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Abstract

Among over 200 COVID-19 affected countries, some are fighting to “flatten the curve”, while

some others are considering reopening after lockdown. It remains unclear how different

reopening strategies obstruct the local virus containment and impact the economy. We

develop a model with travelers across heterogeneous epicenters. A low-risk area attempts

to safely reopen utilizing internal policies, such as social distancing and contact tracing, and

external policies, including capacity quota, quarantine, and tests. Simulations based on the

COVID-19 scenario show that external policies differ in efficacy. They can substitute each

other and complement internal policies. Simultaneous relaxation of both channels may lead

to a new wave of COVID-19 and large economic costs. This work highlights the importance

of quantitative assessment prior to implementing reopening strategies.

Introduction

The global outbreak of COVID-19 leads to nation-wide lockdown in many countries that try

to contain the virus spread. The countries and areas that have passed the worst phase of the

outbreak or were able to prevent an internal outbreak are eager to reopen as prolonged lock-

down could cause damages to the economy and social structure [1–3]. As a result, reopening

strategies, especially their consequences on local people’s health, top the agenda of many local

and national governments across the world, and have been discussed on social media among

the general public. However, a pandemic model with multiple epicenters allowing for simu-

lated outcomes to guide policy design in the process of reopening is lacking.

Existing literature prior to the COVID-19 outbreak has explored multiple-region epidemic

models and analyzed past epidemics to understand large-scale pandemics and policy interven-

tions in theory and practice. Theoretically, SIR or SEIR models with travelers across regions

have been developed to describe epidemics with multiple epicenters without policy interven-

tions [4–7]. These models showed the important roles played by travelers in spreading out of

virus diseases, and the positive effect of travel bans on slowing down the spreading of infec-

tious diseases across regions. A few papers focused on modeling the effects of physical distanc-

ing and contact tracing on containing epidemics [8], or the effect of travel bans on preventing

an outbreak that affects many regions [9]. Practically, many papers have been published to

investigate the outbreak and the containment of recent pandemics, such as SARS, the Ebola
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virus disease, the influenza A virus (H1N1), the Hong Kong influenza, and the seasonal flu in

North America. Empirical analyses on SARS showed the effectiveness of quarantine and other

internal policies [10–13]. Another study on SARS provided evidence for the good performance

of combining isolating infected patients with screening travelers [14]. The studies on various

influenza and Ebola empirically examined the contribution of travelers to pandemic outbreaks,

and the effects of travel bans and screening for travelers on containing the virus [15–18]. Since

the COVID-19 pandemic outbreak, several studies are particularly relevant to our work.

Papers using data from the outbreak in Wuhan showed that both traveler flow across regions

and human mobility within the city are strongly correlated with geographical distribution of

new cases, and local control measures such as quarantine may disentangle this correlation [19,

20]. Another paper focusing on policies in Wuhan estimated the effect of physical distancing

[21]. Using data beyond Wuhan, researchers showed that quarantine is more effective than

travel bans in slowing down the virus from spreading to multiple regions [22], and that quar-

antine orders suppress travel demands, mitigating the outbreaks beyond the epicenters of the

pandemic [23]. Lastly, in addition to public health researches, some papers study the economic

consequences of epidemic outbreaks and containment policies [24]. As mentioned in the limi-

tation of existing papers, e.g. [17], a general model allowing policy makers to illustrate the

interplay between internal and external policies on containing the outbreak is lacking. There is

also very little work on the reopening strategy for former epicenters, as most researchers

focused on the outbreak progress and policies that stop the virus from spreading out. The

model framework we propose fills in both gaps.

In this paper, expanding previous researches, we build a model for a realistic scenario in

today’s context, in which an area with low domestic epidemic risk wants to reopen its border

amid risks of importing cases from multiple areas. In the model setting, the virus spreading of

each area depends on the nature of the virus, the area’s internal and external policies, and the

characteristics of inbound travelers. This model setup highlights the impact of government ini-

tiative in the low risk area, allowing us to answer a set of very timely questions asked by aca-

demic researchers and policymakers: what are the quantitative effects of various reopening

strategies? How do specific reopening policies interact? Does the public health objective always

disagree with the economic objective? This paper contributes to the literature by bridging epi-

demiology and public policy to evaluate proposed government interventions and to provide

quantitative insights for policy design amid any pandemic. It also contributes to the reopening

strategy discussion amid the COVID-19 pandemic by demonstrating the functionality of the

theoretical model with real-world data.

Methods

In this paper, we develop a model framework incorporating multiple areas that are in different

stages of the pandemic outbreak and are connected by travelers, and calibrate the model based

on real-world data. The model features time-varying policies in an area with relatively lower

pandemic risk. The policies include social distancing that affects infection rate, contact tracing

ability that determines the contagious level of infected people, the accuracy of the tests, the

number of travelers allowed to come in from each type of area, and the quarantine and testing

policy on the travelers.

A list of notations used in the model is provided in Table 1. When we refer to parameters

without time subscript in this paper, it means the parameter takes a constant value over time.

The virus transmission within each area follows an expanded version of the Susceptible–

Infectious–Recovered (SIR) model, in which the infectious state of the standard SIR model is

divided into asymptomatic and symptomatic. The expanded model allows some susceptible
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and asymptomatic infectious people to be quarantined. We show the steps of expanding the

three-state standard SIR model to the eight-state model as follows. First, the discrete-time stan-

dard SIR model is given by Eqs (1) and (2) [25].

Stþ1

Itþ1

Rtþ1

2

6
4

3

7
5 ¼ PSIR

t �

St
It
Rt

2

6
4

3

7
5 ð1Þ

Table 1. Notations.

Notation Description

In the standard SIR model
St Number of susceptible people in period t
It Number of infected people in period t
Rt Number of recovered people in period t
N Population size, i.e. N = St+It+Rt for all t
β Transmission rate

γ Recovery rate

Disease parameters in the transition matrix (Pi
t) of the expanded model

ρ Reinfection rate, i.e. the transmission rate for recovered people

μ Diagnosis rate

τ Severe symptom development rate

δ Mortality rate of people with severe symptoms

γ1 Recovery rate for asymptomatic patients

γ2 Recovery rate for patients with mild symptoms

γ3 Improvement rate, the rate at which severe symptoms disappear

Government’s internal policy parameters and functions
git Social distancing parameter

cit Contact tracing and random testing parameter

hit Quarantine probability of asymptomatically infected people. It is a function of cit; y
i
t , and git .

sit Self-quarantine exit rate. It is the rate at which susceptible people in self-quarantine rejoins the local

community

sqit Self-quarantine intensity parameter, reflecting the government policy on asking susceptible people to

self-quarantine

wi
t Quarantine probability of susceptible people. It is a function of sqit .

y
i
t

Effectiveness of one test in area i in period t, depending on technology advancements

Travel related parameters and matrices in the expanded model
Ni Population size of area i in the initial state

Nij
t Number of travelers from area i to area j in period t

travelijt Distribution across the 8 epidemic states of travelers from area i to area j in period t. Numbers of people

in all states sum to Nij
t .

P̂ i
t Testing matrix of area i in period t, reflecting the test effectiveness y

i
t

~P~ Quarantine matrix of area i. The matrix only captures changes in traveler’s health status and does not

involve local transmission.

Pij
t Local transmission matrix among travelers from area i to area j in period t

qit Quarantine duration for inbound travelers in area i who arrived in period t

rit Number of tests for inbound travelers in area i in period t

https://doi.org/10.1371/journal.pone.0248302.t001
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in which the transition matrix is

PSIR
t ¼

1 �
bIt
N

0 0

bIt
N

1 � g 0

0 g 1

2

6
6
6
6
4

3

7
7
7
7
5

ð2Þ

The model developed in this paper incorporates asymptomatic infection (IA), quarantine

(Q vs NQ), mortality (D), and differentiates symptomatic people by disease severity (ISM for

mild vs ISS for severe). It can be described by Eqs (3)–(5).

stateitþ1
¼ Pi

t � stateit ð3Þ

where

stateit ¼ ½SQt SNQt IAQt IANQt ISMt ISSt Rt Dt�
T

ð4Þ
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in which INQt ¼
IANQt

SNQtþIANQtþRt
is a shorthand for convenience. Equivalently, the above expansion

can be considered as starting with the standard SEIR model, and replacing the exposed state

by the IA states. Both approaches have been considered by existing literature and result in sim-

ilar model frameworks that best describe COVID-19 [21, 22, 24]. Detailed explanation for

each term in this transition matrix is provided in the S1 Appendix section A1.1.

The transition matrix embeds two key internal policy parameters. The social distancing

parameter, git , is a factor between 0 and 1. When git ¼ 0, The transition from SNQ state to

IANQ state is shut down, meaning that everyone is in self-quarantine, and no new infection

could happen. When git ¼ 1, the transition rate, bgitI
NQ
t , is very similar to the transition rate in

the standard SIR model, i.e.
bIt
N , since INQt is the share of infected people in the local community

conditioning on the subpopulation not in quarantine or hospitalized. A smaller value of git cor-

responds to a constrictive social distancing policy measure, and hence a smaller transition

probability from SNQ state to IANQ state. The contact tracing parameter, cit , is also a factor

between 0 and 1. The transition rate from IANQ to IAQ, hit, is an increasing function of cit with

no intercept, i.e. @hit=dc
i
t>0 and hit ¼ 0 when cit ¼ 0. The other two internal policy parameters

related to self-quarantine for susceptible people are less essential to answering the research

question, and thus we discuss them in the extension section.

We next model travelers across the areas. We allow the epidemiological patterns of the trav-

elers to differ from that of the overall population at their departure area. This means that the

distribution of traveljit could be different from statejt. For example, in S1 Appendix section

A2.2, we show empirical evidence for the possibility that the fraction of IANQ people among
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the travelers could be amplified when some of them self-select to travel to a low risk area. We

also expose the travelers to a higher infection rate due to the lack of social distancing on their

way to the destination. The transition matrix for travelers on the road in period t is Pji
t . The

government at the destination area has three policy measures for inbound travelers. It may

impose traveling bans by adjusting the number of inbound travelers Nij
t . The government may

also choose to quarantine the inbound travelers, with the daily transition matrix in quarantine

period being ~P. The government may test them, with the testing transition matrix being P̂i
t.

The population in an area equals to local population, minus outbound travelers, and plus all

inbound travelers coming out of quarantine. We convert Eq (3) to the following equation:

stateitþ1
¼ Pi

t stateit �
X

j6¼i

travelijt
� �

þ
X

j6¼i

X

x s:t:qit� x¼x&x�0

ðP̂i
t� xÞ

rit� xð~PÞxPij
t� xtravel

ji
t� x ð6Þ

More detailed explanations for the model specification are provided in the S1 Appendix

section A1.

Fig 1 shows the model framework, in which Fig 1A presents the interaction across areas,

and Fig 1B presents the disease spreading from one area’s perspective with in-and outbound

travelers. The model intends to support policymakers by providing quantitative information

on the magnitude of the effects of each potential single or combined policy intervention. For

example, later in the paper, we show that dynamically adjusting the numbers of travelers from

areas with medium and high epidemic risk to keep the daily new imported cases as a constant

can effectively reduce the public health effect of inbound travelers on local people.

The model framework should be interpreted as a general model with multiple epicenters of

a pandemic and travelers across the areas. The generality of the mathematical model is mostly

reflected in the setup of the transition matrix. The transition matrix for each area can charac-

terize diseases that follow several typical epidemic models in addition to SIR. For example,

when the reinfection rate ρ is positive, the model embeds an SIS model. When the reinfection

rate is the same as the transmission rate, i.e. ρ = β, the model corresponds to the SI model.

When we allow the infection probability to differ by the asymptomatic patient’s stage in the

incubation period, as stated in a remark in the S1 Appendix section A1.1, the special case in

which the early stage of incubation is noninfectious corresponds to an expanded SEIR model.

The SQ state is similar to the maternally-derived immunity state in compartmental epidemic

models, with a rate of becoming susceptible (σ). The deceased state (D) allows mortality to be

included or excluded by specifying the mortality probability (δ). The flexible transition matrix

allows our model to be applied to other recent epidemics that follow compartmental epidemic

models such as H1N1 (the SIR model [26, 27]), the Ebola virus disease (the SEIR model [28]),

and the seasonal flu in the U.S. (the SEIRD or SIRS model [29, 30]). On the other hand, note

that the model focuses on government policy evaluation with the assumption of a homoge-

neous population. This assumption can be relaxed to capture the heterogeneous epidemiologi-

cal characteristics of people with distinct demographic features. The extended model will be

able to predict the policy effects on specific subpopulations. For example, one may combine

the model presented in this paper with the single-region multiple-age group model discussed

in [31] to study the effect of policies on each cohort.

As of August 2nd, 2020, at least 177 countries have issued international travel bans to restrict

virus spread across the borders [24]. Meanwhile, 164 countries implemented internal policies

such as closing schools and public transportation, prohibiting social gatherings to reduce the

chance of infection [32]. South Korea, the U.S., and China introduced contact tracing through

mobile phones to track down people who may have been infected by the newly confirmed
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patients [33, 34]. We translate these policies into modeling features as follows. An area with

low epidemic risk (denoted by L in the superscript) faces travelers from a medium risk area

(denoted by M) and a high risk area (denoted by H). We allow the low risk area to choose sepa-

rately for each foreign area the inbound travel capacity quota and the ratio between traveler

capacities of inbound and outbound traffics. The low risk area may quarantine the inbound

travelers for qLt days and test them for rLt times when they are quarantined. The type II error

(probability of a false negative outcome) of one test is θ. We assume quarantined people cannot

infect others or be infected. We also allow the low risk area to choose its social distancing pol-

icy parameter g, which is positively correlated with the local infection rate, and its contact trac-

ing policy parameter c, which determines the probability that an infected asymptomatic

person will be quarantined when the person who infected him becomes a confirmed patient.

All of the above policy parameters can change over time. Given this general model framework,

many other factors are flexible and are at the discretion of the specific scenario to which the

model is applied.

We calibrate the model using approximated population distribution from three areas fea-

turing each type [35–37]. In the model calibration, we assigned realistic values to the parame-

ters and probability distributions based on public information to the best of our knowledge

and general intuition to the best of our ability. We only state their values in the text, leaving

the mathematical calculation and reasoning behind these assignments in the S1 Appendix sec-

tions A2.4–2.5. We assume the populations of the three areas are the same. To illustrate the

model implication on COVID-19, we assume the average incubation period is 5.2 days [38],

the average duration of illness is 14 days [39], and the infection fatality rate is 0.6% [40]. In the

baseline model, the test accuracy is 80% [41], all travelers are quarantined for 7 days and are

tested twice. The number of travelers on each route between areas is set to be 0.005% of the

local population in the initial state of the model, which is close to the March 2020 scenario in

the U.S [42]. For internal policies, the baseline model assumes heterogeneous internal policy

factors. It assigns the low risk area with a perfect contact tracing system, while the contact trac-

ing mechanism is only 50% effective in the medium and high risk areas. It allows the social dis-

tancing parameter to be larger for higher-risk areas. For travelers, the model assumes that only

asymptomatic people who are not quarantined can exit any area. We apply an amplification

function to characterize the fact that the fraction of infected people is much higher among the

travelers than in the population that the travelers’ sample is drawn from. An example of the

amplification function is introduced in S1 Appendix section A2.2. We also apply the feature

that susceptible travelers suffer from a higher infection rate from exiting the departure area to

entering the destination area due to the lack of social distancing. The daily flows of inbound

and outbound travelers do not have to be the same, but in order to make clear inferences from

the model calibration and its simulation results, we assume the daily flow of travelers between

two areas is the same across directions for the symmetry of inter-area policies. Interested read-

ers can relax this assumption by specifying the traveler ratio Nij
t =N

ji
t in the computer program

to have Nij
t 6¼ Nji

t .

In the baseline model specification of the low risk area, we set the contact tracing probabil-

ity to 1 and the social distancing parameter to 0.25. We set the daily flow of travelers from

every other area to be 0.005% of the low risk area’s local population, which is close to the

March 2020 scenario in the U.S. [42]. We assume the medium- and high-risk areas do not

Fig 1. Schematic illustration of the model framework. (A) Pandemic outbreaks affecting three areas differently, with travelers between a low risk area and medium/high

risk areas. The low risk area determines external policy including tests and/or quarantine to contain the virus outbreak while reopening the area. (B) One area in a

pandemic, facing heterogeneous inbound and outbound travelers, local transmission with quarantine options.

https://doi.org/10.1371/journal.pone.0248302.g001
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quarantine or test travelers coming from the low risk area. We set the social distancing param-

eter to 0.7 for the medium risk area, and 1 for the high-risk area. In the illustration, we define

daily new cases as the number of all newly infected local people plus the number of infected

people from travelers who come out of quarantine on that day. In the extension section, we

discuss alternative definitions of new cases.

We first visualize in Fig 2A the time trend of daily new cases in those areas if they all resort

to lockdown by blocking cross-area traffics. The lockdown policy deactivates all external

sources of new cases and external policies, but does not affect any internal policy settings speci-

fied in the notes of Fig 2. It shows the distinction among the three areas in terms of initial pop-

ulation status and the speed of virus transmission within the area. In this circumstance, the

number of daily new infected cases in the low risk area drops to below 1×10−8 of the popula-

tion by day 19 in the model simulation. The medium risk and high risk areas have more new

infections in the initial states of the model simulation, and relaxed internal policies create

more infection.

Results and discussion

Roles played by the internal and external policy interventions

In Fig 2B, we present the additional daily new local cases in the low risk area as we gradually

reopen the area by increasing its traveling capacity. To separate the effect of travel capacity

from the effects of tests and quarantine for inbound travelers, we set the numbers of tests and

quarantine days for travelers upon arrival to zero. The statistics we present are the number of

new infections in the local population in each scenario minus the new infection in the lock-

down case shown in Fig 2A. It shows that increasing the total number of inbound travelers

causes a minor outbreak in the local area. When the traveler inflow is 0.06%, the scenario is

comparable with the pre-pandemic scenario in many countries [43]. This shows that the

absence of travel bans leads to a new round of epidemic outbreaks with 0.0007% of the local

population being newly infected cases in one day at peak. This figure provides quantitative evi-

dence for the belief that, keeping testing and quarantine policies towards inbound travelers

unchanged, opening the border to areas with higher epidemic risk would result in more infec-

tion in the domestic area. In the next section, we will show the percentage contribution of

imported cases in different policy environments. Then we test internal reopening strategies on

the baseline model, by reducing the social distancing parameter among local people in this

area with very few local cases (Fig 2C), and loosening the contact tracing strength to allow

more infected people in the local area to stay out of quarantine (Fig 2D). Fig 2C shows that

relaxing social distancing policy causes more infection. Lifting the social distancing policy

measure completely boosts the new infected cases by folds at the peak, and leads the epicenter

to unrest after day 75, unlike other scenarios would. Fig 2D shows that relaxed contact tracing

policy amplifies the small outbreak that travelers would cause. Without the contact tracing pol-

icy, the low risk area also generates another minor outbreak with 2.05×10−6 new infection on

the worst day. Cumulatively, by day 60 in the model simulation, the absence of the social dis-

tancing policy and contact tracing policy could cause 1.8×10−4 and 1×10−4 additional infected

cases, respectively. We find that both internal and external policy interventions affect virus

spreading in the low risk area, and the magnitudes of their effects are dramatically different.

The quantitative effects of the social distancing policy and travel bans are comparable, and

they are about 10 times the effect of contact tracing policy. The model implies that relaxation

in the external policy towards reopening must be complemented by a constrictive internal pol-

icy, and vice versa. Though both policy directions are important in containing the epidemic,

social distancing policies and some scale of travel restrictions should have higher priority.
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Fig 2. Effect of the internal and external policies on the virus outbreak. The low risk area in the baseline model setting: social distancing parameter gL = 0.25; contact

tracing probability is cL = 1; travel capacity quota, characterized by the ratio between the number of inbound travelers from area i to the low risk area and the local

population in L, is NiL = 0.005% for i = M, H; the default duration of quarantine is qL = 7; the number of tests taken by the travelers and new to-be-confirmed cases is rL =

2; the accuracy of the test is 1−θL = 0.8. For more detailed information on the notation and parameter values, please see Table 1 and S1 Appendix sections A2.4–2.5. (A)

Daily new infected cases in the three areas when all areas implement lockdown, i.e. we let Nij = 0 for all i,j2{L, M, H}, showing the heterogeneous phases of the COVID-19

pandemic in different areas. The internal policies in the medium and high risk areas are gM = 0.7, gL = 1, and cM = cL = 0.5. The numbers of newly infected cases differ

significantly in magnitude, so the number of new cases in the low risk area seems very small. It is 1.2×10−6 on day 1, and decreases monotonically from then on. (B) Effect

of relaxing the travel capacity quota from a very strict travel ban (i.e. each NiL = 0.0005%) to completely free entry (NiL = 0.03%). Displayed statistics are the population

share of daily new infected cases in each scenario minus the population share of daily new infected cases in the lockdown scenario (NiL = 0). To visualize the effects of
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Flexible and composite policies towards inbound travelers

The model enables the estimation of the marginal effects of each component of the external

policy interventions. In Fig 3A we present the effects of adjusting the traveler’s duration of

quarantine, the number of tests, and the accuracy of the tests based on the baseline model spec-

ification. We want to focus on the externality of external policies on internal epidemic condi-

tions, so the statistics shown in the figure are the number of new infected cases among the

local population in each scenario minus the number from the baseline scenario. Test accuracy

only affects the virus containment in two ways. One is to identify IANQ people who were

traced to have close interaction with confirmed cases, and the other is to accurately identify

infectious inbound travelers who have not developed symptoms when they come out of quar-

antine. Both channels are fairly minor, so the overall effect of increased test accuracy is much

smaller than the screening measures on the travelers. The contribution of testing is very sub-

stantial. If the low risk area does not test the travelers, the number of cases would surge by

about 3×10−7 at peak. Extending the quarantine period can compensate for the lack of testing.

The number of local cases drops by about 80%, as most infected people would have developed

symptoms within 14 days, resulting in infected travelers being hospitalized before they are

released from the quarantine. This comparison leads us to believe that testing and quarantine

can help with reducing the number of cases, especially when the epidemic condition of the

travelers’ departure areas is significantly worse than the local condition. Considering the com-

plementarity between quarantine and tests, the negative impact of less testing can be offset by

extending quarantine, and the effort to improve the test quality may not pay off as well as

other behavioral policies.

In Fig 3B we present the interplay between travel bans and the screening on inbound travel-

ers. When the screening involves testing and quarantine, the low risk area can have fewer local

cases as it reopens the border. This is because the outbound travelers may have some IANQ

people, while the IANQ people among the inbound travelers would have been identified by

the quarantine and testing, and thus would not be blended into the local population. However,

holding travel ban setting constant, the lack of testing (or quarantine) would always result in

more local cases. As Fig 3B shows, if the low risk area admits more travelers, it would pay a

higher price in terms of additional cases if its government did not pair a relaxed travel ban

with a constrictive testing and quarantine mechanism.

We illustrate a dynamic policy in Fig 3C and its performance in Fig 3D. In the dynamic pol-

icy, the reopening strategy taken by the low risk area is to set a quota on the number of infected

asymptomatic inbound travelers. In this strategy the low risk area would estimate the fraction

of infected travelers from each of the other two areas, and choose the traveling capacity with

them accordingly, prioritizing traffic from areas with relatively low risks. The upper bound of

traveler inflow is 0.003% for each area, equivalent to the scenario without a travel ban or the

pandemic. This means the fixed policy is the same as the most relaxed scenario shown in Fig

2B, while the dynamic policy can choose any specific quota up to the same level as the fixed

policy. The testing and quarantine policies are the same for the two policy schemes. Fig 3C

shows the specific implementation of the policy. The low risk area first bans travel from the

high risk area completely, and allows very few travelers from the medium risk area to enter the

border. As the medium risk area gradually contains the virus outbreak, the low risk area

expands the traveling quota accordingly. By day 50, travelers from the medium risk area do

travel bans without being covered up by other external policies, the scenarios in this subfigure do not screen the inbound travelers, i.e. no tests (rL = 0) and no quarantine

(qL = 0). (C) Effect of relaxing social distancing from baseline (gL = 0.25) to the scenario without social distancing (gL = 1). (D) Effect of relaxing contact tracing from

baseline (cL = 1) to the scenario without contact tracing (cL = 0).

https://doi.org/10.1371/journal.pone.0248302.g002
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Fig 3. Effect of specific external policies. (A) Effects of three external policy schemes are presented. The effects are relative to the baseline model described in Fig 2. The

three policy schemes are no test (rL = 0 and qL = 7), no test accompanied by prolonged quarantine period (rL = 0 and qL = 14), and test accuracy improves to 95% (θL =

0.05). (B) Effects of four external policy schemes involving travel bans and testing are presented. The effects are relative to the baseline model described in Fig 2. The strict

travel ban is a 86% reduction in travel capacity quota (NiL = 0.0007%), which is equivalent to the policy in China from March 29, 2020, onward [44]. The relaxed travel ban

simply doubles the travel capacity quota in the baseline, i.e. NiL = 0.01% for each i. (C) Implementation of a dynamic policy that sets a quota on the traveler capacity of NiL

= 0.03% for each i, and another quota that the population share of infectious inbound travelers cannot exceed 0.00001%, i.e. the IANQ element of Pji
t � traveljit < 1� 10� 7.

This is equivalent to 140 new imported cases each day for the population of mainland China. The statistics shown are the daily traveler inflow by area type determined by

the dynamic policy. (D) The performances of the dynamic policy and the fixed policy are presented. The statistics shown are daily new infected cases of each policy minus

the number of cases of a lockdown policy with NiL = 0, and a fixed policy with NiL = 0.03% for each i, which is equivalent to the scenario without a travel ban. For all

scenarios, the number of tests is 0 (rL = 0) and the duration of quarantine for inbound travelers is 7 days (qL = 7).

https://doi.org/10.1371/journal.pone.0248302.g003
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not face any quota, while no traveler from the high risk area is allowed to enter. By that time,

the epidemic risk in the high risk area is much lower than its most devastating period, so the

low risk area then reopens its border slowly, and fully reopens by day 70. In Fig 3D, the gap

between the time trends in daily new infection in the dynamic versus the fixed policy, relative

to the lockdown scenario, shows its role in protecting the local people in the low risk area. This

dynamic reopening policy performs almost as well as the lockdown policy while allowing

some travelers to come in. This policy scheme effectively disentangles the correlation between

the epidemic condition in the low risk area and the conditions in the departure areas of its

inbound travelers.

We find that the effects of specific components of external policies in the reopening strategy

vary in magnitudes. Flexible combinations of these potential policies are key to areas highly

constrained in testing ability, medical capacity, or government budget in public health. When

the composition of policies is well designed, reopening can cause much fewer local infections.

Extensions

We discuss five extensions of the model to enhance interpretation of the model framework,

and shed light on how to use the model. The first two extensions explore alternative

approaches to consider the number of new cases and their inferences. The third extension con-

cerns the model’s potential in incorporating reinfection. The fourth extension uses the model

framework to evaluate self-quarantine policies. And the last subsection illustrates the model

usage in calculating the government spending on travel-related policy implementation and

infection cases.

Specific definitions of new cases

In all previous sections of this paper, we have used the term “all infected cases”. It means that

we count everyone who becomes infected in a given day as a new case. People have to become

infected before they were identified as infectious people and were quarantined, so the number

of new infections is the number of people who become IANQ on that day. There can be other

definitions of new cases. The usual term used by the government is “confirmed cases”, which

corresponds to everyone who either becomes symptomatic on that day, or was tested positive

by the government, and hence was quarantined, even though he or she did not show any

symptom. So confirmed cases count people who become IAQ or ISM on that day. In addition,

we can also count new cases from the perspective of the demand for healthcare. The number

of symptomatic cases corresponds to the demand for hospital beds or nurses. And the number

of severe cases is in proportion to the demand for doctors or ICU beds. Fig 4A shows the rela-

tive sizes of the four ways to count new cases. At the beginning of the virus containment

period, the numbers of new infections, new confirmed cases, and new symptomatic cases all

exceed the number of severe cases. When we see more new severe cases than new infections, it

implies that the containment policies start to take effect. Then when we fewer new symptom-

atic cases than new severe cases, it means we are in the last phase of the outbreak and the virus

is almost fully contained.

Local and imported cases

As we presented in Eq (6), the number of new cases in an area with travelers on a given day is

the sum of two terms: imported cases, which is the sum of all infected people among the

inbound travelers who come out of quarantine on that day; and local cases, which is the num-

ber of susceptible (or recovered, if reinfection is possible) people who become infected on that

day. Counting the new infected cases from these two sources separately can help us understand
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the relative effect of internal and external policies, as well as the boundary that these two types

of policies may take effect. Fig 4B presents the share of local cases among all infected cases in

the baseline specification. It also presents the same statistic for the scenarios with a more

relaxed contact tracing policy, social distancing policy, and traveling control. When the inter-

nal policy is more relaxed, local cases contribute a larger fraction to the overall new infected

cases in the area. Relaxing external policies, on the other hand, expands the share of imported

cases among all new infected cases. The curves for the baseline scenario and the relaxed exter-

nal policy scenario converge after day 24 and stabilize at 0.88% after day 120, meaning that the

fraction of imported cases does not depend on the travel ban after the internal virus outbreak

is well-contained. In the scenarios with relaxed contact tracing and social distancing policies,

the shares of local cases experience a small outbreak between day 60 and day 120, then stabilize

at 1.7% and 10.9%, respectively. The two scenarios with relaxed internal policies never con-

verge with the baseline scenario. This observation tells us that internal policy measure decides

the fraction of local cases among all new infections in the steady state.

Reinfection after recovery

Some reinfection cases have been reported by the CDC of the U.S., while the cases remain rare

[45]. In Fig 4C, we present the population share of daily new infected cases for the scenarios

from complete immunity (i.e. Baseline model, in which ρ = 0) to no immunity (ρ = β). The dis-

ease would cause more new cases if the reinfection is high. If recovery does not confer immu-

nity at all, i.e. ρ = β, the daily count of new infected cases increases rapidly in the first 3

months, and gradually stabilizes at 0.0025% in the long term. When ρ = β/2, the daily new

infected cases in the steady state is 0.0008%. On the other hand, the scenario with ρ = β/5 is

very similar to the baseline scenario with ρ = 0, as both specifications result in new cases drop

down to below 1×10−7 around day 230. This figure shows that the speed in which the virus out-

break cools down depends on the ratio between the rates at which susceptible and recovered

people become infected. It would be an interesting future research topic to find the formula

for the threshold of ρ below which the daily new infected cases would converge to zero.

Self-quarantine policy for susceptible

Self-quarantine or isolation is often mentioned in the media yet lacking quantitative measures

for its effect [46]. The transition matrix allows for modeling self-quarantine by including an

SQ (susceptible-quarantine) state. To illustrate the use of this state, we simulate two types of

Fig 4. Extended interpretations of the model. (A) Numbers of new cases with four different definitions are presented. Severe cases count new

entry into the severe case (ISS) state. Symptomatic cases count new entry into the mild symptom (ISM) state. Confirmed cases by the

government count new asymptomatic entry into quarantine (IAQ) and new symptomatic cases (ISM). All infected cases count all new entries

into the asymptomatic state (IANQ). (B) Effects of internal and external policies on the share of local cases among all new infections are

presented. The contact tracing, social distancing, travel policies change one of the policy parameter values as labeled in the legend and keeps all

other values consistent with the baseline model. (C) Effects of reinfection rate values are presented. The value of the reinfection rate for

recovered people is relative to the value of the transmission rate of susceptible people. The baseline model assumes recovery confers long-term

immunity, i.e. ρ = 0. When 0<ρ<β, the model embeds an SIS model. When ρ = β, the model embeds an SI model. (D) Effects of self-quarantine

policies are presented. The effects presented are the percentage drop in daily new local infected cases relative to the baseline specification

described in Fig 2B. The rolling quarantine policy randomly selects 1/14 of the population and asks them to self-quarantine for 14 days. In this

policy scheme, about 50% of all susceptible people are in self-quarantine. The policy labeled as “winter break for 5–19 year-olds” asks all school-

aged children to take a 30 days winter break and self-quarantine during this period. This policy scheme quarantines 19% of the susceptible

population in the first 30 days of the model simulation. The two social distancing policies are used to compare the effects of different internal

policies. (E) Government spending related to travelers is defined as the total of quarantine, testing, and treatment costs, minus the economic

gain from travelers who are released from quarantine. Daily costs per capita over time are presented for four scenarios: baseline travel ban (each

NiL = 0.005%) with testing requirement (rL = 2, qL = 0), baseline travel ban with quarantine requirement (rL = 0, qL = 14), relaxed travel ban

(each NiL = 0.01%) with testing requirements, relaxed travel ban with quarantine requirement.

https://doi.org/10.1371/journal.pone.0248302.g004
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self-isolation policies. The first policy is a rolling quarantine scheme, in which the government

asks 1/14 of the susceptible population to self-quarantine for 14 days. On average, this is equiv-

alent to asking half of the population to self-isolation each day from day 14 onward. The sec-

ond is a policy that asks all school-aged children (5 to 19 years old) to stay at home during the

30-day winter break from day 0 to day 29, then nobody is in self-quarantine from then on.

This is equivalent to quarantining 19% of the population [47]. Fig 4D presents the effects of

the four different policy changes by showing the percentage drop in daily new local infected

cases compared with the baseline model with social distancing parameter g = 0.25 and no self-

quarantine. Positive percentage drops in cases show that both self-quarantine policies help

contain the virus spread. The rolling quarantine policy and the school-aged children quaran-

tine policy reduce the number of cases by 55% and 28% at peak, respectively. In Fig 4D, we

also compare the effect of the schemes with social distancing policy with the same percentage

drop in social interaction. This corresponds to the social distancing parameter reducing to g =

(1−50%)×0.25 = 0.125 and g = (1−19%)×0.25 = 0.2025, respectively. The performance of the

social distancing policies is significantly better than the rolling quarantine policy in the first

month, and the effects converge afterward. The performances of the school-aged children

quarantine policy and the comparable social distancing policy are similar. This comparison

shows the importance and effectiveness of social distancing relative to other virus containment

policy measures.

Government spending analysis of external policies

The model also allows us to calculate government spending associated with travelers, which

are particularly important for countries in which the tourist industry makes a crucial contribu-

tion to their economy and tax revenue. This analysis at least includes the costs of testing kits,

medical treatment, quarantine, and all the direct and indirect consumption and trades intro-

duced by the travelers. In the calibration, we assume the test kits ($51) [48], medical treatment

for patients with severe symptoms ($34,223) [49], medical cost for patients with mild symp-

toms ($3,045) [50], and quarantine ($62) are all covered by the government [51], and the aver-

age tax revenue generated from one international traveler is around $314 [42]. The model

simulation presented in Fig 4E shows that for each fixed travel ban specification, replacing 2

tests by a 14-day quarantine requirement increases government spending. A relaxed travel ban

would increase the number of local new cases induced by infected travelers who did not show

symptoms during the quarantine and were not detected by the imperfect testing. Interestingly,

when the screening on inbound travelers is strict, having two tests, allowing more travelers to

come in generates a small economic gain. But when the screening is loose, the economic con-

sequence of relaxing travel restrictions is large. Moreover, the additional cost caused by the

lack of testing increases proportionally with the number of inbound travelers. We conclude

that internal and external policies interplay in determining the government spending in the

reopening process, and that a simultaneous relaxation of these interventions causes a sizable

shock to the government. Note that this calculation needs to incorporate the effects of social

distancing and travel bans on GDP if interested readers want to conduct a comprehensive eco-

nomic analysis.

Discussion

Studying the effect of travelers on local COVID-19 outbreaks is much needed to design an

area’s reopening strategy. Addressing inbound travelers and the epidemic externality associ-

ated with them are a combination of public health, economics, and political research ques-

tions. In this paper, we studied the epidemiologic and economic perspectives of policies on
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travelers and local people to provide quantitative evidence for policy discussion. We presented

a dynamic model of three areas in heterogeneous phases of the COVID-19 outbreak with trav-

elers across the areas. The model features social distancing, contact tracing, and self-quaran-

tine as internal policies, and travel restriction, quarantine, and testing as external policies.

Calibration using estimated parameters from the COVID-19 data shows simulated outcomes

of policy changes on local epidemic conditions.

We found that internal and external policies toward reopening complement each other,

while simultaneous relaxation of both policies would result in considerable health risk to the

local population. Specific external policies partially substitute each other, and a dynamic com-

bination of them can generate effects as good as extreme choices such as a lockdown. Reopen-

ing strategies also create diverse impacts on the economy. When we solely consider the impact

of travelers on the economy, easing policies towards travelers and local people at the same

time would lead to huge public health costs exceeding economic gains.

The model illustration has some limitations that may be expanded by future research. For

example, the calibration assumed the three areas to have the same population size for simplic-

ity and convenience in the presentation of the results. We give instructions for implementing

heterogeneous population sizes across areas in the computer program. In such situations, the

users of the model should focus on modeling the ratio between the numbers of inbound and

outbound travelers, instead of the population shares of them.

Much further research and policy questions may be answered by extending the model we

developed. One might solve for the optimal reopening strategy from the public health or eco-

nomic perspective while keeping the costs in the other aspect constant. One might easily build

a testing capacity constraint on the model to study the optimal allocation of test kits among

travelers and domestic asymptomatic cases. One might also attach macroeconomic and inter-

national trade components to the model to better characterize and include the internal GDP

reduction caused by social distancing in the overall cost-benefit analysis. We strongly encour-

age policymakers and the general public to make use of the computer program that simulates

our model and configure the model setting to their own context to enhance understanding of

the current and upcoming scenario.
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