can substitute for Ca2+ and form oxyapatites,
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RE4.67�0.33[SiO4]3O [51]. It was also shown [3] that even more complex but coupled substitutions were
possible in the oxyapatite structure, such as:

6VIIICa2+︸     ︷︷     ︸
host phase

→ 1.7VIIIINd3+ + 1.7VIIIICs+ + 0.86VIIIICe4+ + 0.86VIIIISr2+ + 0.88 �︸                                                                                      ︷︷                                                                                      ︸
substituted phase

where the atomic radius, r, of Cs+ in VIII-fold coordination is 1.74 Å, Ce4+ in VIII-fold coordination is
0.97 Å, and Sr2+ in VIII-fold coordination is 1.26 Å. In this case small radii cations e.g., Ce4+ are mixed
with larger radii cations such as Cs+, so that individual lattice sites can distort without perturbing the
entire crystal structure of the host mineral. It should be noted that the exchanging cations are always
in the same lattice site of the same host phase [3,45,46,51].

The substitutions such as those given above for the oxyapatites were also demonstrated
to be possible in many other Ca-bearing mineral phases such as larnite (Ca2SiO4 or b-C2S),
alite (calcium trisilicate or Ca3SiO5 or C3S), C3A (Ca3Al2O6) and C4AF (Ca4Al2Fe2O10), characteristic
for cements [45,46]. This allowed Jantzen, et. al. [52,53] to make substitutions for Ca2+ in each phase
(up to ~15 mole%) and prove possible the following additional substitutions:

Ca2+ + �︸      ︷︷      ︸
host phase

→ 2Cs+︸︷︷︸
substituted phase

2Ca2+ + �︸        ︷︷        ︸
host phase

→ Cs+ + Sr2+
0.5 + Nd3+

0.17 + Ce4+
0.25 + 0.08 �︸                                               ︷︷                                               ︸

substituted phase

1.5Ca2+ + Sr4+︸              ︷︷              ︸
host phase

→ Sr2+ + Mo5+ + 0.5 �︸                      ︷︷                      ︸
substituted phase

4Ca2+ + Fe3+ + Al3+︸                       ︷︷                       ︸
host phase

→ 0.66Nd3+ + Zr4+ + Mo4+ + Sr2+ + Ba2+ + 1.33 �︸                                                                 ︷︷                                                                 ︸
substituted phase

4IXCa2+︸    ︷︷    ︸
r∼1.18

◦

A

+ 2VIFe3+︸   ︷︷   ︸
r=0.65

◦

A︸                    ︷︷                    ︸
host phase

→ 2.66IXNd3+︸        ︷︷        ︸
r=1.16

◦

A

+ 0.38VICe4+︸        ︷︷        ︸
r=0.87

◦

A

+ 0.56VIZr4+︸       ︷︷       ︸
r=0.72

◦

A

+ 0.75VIFe3+︸       ︷︷       ︸
r=0.65

◦

A

+ 1.65 �

︸                                                                                 ︷︷                                                                                 ︸
substituted phase

It should be noted that the number of lattice sites have to be equivalent on the left-hand side and
right hand site of the above equations.

These types of crystal-chemical substitutions have been studied in several waste-forms including
SYNROC (SYNthetic ROCk) titanate phases containing zirconolite (CaZrTi2O7), perovskite (CaTiO3),
and hollandites (nominally Ba(Al,Ti)2Ti6O16) [54], and in high alumina-tailored ceramic phases such
as magnetoplumbites. Notable that magnetoplumbites were also found as a minor component of
SYNROC, which immobilizes waste with high contents of Al [55].

Hollandite is the Cs+ host phase in the SYNROC phase assemblages. Its structure can be written
as BaxCsy(Al,Fe)2x+yTi8-2xyO16 where x + y must be <2 [56]. It has two types of octahedral sites, one of
which accommodates trivalent cations like Al3+, Ti3+ and Fe3+, while the other accommodates Ti4+.
The Cs+ is accommodated in tunnels that normally accommodate the Ba2+ cation, and Cs-Ba lattice
sites are VIII-fold coordinated [54,56]. On synthesis the substitution orders and incommensurate
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superstructures result when Cs+ substitutes for Ba2+ [55]. Cs has been experimentally substituted for
Ba when Fe3+ is substituted for Ti4+ in the VI-fold sites of hollandite. The species

VIIICs+0.28
VIIIBa2+

1.00︸                 ︷︷                 ︸
A site

VIAl3+1.46
VIFe3+

0.82︸             ︷︷             ︸
B site

VITi4+5.72︸  ︷︷  ︸
C site

O16

has been synthesized by the sintering (frittage) of precursors in air at 1320 ◦C [56]. Ba–Al hollandite
(Ba1.16Al2.32Ti5.68O16) was irradiated with 1–2.5 MeV electrons and β-irradiated up to summary doses
of 4 × 108 to 7 × 109 Gy, after which it was found to contain Ti3+ centers and O2– superoxide ions that
confirmed the mechanism of charge balance during transmutation [56]. Theoretically, the limiting
value of Cs in hollandite is y = 0.81, which corresponds to a 9.54 wt% waste loading of Cs2O [57].

3. Synthesis of Ceramic Waste-Forms

Research and development of ceramic materials based upon compounds on the base of the
oxides and salt compositions were carried out for the immobilization of high-level wastes and the
transmutation of minor actinides. Structures of such materials provide the incorporation of various
cations and anions, either individually, or in various combinations and ratios. Structural forms in which
can be implemented a wide isomorphism of cations and anions (including in different crystallographic
positions) deserve special attention.

Among such structures the type NaZr2(PO4)3 (NZP) (analog—Mineral kosnarite) is regarded.
NZP solid solutions may include more than half of the elements of Periodic Table of Elements in various
combinations and ratios. The SYNROC developer calls them “near-universal solvent” [23], wherein this
form of the consolidation of waste components is mono-phase in contrast to the multiphase SYNROC.

Ceramic materials are synthesized using the following methods: Pressing and sintering (frittage),
hot isostatic or hot uniaxial pressing and other variants. Method Spark Plasma Sintering is the
perspective for this aim. It provides a formation of virtually no porous ceramics having a relative
density close to 99–100% for short time intervals (from 3 to 15 min). Reducing the porosity reduces the
free surface, and therefore reduces the reaction surface and reactivity in heterogeneous systems with
the participation of such materials. This in turn increases the heat, radiation and chemical stability of
the ceramic.

Ceramic forms characteristics are presented here with their structures.

4. Crystalline Ceramic Phase:

4.1. Simple Oxides

1. Silica, SiO2 [58–75], Figure 1.

Silicon dioxide, commonly known as silica (and/or quartz), is a prevalent element in the Earth’s
crust, a mineral of most igneous and metamorphic rocks. The formula “SiO2” is commonly known as
silicon dioxide. Silicon dioxide has a wide range of purposes, the main one being glass manufact-uring.
In nature, silicon dioxide is commonly found as sand and quartz. Silica has polymorphism. It is stable
under normal conditions of polymorphic modification—α-quartz (low temperature). Accordingly,
β-quartz is called a high-temperature modification. Silica (α-quartz) possesses the rhombohedral
structure, sp. gr. R3. Various elements with various oxidation states may attend in quartz: Li, Na, K.
Mg, Ca, Mn, Cu, Ni, Pb B, Al, Fe, Cr, Ti, Zr and Te. Materials based on silicon oxide SiO2, Silica (quartz)
were prepared in ceramic form by using methods: Hot isostatic pressing, laser sintering, cold pressing
and sintering at 1500 ◦C, cold pressing and ultra-low temperature sintering at T = 554–600 ◦C (30 min)
and Spark Plasma Sintering.

Materials on the base of Silica can serve as a matrix for the immobilization of radioactive Iodine
I-129 (half-life T1/2 = 15.7 × 103 years).
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Figure 1. Silica, SiO2. α-quartz (low temperature modification), structure rhombohedra, Sp. 
gr. R3. β-quartz (high-temperature modification, it forms from α-quartz at 846 K, stable up 
to 1140 K). Structure hexagonal, Sp. gr. P6222. Cations can be Li, Na, K. Mg, Ca, Mn, Cu, Ni, 
Pb B, Al, Fe, Cr, Ti, Zr and Te. 

2. Oxides Fluorite, XO2 [76–93], Figure 2. 

ZrO2, UO2, ThO2, HfO2, PuO2, α-U2O3 and Np2O3 have the simple fluorite cubic structure, sp. gr. 
Fm3m. Fluorite has physical properties that allow it to be used for a wide variety of chemical, 
metallurgical and ceramic processes. The waste ceramics with high zirconia and alumina contents, 

Figure 1. Silica, SiO2. α-quartz (low temperature modification), structure rhombohedra, Sp. gr. R3.
β-quartz (high-temperature modification, it forms from α-quartz at 846 K, stable up to 1140 K). Structure
hexagonal, Sp. gr. P6222. Cations can be Li, Na, K. Mg, Ca, Mn, Cu, Ni, Pb B, Al, Fe, Cr, Ti, Zr and Te.

2. Oxides Fluorite, XO2 [76–93], Figure 2.

ZrO2, UO2, ThO2, HfO2, PuO2, α-U2O3 and Np2O3 have the simple fluorite cubic structure, sp.
gr. Fm3m. Fluorite has physical properties that allow it to be used for a wide variety of chemical,
metallurgical and ceramic processes. The waste ceramics with high zirconia and alumina contents,
and Y2O3-stabilized zirconia with fluorite structure, are the main host phases for actinide, rare earth
elements, as well as Cs, Sr in high-level radioactive waste (HLW). Ceramics were made by HIP, HUP,
press and sinter, melting and crystallization and by Spark Plasma Sintering with high relative density
(up to 97–99%).
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4.2. Complex Oxides

3. Pyrochlore [86,94–117], Figure 3.

Many compounds with A2B2O7 stoichiometry adopt the pyrochlore structure. A derivative of
the fluorite structure type, A2B2O7, where the A-site contains large cations (Na, Ca, U, Th, Y and
lanthanides) and the B-site contains smaller, higher valence cations (Nb, Ta, Ti, Zr and Fe3+). Structure:
Cubic, Sp. gr. Fd3m, z = 8. Ceramics were prepared by cold pressing and sintering.
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4. Murataite [104,106,108,118–131], Figure 4.

Murataite is a derivative of the isometric fluorite structure A6B12C5TX40-x, with multiple units of
the fluorite unit cell; hosts U, Np, Pu, Am, Cm and REE, including Gd, a neutron absorber. It forms in
solid solution with pyrochlore. Structure: Cubic, Sp. gr. F43m, z = 4. Ceramics were prepared by cold
pressing and sintering.
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5. Zirconolite [112,113,132–150], Figure 5.

Monoclinic CaZrTi2O7, has a fluorite-derived structure closely related to pyrochlore, where Gd,
Hf, Ce, Th, U, Pu and Nb may be accommodated on the Ca/Zr-sites, as in the case of Ca(Zr,Pu)Ti2O7.
Structure: Trigon., Pr. gr. C2/c. Ceramics were prepared by cold pressing and sintering.
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Figure 5. Zirconolite. CaZrTi2O7, Structure monoclinic, Sp. gr. C2/c. Cations can be Gd, Hf, Ce, Th, U,
Pu and Nb.

6. Perovskite [110,134,140,151–159], Figure 6.

CaTiO3 has a wide range of compositions as stable solid-solutions; orthorhombic; consists of a
3-dimensional network of corner-sharing TiO6 octahedra, with Ca occupying the large void spaces
between the octahedra (the corner-sharing octahedra are located on the eight corners of a slightly
distorted cube). Plutonium, other actinides and rare-earth elements can occupy the Ca site in the
structure, as in (Ca,Pu)TiO3. The octahedra can also tilt to accommodate larger cations in the Ca site.
Structure: Cubic, sp. gr. Pm3m; rombohedral, Sp. gr. Pnma; may include: Ca, Y, REE, Ti, Zr, U and Pu.
Ceramics were prepared by cold pressing and sintering, and by hot pressing enabling densities up to
90–98% of theoretical.
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Figure 6. Perovskite. CaTiO3, Structure cubic, Sp. gr. Pm3m. Cations can be Ca, Y, REE, Ti, Zr, U
and Pu.

7. Hollandite [160–169], Figure 7.

Ba1.2(Al,Ti)8O16 tunnels between TiO6 octahedra to accommodate 133Ba, 137Cs and 90Sr. Structure:
Tetragon, Sp. gr. I4/m, Z = 4 and monocl., Sp. gr. I2/m, z = 1; may include: Na, K, Cs, Mg, Ca, Ba, Al,
Fe, Mn3+, Si, Ti and Mn4+. Ceramics were prepared by cold pressing and sintering.Materials 2019, 12, x FOR PEER REVIEW 8 of 49 
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Na2Al2(Ti,Fe)6O16 a spinel-based phase suitable for incorporating Al-rich wastes from Al fuel 
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Figure 7. Hollandite. Ba1.2(Al,Ti)8O16. Structure tetragon, Sp. gr. I4/m, monocl, Sp. gr. I2/m. Cations
can be Na, K, Cs, Mg, Ca, Sr, Ba, Al, Fe, Mn3+, Si, Ti and Mn4+.

8. Garnet [87,89,104,105,170–194], Figure 8.

(1) [8]A3
[6]B2[TiO4]3, e.g., [8](Ca,Gd, actinides)[6]Fe2

[4]Fe3O12.
(2) A3B2(XO4)3; distorted cubic structure; BO6 octahedra and XO4 tetrahedra establish a

framework structure alternately sharing corners; A and B sites can host actinides, REs, Y,
Mg, Ca, Fe2+, Mn2+ and X = Cr3+, Fe3+, Al3+, Ga3+, Si4+, Ge4+ and V5+. Structure: Cubic,
Sp. gr. Ia3d, z = 8. Ceramics were prepared by cold pressing and sintering and using Spark
Plasma Sintering with high relative density up to 98–99% of theoretical.
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9. Crichtonite [131,195–202], Figure 9.

(Sr,Pb,La,Ce,Y)(Ti,Fe3+,Mn,Mg,Zn,Cr,Al,Zr,Hf,U,V,Nb,Sn,Cu,Ni)21O38. Sr, La, Ce, Y positions are
indicated by the solid circles. Other cations are in the octahedral positions. Structure: Rombohedral,
Sp. gr. R3. Ceramics were prepared by hot pressing.
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Figure 9. Crichtonite. Sr(Mn,Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH)38. Structure rombohedral, Sp. gr. R3.
Cations can be Mg, Mn, Ni, Cu, Mn, Sr, Pb, Cr, Fe, Y, La, Ce, Ti, Zr, Hf, U, V and Nb.

10. Freudenbergite [153,155,203,204], Figure 10.

Na2Al2(Ti,Fe)6O16 a spinel-based phase suitable for incorporating Al-rich wastes from Al fuel
cladding/decladding. The A site can accommodate Na and K while the different octahedral sites can
accommodate Mg, Co, Ni, Zn, Al, Ti3+, Cr, Fe, Ga, Si and Nb. Structure: Monocl., Sp. gr. C12/m1.
Ceramics were prepared by cold pressing and sintering, ρ = 90%.
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11. P-Pollucite [205–215], Figure 11.

The ability of the pollucite structure to include large 1-, 2- and 3-valent cations allows flexibility
to select the desired model composition. When replacing the cations it will be becomes possible to
use cheap components; the introduction of small cations increases the concentration of cesium in the
composition of the mono-phase product. Structure: Cubic, sp. gr. I4132, z = 16; may include: Li, Na, K,
Rb, Cs, Tl, Be, Mg, Sr, Ba, Cd, Mn, Co, Ni, Cu, Zn, B, Al, Fe, Si, Ti, P, V, Nb and Ta. Compounds are
hydrolytically and radiation-wise stable. Ceramics were prepared by cold pressing and sintering and
Spark Plasma Sintering with high relative density (at last those up to 98–99%).
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12. Magnetoplumbites (aluminates) [13,55,216–224], Figure 12.

Nominally X(Al,Fe)12O19, where X = Sr, Ba, (Cs0.5 + La0.5) and (Na0.5 + La0.5). The X site is
XII-fold coordinated and both Cs+/Ba2+-Fe3+/Fe2+ or Cs+/Ba2+-Ti4+/Ti3+ type substitutions can occur.
Accommodating structures because they are composed of spinel blocks with both IV-fold and VI-fold
coordinated sites for multivalent cations, and interspinel layers which have unusual V-fold sites for
small cations. The interspinel layers also accommodate large cations of 1.15–1.84 Å, replacing oxygen
in XII-fold sites in the anion close packed structure. The large ions may be monovalent, divalent,
or trivalent with balancing charge substitutions either in the interspinel layer (Na0.5 + La0.5) or between
the interspinel layer and the spinel blocks (Cs+/Ba2+–Fe3+/Fe2+ or Cs+/Ba2+–Ti4+/Ti3+). Structure:
Hexagon., Sp. gr. P63/mmc, z = 2; may include: Na, Cs, Mg, Sr, Ba, Pb, Mn, Co, Cu, Al, Fe, Sc, Y, La,
Ce, Sm, Gd, Yb, Lu, actinides, Si, Ti and Sn. Ceramics were prepared by cold pressing and sintering
and by hot pressing.Materials 2019, 12, x FOR PEER REVIEW 10 of 49 
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Figure 12. Magnetoplumbite. (Sr,Ba, ((Na,Cs)0.5+La0.5))(Al,Fe)12O19. Structure hexagon., Sp. gr.
P63/mmc. Cations can be Na, Cs, Mg, Sr, Ba, Pb, Mn, Co, Cu, Al, Fe, Sc, Y, La, Ce, Sm, Gd, Yb, Lu, An,
Si, Ti and Sn.

13. Zircon/Thorite/Coffinite [83,110,140,225–235], Figure 13.

ZrSiO4/ThSiO4/USiO4; zircon is an extremely durable mineral that is commonly used for U/Pb
age-dating, as high uranium concentrations (up to 20,000 ppm) may be present; the PuSiO4 end
member is known, and Ce, Hf and Gd have been found to substitute for Zr. Structure: Tetragon. Sp. gr.
I41/amd, z = 4; may include: REE, Th, U, Pu; Na, Mg, Ca, Mn, Co, Fe, Ti, P, V, Se and Mo. Ceramics
were prepared by hot pressing, ρ = 99.1% and by Spark Plasma Sintering, ρ = 99%
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Figure 13. Zircon/Thorite/Coffinite. ZrSiO4/ThSiO4/USiO4. Structure tetragon., Sp. gr. I41/amd.
Cations can be Na, Tl, Mg, Ca, Mn, Co, Fe, Ti, REE, Ti, Th, U, Pi, P, V, Mo and Se.

14. Titanite (sphene) [104,110,236–238], Figure 14.

CaTiSiO5 [CaTiO(SiO4)]. Structure: Monocl. Sp. gr. P2I/a, Z = 4; may include: Mg, Ca, Sr, Ba, Mn,
Al, Fe, Cr, Ce, Y, Zr, Th and F. Ceramics are known as a matrix for actinide immobilization, and were
prepared by cold pressing and sintering.
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Figure 14. Titanite (sphene). CaTiSiO5 [CaTiO(SiO4)]. Structure monocl., Sp. gr. P2I/a. Cations can be
Mg, Ca, Sr, Ba, Mn, Al, Fe, Cr, Ce, Y, Zr, Th and F.

15. Britholite (silicate apatite; also known as oxy-apatite in the literature) [3,46,51,239–249], Figure 15.

(REE,Ca)5(SiO4,PO4)3(OH,F); i.e., Ca2Nd8(SiO4)6O2, Ca2La8(SiO4)6O2; based on ionic radii of
Nd3+, La3+ and Pu3+, an extensive range of solubility for Pu3+ substitution for the Nd or La, particularly
on the 6h site, is expected. Since there is an extensive range in the Ca/RE ratio in these silicate apatites,
a fair amount of Pu4+ substitution may be possible; La3+ through Lu3+ can substitute for Ca2+ and form
oxyapatites, RE4.67�0.33[SiO4]3O; can also accommodate Cs, Sr, B, Th, U and Np. Structure: Monocl.,
Sp. gr. P21 and hexagon. Sp. gr. P63/m. Ceramics were prepared by cold pressing and sintering,
ρ = 95%.
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Figure 15. Britholite (silicate apatite, oxy-apatite). (REE,Ca)5(SiO4,PO4)3(OH,F)-Structure monoclin.
Sp. gr. P21/hexagonal, Sp. gr. P63/m. Cations can be Cs, Sr, B, REE, Th, U, Np and Pu.

4.3. Framework Silicates

16. Zeolites [75,250–266], Figure 16.

(Xx/n[(AlO2)x(SiO2)y] where X is the charge balancing counter-ion, n is the charge of the counter-ion,
x is the number of charge-deficient alumina sites, and y is the number of charge-neutral silica sites.
Zeolites are characterized by internal voids, channels, pores, and/or cavities of well-defined size in the
nanometer range, ≈4–13 Å. The channels and/or cavities may be occupied by charge compensating
ions and water molecules. Zeolites like Ag-Mordenite selectively sorbs I2 (129I); certain zeolites can
be converted to condensed oxide ceramics by heating. This process is particularly attractive for
waste-form synthesis because contaminants capture and immobilization is performed with minimal
steps. Structure of Zeolite-A showing alternate Al and Si atom ordering but omitting the tetrahedral
oxygens around each Al and Si may include Na, K, NH4

+, Cs, Mg, Ca, Sr, Co, Fe, Ga, REE and Ti.
45 natural zeolites and 100 artificial ones are known. Ceramics were prepared by hot pressing.
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depends on chemical composition. Cations can be Na, K, NH4+, Cs, Mg, Ca, Sr, Co, Fe, Ga, REE and Ti.

17. Pollucite [37,87,212,214,215,259,267–293], Figure 17.

(Ca,Na)2Al2Si4O12·2H2O; host for fission products such as 137Cs. Structure: Cubic, Sp. gr. Ia3d,
z = 16; may include: Li, Na, K, Rb, Cs, Tl, Be, Mg, Sr, Ba, Cd, Mn, Co, Ni, Cu, Zn, B, Al, Fe, Si, Ti, P,
V and Nb. Ceramics were prepared by Spark Plasma Sintering with high relative density (up to 96%).Materials 2019, 12, x FOR PEER REVIEW 12 of 49 
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19. Sodalite Group (name of mineral changes with anions sequestered in cage structure) 
[37,264,295,298–313], Figure 19. 

(1) Sodalite Na8Cl2Al6Si6O24, also written as (Na,K)6[Al6Si6O24]·(2NaCl) to demonstrate that 2Cl 
and associated Na atoms are in a cage structure defined by the aluminosilicate tetrahedra 
of six adjoining NaAlSiO4, is a naturally occurring feldspathoid mineral. It incorporates 
alkali, alkaline earths, rare earth elements, halide fission products and trace quantities of U 
and Pu. Sodalite was and it is being investigated as a durable host for the waste generated 
from electro-refining operations deployed for the reprocessing of metal fuel. Supercalcines 
which are high temperature, silicate-based “natural mineral” assemblages proposed for 
HLW waste stabilization in the United States in 1973–1985, contained sodalites as minor 
phases retaining Cs, Sr and Mo, e.g., Na6[Al6Si6O24](NaMoO4)2. Sodalite structures are 
known to retain B, Ge, I, Br and Re in the cage-like structures. Structure of Sodalite showing 
(a) two-dimensional projection of the (b) three-dimensional structure and (c) the four fold 
ionic coordination of the Na site to the Cl-ion and three framework oxygen bonds. 
Structure: Cubic, Sp. gr. 𝑃 3𝑛, z = 1; may include: Na, K, Mg, Ca, Mn, Fe, Al, Si, Ti, Cl, SO4 
and CO3. Ceramics were prepared by cold pressing and sintering; by HIP. 

Figure 17. Pollucite. (Ca,Na)2Al2Si4O12·2H2O. Structure cubic, Sp. gr. Ia3d. Cations can be Li, Na, K,
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18. Nepheline/Leucite [37,58,61,73,155,294–297], Figure 18.

NaAlSiO4 silica “stuffed derivative” ring type structure; some polymorphs have large nine-fold
cation cage sites, while others have 12-fold cage-like voids that can hold large cations (Cs, K, Ca).
Natural nepheline structure accommodates Fe, Ti and Mg. Two-dimensional representation of the
structure of nepheline showing the smaller 8 oxygen sites that are occupied by Na and the larger 9
oxygen sites that are occupied by K and larger ions, such as Cs and Ca. Structure may include: Li, Na,
K, Rb, Cs, Be, Mg, Ca, Ba, Pb, Mn, Co, Ni, Al, Fe, Cr, Si, Ti and V. Structure: Hexagon. Sp. gr. P63, z = 2.
Leucite. Structure: Tetragon. Sp. gr. I41/a and I41/acd; cubic, Sp. gr. Ia3d, z = 16.
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(1) Sodalite Na8Cl2Al6Si6O24, also written as (Na,K)6[Al6Si6O24]·(2NaCl) to demonstrate that 2Cl 
and associated Na atoms are in a cage structure defined by the aluminosilicate tetrahedra 
of six adjoining NaAlSiO4, is a naturally occurring feldspathoid mineral. It incorporates 
alkali, alkaline earths, rare earth elements, halide fission products and trace quantities of U 
and Pu. Sodalite was and it is being investigated as a durable host for the waste generated 
from electro-refining operations deployed for the reprocessing of metal fuel. Supercalcines 
which are high temperature, silicate-based “natural mineral” assemblages proposed for 
HLW waste stabilization in the United States in 1973–1985, contained sodalites as minor 
phases retaining Cs, Sr and Mo, e.g., Na6[Al6Si6O24](NaMoO4)2. Sodalite structures are 
known to retain B, Ge, I, Br and Re in the cage-like structures. Structure of Sodalite showing 
(a) two-dimensional projection of the (b) three-dimensional structure and (c) the four fold 
ionic coordination of the Na site to the Cl-ion and three framework oxygen bonds. 
Structure: Cubic, Sp. gr. 𝑃 3𝑛, z = 1; may include: Na, K, Mg, Ca, Mn, Fe, Al, Si, Ti, Cl, SO4 
and CO3. Ceramics were prepared by cold pressing and sintering; by HIP. 

Figure 18. Nepheline/Leucite. (Na, K)AlSiO4/K[AlSi2O6]. Structure hexagon., Sp. gr. P63/tetragonal,
Sp. gr. I41/a and I41/acd or cubic, Sp. gr. Ia3d. Cations can be Li, Na, K, Rb, Cs, Be, Mg, Ca, Ba, Pb, Mn,
Co, Ni Al, Fe, Cr, Si, Ti and V.



Materials 2019, 12, 2638 13 of 45

19. Sodalite Group (name of mineral changes with anions sequestered in cage
structure) [37,264,295,298–313], Figure 19.

(1) Sodalite Na8Cl2Al6Si6O24, also written as (Na,K)6[Al6Si6O24]·(2NaCl) to demonstrate that
2Cl and associated Na atoms are in a cage structure defined by the aluminosilicate tetrahedra
of six adjoining NaAlSiO4, is a naturally occurring feldspathoid mineral. It incorporates
alkali, alkaline earths, rare earth elements, halide fission products and trace quantities of U
and Pu. Sodalite was and it is being investigated as a durable host for the waste generated
from electro-refining operations deployed for the reprocessing of metal fuel. Supercalcines
which are high temperature, silicate-based “natural mineral” assemblages proposed for
HLW waste stabilization in the United States in 1973–1985, contained sodalites as minor
phases retaining Cs, Sr and Mo, e.g., Na6[Al6Si6O24](NaMoO4)2. Sodalite structures are
known to retain B, Ge, I, Br and Re in the cage-like structures. Structure of Sodalite showing
(a) two-dimensional projection of the (b) three-dimensional structure and (c) the four fold
ionic coordination of the Na site to the Cl-ion and three framework oxygen bonds. Structure:
Cubic, Sp. gr. P43n, z = 1; may include: Na, K, Mg, Ca, Mn, Fe, Al, Si, Ti, Cl, SO4 and CO3.
Ceramics were prepared by cold pressing and sintering; by HIP.

(2) Nosean, (Na,K)6[Al6Si6O24](Na2SO4)), silica “stuffed derivative” sodalite cage type
structure host mineral for sulfate or sulfide species.

(3) Hauyne, (Na)6[Al6Si6O24]((Ca,Na)SO4)1-2 sodalite family; can accommodate either Na2SO4

or CaSO4.
(4) Helvite (Mn4[Be3Si3O12]S: Be (beryllium) can be substituted in place of Al and S2 in the

cage structure along with Fe, Mn and Zn.
(5) Danalite (Fe4[Be3Si3O12]S).
(6) Genthelvite (Zn4[Be3Si3O12]S).
(7) Lazurite, (Ca,Na)6[Al6Si6O24]((Ca,Na)S,SO4,Cl)x; can accommodate either SO4 or S2, Ca or

Na and Cl.
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21.  Crystalline SilicoTitanate (CST) [73,110,273–275,277,320–324], Figure 21. 

Figure 19. Sodalite.group minerals. Sodalite/Nosean/Hauyne/Helvite/Danalite/Genthelvite/Lazurite.
(Na,K)6[Al6Si6O24]·(2NaCl)/(Na,K)6[Al6Si6O24](Na2SO4)/(Na)6[Al6Si6O24]((Ca,Na)SO4)1-2/

(Mn4[Be3Si3O12]S/(Fe4[Be3Si3O12]S)/(Zn4[Be3Si3O12]S)/(Ca,Na)6[Al6Si6O24]((Ca,Na),S,SO4,Cl)x;
Structure cubic, Sp. gr. P3n Cations and anions can be Na, K, Be, Mg, Ca, Mn, Fe, Al, Si, Ti, Cl, SO4

and CO3.

20. Cancrinite [37,314–319], Figure 20.

Cancrinite is a complex carbonate and silicate of sodium, calcium and aluminum with the formula
(Na,Ca,K)6[Al6Si6O24](( Na,Ca,K)2CO3)1.6·2.1H2O. It is classed as a member of the feldspathoid group
of minerals. Cancrinite is unusual in that it is one of the few silicate minerals to have a carbonate ion
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(CO3
2−) present in its structure. Mineral cancrinite will also contain some percentages of sulfate ions

(SO4
2−) and a chlorine ion (Cl−). Structure: Hexagonal, Sp. gr. P63.

Materials 2019, 12, x FOR PEER REVIEW 13 of 49 

 

(2) Nosean, (Na,K)6[Al6Si6O24](Na2SO4)), silica “stuffed derivative” sodalite cage type structure 
host mineral for sulfate or sulfide species. 

(3) Hauyne, (Na)6[Al6Si6O24]((Ca,Na)SO4)1-2 sodalite family; can accommodate either Na2SO4 or 
CaSO4. 

(4) Helvite (Mn4[Be3Si3O12]S: Be (beryllium) can be substituted in place of Al and S2 in the cage 
structure along with Fe, Mn and Zn. 

(5) Danalite (Fe4[Be3Si3O12]S). 
(6) Genthelvite (Zn4[Be3Si3O12]S). 
(7) Lazurite, (Ca,Na)6[Al6Si6O24]((Ca,Na)S,SO4,Cl)x; can accommodate either SO4 or S2, Ca or Na 

and Cl. 

 
Figure 19. Sodalite.group minerals. 
Sodalite/Nosean/Hauyne/Helvite/Danalite/Genthelvite/Lazurite. 
(Na,K)6[Al6Si6O24]·(2NaCl)/(Na,K)6[Al6Si6O24](Na2SO4)/(Na)6[Al6Si6O24]((Ca,Na)SO4)1-

2/(Mn4[Be3Si3O12]S/(Fe4[Be3Si3O12]S)/(Zn4[Be3Si3O12]S)/(Ca,Na)6[Al6Si6O24]((Ca,Na),S,SO4,Cl)x

; Structure cubic, Sp. gr. P3n Cations and anions can be Na, K, Be, Mg, Ca, Mn, Fe, Al, Si, 
Ti, Cl, SO4 and CO3. 

20. Cancrinite [37,314–319], Figure 20. 

Cancrinite is a complex carbonate and silicate of sodium, calcium and aluminum with the 
formula (Na,Ca,K)6[Al6Si6O24](( Na,Ca,K)2CO3)1.6·2.1H2O. It is classed as a member of the feldspathoid 
group of minerals. Cancrinite is unusual in that it is one of the few silicate minerals to have a 
carbonate ion (CO32−) present in its structure. Mineral cancrinite will also contain some percentages 
of sulfate ions (SO42−) and a chlorine ion (Cl−). Structure: Hexagonal, Sp. gr. P63. 

 
Figure 20. Cancrinite. (Na,Ca,K)6[Al6Si6O24]((Na,Ca,K)2CO3)1.6·2.1H2O. Structure hexagonal, 
Sp. gr. P63. Cations and anions can be Na, K, Ca. Al, Si, SO4 and Cl. 

21.  Crystalline SilicoTitanate (CST) [73,110,273–275,277,320–324], Figure 21. 

Figure 20. Cancrinite. (Na,Ca,K)6[Al6Si6O24]((Na,Ca,K)2CO3)1.6·2.1H2O. Structure hexagonal, Sp. gr.
P63. Cations and anions can be Na, K, Ca. Al, Si, SO4 and Cl.

21. Crystalline SilicoTitanate (CST) [73,110,273–275,277,320–324], Figure 21.

[(Ca,N2a,K,Ba)AlSiO4 incorporates Na, K, Cs, Ca, Sr, Ba, Pb, Al, REE, Bi, Ti, Zr, Nb and Ta.
Crystal structure of Cs exchanged Nb–titanium silicate. Structure: Cubic, sp. gr. Pm3m up to 105 ◦C,
after tetragon. Sp. gr. I4/mcm or P42/mcm. Ceramics were prepared by hot isostatic pressing.
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23. Monazite [12,16–18,87,89,140,141,231,235,244,293,331–359], Figure 23. 
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radionuclides including actinides and toxic metals into its structure. Monazite was proposed as a 
potential host phase for excess weapons plutonium and radionuclides, and toxic metals in glass 
ceramic waste-forms for low-level and hazardous wastes. Monazite structure (monazite mineral 
CePO4) has wide capacity isomorphous through which the cerium and phosphorus can be substituted 
for other elements, e.g.,: Ce → Li, Na, K, Rb, Mg, Ca, Sr, Ba, Cd, Pb, Bi, Y, La, Pr, Nd, Sm, Eu, Gd, Tb, 
Yb, Am, Cm, Cf, Es, Ge, Zr, Th, Np, U and Pu; P → Cr, Si, Se, V, As and S. Alternating chains of PO4 
tetrahedra and REO9 polyhedra. Structure: Monoclinic. Sp. gr. P21/n. Ceramics were prepared by cold 
pressing and sintering (ρ = 90–95%), hot pressing (ρ = 97%) and Spark Plasma Sintering with high 
relative density (up to 98–99%). 

Figure 21. SilicoTitanate (CST). SiTiO4. Structure cubic, Sp. gr. Pm3m up to 105 ◦C, after-tetragonal Sp.
gr. I4/mcm or P42/mcm. Cations can be Na, K, Cs, Ca, Sr, Ba, Pb, Al, REE, Bi, Ti, Zr, Nb and Ta.

22. Micas (Dehydroxylated) [37,325–330], Figure 22.

The following dehydroxylated micas have been synthesized phase pure: LiAl3Si3O11, NaAl3Si3O11,
KAl3Si3O11, RbAl3Si3O11, CsAl3Si3O11, TlAl3Si3O11, Ca0.5�0.5Al3Si3O11, Sr0.5�0.5Al3Si3O11,
Ba0.5�0.5Al3Si3O11 and La0.33�0.66Al3Si3O11. In the Cs mica up to 30 wt% Cs2O can be accommodated,
in the Rb-mica up to 22 wt% Rb2O can be accommodated, and in the Ba-mica up to 19 wt% BaO can
be accommodated. Mg, Fe2+, Fe3+, Mn, Li, Cr, Ti and V can substitute for VI-fold coordinated Al3+.
Structure: Monoclinic. Sp. gr. C2/c.
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Figure 22. Micas (Dehydroxylated). XY2–3Z4O10(OH, F)2 with X = K, Na, Ba, Ca, Cs, (H3O) and (NH4);
Y = Al, Mg, Fe2+, Li, Cr, Mn, V and Zn; and Z = Si, Al, Fe3+, Be and Ti. Structure monoclinic, Sp. gr.
C2/c.

4.4. Phosphates

23. Monazite [12,16–18,87,89,140,141,231,235,244,293,331–359], Figure 23.

CePO4 or LaPO4 are corrosion-resistant materials and can incorporate a large range of radionuclides
including actinides and toxic metals into its structure. Monazite was proposed as a potential host
phase for excess weapons plutonium and radionuclides, and toxic metals in glass ceramic waste-forms
for low-level and hazardous wastes. Monazite structure (monazite mineral CePO4) has wide capacity
isomorphous through which the cerium and phosphorus can be substituted for other elements, e.g.,:
Ce→ Li, Na, K, Rb, Mg, Ca, Sr, Ba, Cd, Pb, Bi, Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Yb, Am, Cm, Cf, Es, Ge,
Zr, Th, Np, U and Pu; P→ Cr, Si, Se, V, As and S. Alternating chains of PO4 tetrahedra and REO9

polyhedra. Structure: Monoclinic. Sp. gr. P21/n. Ceramics were prepared by cold pressing and
sintering (ρ = 90–95%), hot pressing (ρ = 97%) and Spark Plasma Sintering with high relative density
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Figure 23. Monazite. (Ce,La,Nd,Th)(PO4,SiO4). Structure monoclinic, Sp. gr. P21/n. Cations can be Li,
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24. Xenotime [231,334,344,360–363], Figure 24.

YPO4. Structure: Tetragonal. Sp.gr. I41/amd, z = 4, C.N.Y-On, n = 8. Isomorph including: Be, Ca,
Al, Sc, La, Ce, Er, Dy–Lu, Zr, Th and U. Ceramics were prepared by cold pressing and sintering.
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Figure 24. Xenotime (YPO4). Ce,La,Nd,Th)(PO4,SiO4). Structure tetragonal, Sp. gr. I41/amd. Cations
can be Be, Ca, Al, Sc, La, Ce, Er, Dy–Lu, Zr, Th and U.

25. Apatite [3,37,87,240,241,332,364–378], Figure 25.

Ca4-xRE6+x(SiO4)6-y(PO4)y(O,F)2 can be actinide-host phases in HLW glass, glass-ceramic
waste-forms, ceramic waste-forms and cements. The actinides can readily substitute in apatite
for rare-earth elements as in Ca2(Nd,Cm,Pu)8(SiO4)6O2, and fission products are also readily
incorporated. However, the solubility for tetravalent Pu may be limited without other charge
compensating substitutions.

Apatite has been proposed as a potential host phase for Pu and high-level actinide wastes.
Structure: Hexagonal, Sp. gr. P63/m or monoclinic, Sp. gr. P21/b; may include: Na, K, Cs, Mg, Ca, Sr,
Ba, Mn, Ni, Cd, Hg, Pb, Cr, Y, REE, Th, U, Si, P, V, As, S, F, Cl, OH and CO3. Ceramics were prepared
by cold pressing and sintering, ρ = 95%; by HIP.
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26. Sodium zirconium phosphate (NZP) [17–24,87,89,155,209,211,293,379–416], Figure 26.

The first studies of materials with such a structure were carried out by the authors [379–383]
in 1976–1987. They substantiated the crystal-chemical approach when choosing the composition
of substances and their structural modifications with ion-transforming properties (Li+, Na+, etc.):
NASICON, Langbeinite. Such materials have a frame structure: Na1 + xZr2SixP3-xO12, Na3M2 (PO4)3

(M = Sc, Cr, Fe), Na5Zr(PO4)3, LixFe2(WO4)3, LixFe2(MoO4)3. Elements in oxidation states 3–6 were
introduced into the frame positions: Sc, Cr, Fe, Si, Zr, P, W and Mo. It was also the first time in 1987 that
the rationale for the use of such structural analogs for the consolidation of HLW and transmutation
of minoractinides [384] was presented. The development of such materials—Structural analogues of
NASICON, NZP, Langbeinite—and their research, was continued in subsequent years.

NaZr2(PO4)3. The NZP structure can incorporate a complex variety of cations, including
plutonium; a three dimensional network of corner-sharing ZrO6 octahedra and PO4 tetrahedra in
which plutonium can substitute for Zr, as in Na(Zr,Pu)2(PO4)3. Complete substitution of Pu4+ for Zr
has been demonstrated in NZP. Cs and Sr can substitute for Na, while fission products and actinides
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substitute for Zr in octahedral positions. P is tetrahedral. Phosphates with the mineral kosnarite
structure (NaZr2(PO4)3 type, NZP) form a wide family. They can contain various cations in the
oxidation state from 1+ to 5+. The structure consists of several positions and so many various cations
can occupy it. These are MI = Li, Na, K, Rb, Cs; H, Cu(I) and Ag; MII = Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu,
Zn, Cd and Hg; MIII = Al, Ga, In, Sc, Y, La, Ce-Lu, Am, Cm, V, Cr, Fe, Sb and Bi; MIV = Ge, Sn, Ti,
Zr, Hf, Mo, Ce, Th, U, Np and Pu; MV = Sb, Nb and Ta. Structure: Rhombohedral, Sp. gr. R3c, R3c,
R3. This fact is extremely important, and can be useful for the synthesis of single-phase crystalline
products of the solidification of radioactive waste whose cationic composition, as a rule, is extremely
complicated. Ceramics were prepared by cold pressing and sintering (ρ = 80–98%), hot pressing
(ρ = 96%) and Spark Plasma Sintering with high relative density (up to 98–99.9%).
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Figure 26. Sodium zirconium phosphate (NZP), NaZr2(PO4). Structure rhombohedral, Sp. gr. Rc, R3c,
R3. Cations can be Li, Na, K, Rb, Cs, Cu and Ag; Mg, Ca, Mn, Zn, Sr and Ba; Mn, Co, Ni, Cu, Zn and
Cd; Sc, Fe, Bi, Ce–Lu, Am and Cm; Zr, Hf, Th, U, Np and Pu; V, Nb, Sb and Ta; Ti, Ge, Zr, Hf, U, Np, Pu,
Mo and Sn; Al, Sc, Cr, Fe, Ga, Y and In; Gd, Tb, Dy, Er and Yb; Mg; Na and K; Si, P, S, Mo and W.

27. Langbeinite [18,87,89,211,293,416–420], Figure 27.

Langbeinite is a potassium magnesium sulfate mineral with the formula: K2Mg2(SO4)3. It may
include much of cesium and other large 1- and 2-valent elements. The structure is a framework type,
also as for its kosnarite structure. Structure: Cubic, Sp. gr. P213; may include: Na, K, Rb, Cs, Tl, NH4,
Mg, Sr, Ba, Pb, Mn, Co, Ni, Zn, Al, Fe Cr, Ti3+, Ga, V3+, Rh, In, REE, Bi, Sn, Ti, Zr, Hf, P, Nb, Ta and S.
Ceramics were prepared by cold pressing and sintering, ρ = 88%.Materials 2019, 12, x FOR PEER REVIEW 17 of 49 
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28. Whitlockite [87,89,421–432], Figure 28.

Phosphates with the whitlockite structure (analog β-Ca3(PO4)2) were proposed as matrices for
radioactive waste immobilization. Their origin is both biogenic and cosmogenic. Whitlockite samples
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from meteorites, rocks of the Moon, Mars and other cosmogenic bodies, preserve the crystalline form
under the action of natural thermal “stress” and cosmic radiation. They contain small amounts of
uranium and thorium, and it is presumed to contain plutonium. It is known to form isostructural
compounds with H, Li, Na, K, Cu, Mg, Ca, Sr, Ba, Al, Sc, Cr, Fe, Ga, In, La, Ce, Sm, Eu, Gd, Lu, Th and
Pu. Thermal stability is up to 1200 ◦C, thermal expansion up to 1 × 10−5 deg−1 (25–1000 ◦C) are close
to Synroc and zirconolite; hydrothermal stable – leach rates at 90 ◦C up to 10−5 g·sm−2

·day−1, radiation
stable. Structure: Trigonal, Sp. gr. R3c. Ceramics were prepared by cold pressing and sintering
(ρ = 92–97%) and Spark Plasma Sintering with high relative density (up to 95–98%).
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Figure 28. Whitlockite. Ca3(PO4)2. Structure trigonal, Sp. gr. R3c.Cations can be H, Li, Na, K, Cu, Mg,
Ca, Sr, Ba, Al, Sc, Cr, Fe, Ga, In, La, Ce, Sm, Eu, Gd, Lu, Th, U and Pu.

29. Thorium phosphate/Diphosphate (TPD) [155,244,336,337,433–439], Figure 29.

Th4(PO4)4P2O7; a unique compound for the immobilization of plutonium and uranium; partial
substitution of Pu for Th has been demonstrated to up to 0.4 mole fraction, complete substitution is not
possible. Structure: Orthorhombic, Sp. gr. Pbcm, Pcam, z = 2; may include: U, Np, Pu, Am and Cm.
Ceramics were prepared by cold pressing and sintering (ρ = 87–93%).
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Figure 29. Thorium phosphate/Diphosphate (TPD). Th4(PO4)4P2O7. Structure orthorhombic. Sp. gr.
Pbcm and Pcam. Cations can be U, Np, Pu, Am and Cm.

4.5. Tungstate, Molybdates

30. Scheelite [89,440–457], Figure 30.

Materials with the structure of the scheelite mineral (calcium tungstate CaWO4) based on
individual molybdates and tungstates and solid solutions may contain elements in oxidation degrees
from 1+ to 7+: Li, Na, K, Rb, Cs and Tl; Ca, Sr, Ba, Mn and Cu; Fe, Ce, La–Lu and Y; Th, U, Np and
Pu; Nb, Ta-in Ca-positions and Mo, W, Re, I, V and Ge in W-positions. The structural analog CaWO4

crystallizes in the tetragonal structure, Sp. gr. I4/c. The structure is constructed of CaO8 polyhedral
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and WO4 tetrahedrals connected through common oxygen vertices. For some compounds ceramics
were prepared by the Spark Plasma Sintering (SPS) method, with a relative density of 92%.

Materials 2019, 12, x FOR PEER REVIEW 18 of 49 

 

 
Figure 29. Thorium phosphate/Diphosphate (TPD). Th4(PO4)4P2O7. Structure orthorhombic. 
Sp. gr. Pbcm and Pcam. Cations can be U, Np, Pu, Am and Cm. 

4.5. Tungstate, Molybdates 

30. Scheelite [89,440–457], Figure 30. 

Materials with the structure of the scheelite mineral (calcium tungstate CaWO4) based on 
individual molybdates and tungstates and solid solutions may contain elements in oxidation degrees 
from 1+ to 7+: Li, Na, K, Rb, Cs and Tl; Ca, Sr, Ba, Mn and Cu; Fe, Ce, La–Lu and Y; Th, U, Np and 
Pu; Nb, Ta-in Ca-positions and Mo, W, Re, I, V and Ge in W-positions. The structural analog CaWO4 
crystallizes in the tetragonal structure, Sp. gr. I4/c. The structure is constructed of CaO8 polyhedral 
and WO4 tetrahedrals connected through common oxygen vertices. For some compounds ceramics 
were prepared by the Spark Plasma Sintering (SPS) method, with a relative density of 92%. 

 
Figure 30. Scheelite. CaWO4. Structure tetragonal, Sp. gr. I4/c. Cations can be Li, Na, K, Rb, 
Cs, Tl, Ca, Sr, Ba, Mn, Cu, Fe, Ce, La–Lu, Y, Ge, Th, U, Np, Pu, Nb, Ta, V, Mo, W, Re and I. 

5. Summary of Crystalline Ceramic Waste-forms 

Crystalline materials including oxides-simple and complex, salts-silicates, phosphates, 
tungstates with various compositions and different structural modifications (30 structure forms) 
intended for nuclear waste immobilization were developed using various approaches and accounting 
for criteria of enough high durability (see e.g., [15,238,458–460]) requested for nuclear wasteforms. 
These are presented in Table 1.

Figure 30. Scheelite. CaWO4. Structure tetragonal, Sp. gr. I4/c. Cations can be Li, Na, K, Rb, Cs, Tl, Ca,
Sr, Ba, Mn, Cu, Fe, Ce, La–Lu, Y, Ge, Th, U, Np, Pu, Nb, Ta, V, Mo, W, Re and I.

5. Summary of Crystalline Ceramic Waste-forms

Crystalline materials including oxides-simple and complex, salts-silicates, phosphates, tungstates
with various compositions and different structural modifications (30 structure forms) intended for
nuclear waste immobilization were developed using various approaches and accounting for criteria
of enough high durability (see e.g., [15,238,458–460]) requested for nuclear wasteforms. These are
presented in Table 1.
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Table 1. Crystalline ceramic materials as potential forms for nuclear waste immobilization.

Type of Chemical Compound
Structure

Compound Cations
Structural Type Syngony, Sp. gr.

Oxide Compounds

Simple
oxides

SiO2 Silica rhombohedral, R3 Li, Na, K. Mg, Ca, Mn, Cu, Ni, Pb B,
Al, Fe, Cr, Ti, Zr, Te

CeO2 Fluorite cubic, Fm3m Cs, Sr, Ce, Y, Zr, U, Th, Hf, Pu, U, Np

Complex
oxides

A2B2O7 Pyrochlore cubic, Fd3m A: Na, Ca, U, Th, Y, Ln; B: Nb, Ta, Ti,
Zr, Fe3+

A6B12C5TX40-x Murataite cubic, F43m U, Np, Pu, Am, Cm, REE
CaZrTi2O7 Zirconolite trigonal C2/c Gd, Hf, Ce, Th, U, Pu, Nb

CaTiO3 Perovskite cubic, Pm3m;
rhombohedral, Pnma Ca, Y, REE, Ti, Zr, U, Pu

Ba1.2(Al,Ti)8O16 Hollandite tetragonal, I4/m Na, K, Cs, Mg, Ca, Ba, Al, Fe, Mn3+,
Si, Ti, Mn4+

[8]A3
[6]B2[TiO4]3

.[8](Ca,Gd, actinides)[6]Fe2
[4]Fe3O12

Garnet cubic, Ia3d
A, B: REE, An, Y, Mg, Ca, Fe2+, Mn2+;
X: Cr3+, Fe3+, Al3+, Ga3+, Si4+, Ge4+,

V5+

(Sr,Pb,La,Ce,Y)(Ti,Fe3+,Mn,Mg,Zn,Cr,Al,Zr,Hf,U,V,Nb,Sn,Cu,Ni)21O38 Crichtonite rhombohedral, R3

Na2Al2(Ti,Fe)6O16
Freudenbergite

spinel based phase monoclinic, C12/m1 Mg, Co, Ni, Zn, Al, Ti3+, Cr, Fe, Ga, Si,
Nb

P-Pollucite cubic, I4132
Li, Na, K, Rb, Cs, Tl, Be, Mg, Sr, Ba,

Cd, Mn, Co, Ni, Cu, Zn, B, Al, Fe, Si,
Ti, P, V, Nb, Ta

ZrSiO4/ThSiO4/USiO4 Zircon/Thorite/Coffinite tetragonal, I41/amd REE, Th, U, Pu; Na, Mg, Ca, Mn, Co,
Fe, Ti, P, V, Se, Mo

CaTiSiO5 [CaTiO(SiO4)] Titanite (sphene) monoclinic, P2I/a Mg, Ca, Sr, Ba, Mn, Al, Fe, Cr, Ce, Y,
Zr, Th, F

(REE,Ca)5(SiO4,PO4)3(OH,F) Britholite (oxy-apatite) monoclinic, sp. gr. P21,
hexagonal, P63/m Cs, Sr, B, Th, U, Np, Nd3+, La3+, Pu3+

Salt compounds

Framework
Silicates

(Xx/n[(AlO2)x(SiO2)y] Zeolites Na, K, NH4
+, Cs, Mg, Ca, Sr, Co, Fe,
Ga, REE, Ti

(Ca,Na)2Al2Si4O12·2H2O Pollucite cubic, Ia3d
Li, Na, K, Rb, Cs, Tl, Be, Mg, Sr, Ba,

Cd, Mn, Co, Ni, Cu, Zn, B, Al, Fe, Si,
Ti, P, V, Nb
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Table 1. Crystalline ceramic materials as potential forms for nuclear waste immobilization.

Type of Chemical Compound
Structure

Compound Cations
Structural Type Syngony, Sp. gr.

NaAlSiO4 Nepheline/Leucite

Nepheline: hexagonal,
P63;

Leucite: tetragonal, I41/a,
I41/acd; cubic, Ia3d

Li, Na, K, Rb, Cs, Be, Mg, Ca, Ba, Pb,
Mn, Co, Ni, Al, Fe, Cr, Si, Ti, V

Na8Cl2Al6Si6O24 Sodalite cubic, P43n Na, K, Mg, Ca, Mn, Fe, Al, Si, Ti, Cl,
SO4, CO3

(Na,Ca,K)6[Al6Si6O24]((Na,Ca,K)2CO3)1.6·2.1H2O Cancrinite hexagonal, P63 Cl−, SO4
2−,

[(Ca,Na,K,Ba)AlSiO4
Crystalline SilicoTitanate

(CST)

cubic, sp. gr. Pm3m up to
105 ◦C, after tetragon.

symm., sp. gr. I4/mcm or
P42/mcm

Na, K, Cs, Ca, Sr, Ba, Pb, Al, REE, Bi,
Ti, Zr, Nb, Ta

LiAl3Si3O11, NaAl3Si3O11, KAl3Si3O11, RbAl3Si3O11, CsAl3Si3O11,
TlAl3Si3O11, Ca0.5�0.5Al3Si3O11, Sr0.5�0.5Al3Si3O11, Ba0.5�0.5Al3Si3O11,

La0.33�0.66Al3Si3O11

Micas (Dehydroxylated) monoclinic, C2/c Cs, Rb, Ba, Mg, Fe2+, Fe3+, Mn, Li, Cr,
Ti, V

Phosphates

CePO4 Monazite monoclinic, P21/n

Ce: Li, Na, K, Rb, Mg, Ca, Sr, Ba, Cd,
Pb, Bi, Y, La, Pr, Nd, Sm, Eu, Gd, Tb,

Yb, Am, Cm, Cf, Es, Ge, Zr, Th, Np, U,
Pu; P: Cr, Si, Se, V, As, S

YPO4 Xenotime tetragonal, I41/amd Be, Ca, Al, Sc, La, Ce, Er, Dy–Lu, Zr,
Th, U

Ca4-xRE6+x(SiO4)6-y(PO4)y(O,F)2 Apatite hexagonal, P63/m;
monoclinic, P21/b

Na, K, Cs, Mg, Ca, Sr, Ba, Mn, Ni, Cd,
Hg, Pb, Cr, Y, REE, Th, U, Si, P, V, As,

S, F, Cl, OH, CO3

NaZr2(PO4)3
Sodium zirconium
phosphate (NZP)

rhombohedral, R3c, R3c,
R3

Li, Na, K, Rb, Cs; H, Cu(I), Ag, Mg,
Ca, Sr, Ba, Mn, Co, Ni, Cu, Zn, Cd,

Hg, Al, Ga, In, Sc, Y, La, Ce-Lu, Am,
Cm, V, Cr, Fe, Sb, Bi, Ge, Sn, Ti, Zr, Hf,

Mo, Ce, Th, U, Np, Pu, Sb, Nb, Ta

K2Mg2(SO4)3 Langbeinite cubic, P213

Na, K, Rb, Cs, Tl, NH4, Mg, Sr, Ba, Pb,
Mn, Co, Ni, Zn, Al, Fe Cr, Ti3+, Ga,

V3+, Rh, In, REE, Bi, Sn, Ti, Zr, Hf, P,
Nb, Ta, S

β-Ca3(PO4)2 Whitlockite trigonal, R3c
H, Li, Na, K, Cu, Mg, Ca, Sr, Ba, Al,

Sc, Cr, Fe, Ga, In, La, Ce, Sm, Eu, Gd,
Lu, Th, Pu
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Table 1. Crystalline ceramic materials as potential forms for nuclear waste immobilization.

Type of Chemical Compound
Structure

Compound Cations
Structural Type Syngony, Sp. gr.

Th4(PO4)4P2O7

Thorium
phosphate/Diphosphate

(TPD)

orthorhombic, Pbcm,
Pcam U, Np, Pu, Am, Cm

Tungstates CaWO4 Scheelite tetragonal, I4/c
Ca: Li, Na, K, Rb, Cs, Tl; Ca, Sr, Ba,

Mn, Cu; Fe, Ce, La-Lu, Y; Th, U, Np,
Pu; Nb, Ta; W: Mo, Re, I, V, Ge

Aluminates X(Al,Fe)12O19 Magnetoplumbite hexagonal, P63/mmc
Na, Cs, Mg, Sr, Ba, Pb, Mn, Co, Cu,

Al, Fe, Sc, Y, La, Ce, Sm, Gd, Yb, Lu,
An, Si, Ti, Sn
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Many of the compounds listed here have been studied and continue to be actively
investigated by researchers led by the co-author of this work (Prof Orlova), including those with
structures of garnet [185,189–194], P-pollucite [205–215], pollucite [214,215,293], monazite [141,352],
sodium zirconium phosphate (NZP) [21,209,383,384,388,392–394,396,405,407–409,412–419],
langbeinite [416–419], whitlockite [87,89,424–430] and scheelite [89,445,446]. Overall crystalline
ceramics are characterized as much more durable compared with glasses of the same chemical
composition e.g., the chemical durability of isomorph glasses is one to two orders of magnitude
lower [458–460]. Nevertheless, the degree of the development of crystalline ceramics remains at the
level of laboratory investigations rather than industrial use, except for SYNROC polyphase crystalline
ceramic that is at the stage of the planned start of utilization by industry. Practically all structural
forms developed (Table 1) are at the stage of obtaining compounds and their studies at the laboratory
scale. The references [15,458–460] are also providing data on the acceptability of ionic size variability
within the structure, and on chemical and radiation durability.

From the analysis of the presented data of various compounds with various compositions and
structural forms it is clear that researchers in the field of materials for nuclear waste immobilization
have many variants available for work. While materials are mineral-like the principle ”from nature to
nature” can be realized. Although many structures were included herewith, some could be missed,
for example brannerite [15,99], which is currently considered for actinide immobilization [461]. Among
most investigated structures one can note oxide ceramics. Some of crystalline ceramics such as monazite
were synthesized using real (radioactive) actinides [15,235], whereas most of researchers use surrogate
(non-radioactive) cations for investigations.

6. Conclusions

1. Ceramic waste-forms for nuclear waste immobilization are investigated in different countries
with a focus on improving environmental safety during storage, transport and disposal.

2. Inorganic compounds of oxide and salt character, having structural analogs with natural minerals,
are being studied as most perspective materials for the immobilization of radioactive waste.

3. Approaches based on crystallochemistry principles are used when choosing the most favorable
structural forms. They are based on the materials science concept “composition-structure-method
of synthesis-property” accounting for the real task to be achieved. The basic principle is the
isomorphism of cations and anions in compounds when choosing a real structure. Possible
isomorphic substitutions in both cationic and anionic structural sites were considered in the
works analyzed.

4. Crystalline ceramic waste-forms are intended to increase the environmental safety barrier when
isolating radioactive materials (containing both actinides and fission products) from the biosphere.
Among the methods of obtaining ceramic waste-forms, special attention in recent years is paid to
sintering methods which ensure the formation of ceramics that, first, are almost non-porous e.g.,
have a relative density of up to 99.0–99.9% of theoretical, and, second, can be obtained within
a small processing time e.g., within a few minutes (i.e., 2–3 min). These requirements are met
by high-speed electric pulse sintering processes e.g., so-called Spark Plasma Sintering (SPS),
although hot pressing enables the synthesis of very dense ceramics as well.

Professor Albina Orlova is working in the field of new inorganic materials used in nuclear
chemistry for the rad-waste immobilization of dangerous isotopes, for actinide transmutation, as well
for construction materials. She uses the structure properties and physico-chemical principles for the
elaboration of new ceramics with mineral-like crystal forms.

Professor Michael Ojovan is known for the connectivity-percolation theory of glass transition,
the Sheffield model (two-exponential equation) of viscosity of glasses and melts, condensed Rydberg
matter, metallic and glass-composite materials for nuclear waste immobilization, and self-sinking
capsules to investigate Earth’s deep interior.
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