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Summary 
Interleukin 7 (IL-7) responsive B lineage precursors were greatly expanded in genetically hypogonadal 
female (HPG/Bm-kpg/kpg) mice that have a secondary deficiency in gonadal steroidogenesis. 
Estrogen replacement in these mice resulted in a dose-dependent reduction in B call precursors. 
More modest increases were documented in genetically normal mice that were surgically castrated. 
These findings complement other recent observations that B lymphopoiesis selectively declines 
in pregnant or estrogen-treated animals. Sex steroids have long been known to influence such 
disparate processes as bone physiology and tumor growth, in addition to their importance for 
reproductive function. We now show that these hormones are important negative regulators 
of B lymphopoiesis. 

B lood cell formation within bone marrow is thought to 
be controlled by close cellular interactions and the avail- 

ability of cytokines that induce proliferation and differentia- 
tion of committed precursor cells. However, our understanding 
of this process is incomplete and especially so with respect 
to mechanisms that limit the production of particular blood 
cell types. We recently found that B lineage precursors, 
identified by their responsiveness to IL-7 and surface markers, 
were selectively depleted during normal pregnancy or after 
treatment with estrogens (1, 2). Since natural or artificial ele- 
vation of sex steroids suppresses B lymphopoiesis, it seemed 
possible that diminished endogenous levels of these hormones 
might result in expanded production of B lymphocytes. 
HPG/Bm-hFg/hpg (hpg) mice have a partial deletion of the 
hypothalamic gonadotropin releasing hormone (GNRH) gene 
and this results in a profound depression in synthesis of 
gonadotropins (follicle stimulating and lutdnizing hormones) 
(3-5). We now show that B lymphopoiesis is abnormally 
increased in these sex hormone-deficient animals and is nor- 
malized by estrogen replacement therapy. 

Materials and Methods 

Animals. Hypogonadal HPG/Bm-hpg/hpg (hpg) mice have a 
deletion in the GNRH gene, resulting in nonexistent gonadal sex 
steroid secretion and infantile reproductive tracts (3-5). The hFg 
mutation was maintained segregating within the HPG/Bm inbred 
strain and phenotypically normal (+/+ or hpg/+, hereafter termed 
+/?) animals were used as controls. Mutant hpg mice were identified 
by Southern blot analysis as described (6) and confirmed by mea- 
surement of uterine weights. Doubly homozygous hypogonadal 
severe combined immunodeficient (hpg/hpg scid/scid) mice were pro- 
duced as previously described (6). Castrated mice were obtained 
from Charles River Laboratories (Wilmington, MA). 
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Colony Assays. Bone marrow cells were prepared and suspended 
in 1 ml of assay medium as previously described (7). The semisolid 
agar doning assay for B lymphocyte precursors (CFU IL-7) was 
done with 10 ng recombinant mouse IL-7 (a gift from Immunex, 
Seattle WA). Mitogen responsive B cells were detected with 25 
~//ml of endotoxin (Difco, Detroit, MI) and the granulocyte/mac- 
rophage progenitor assay (CFU-G/M) was done with 25/~l/ml 
of 10 times concentrated L cell conditioned medium. All cloning 
assays were performed in 35-ram dishes (Coming Glass Inc., 
Coming, NY) and incubated at 37~ 5% CO2. Colonies were 
scored on day 6. 

Immunofluorescent Staining and Analysis. Cells were suspended 
in staining buffer (PBS without CA z+ and Mg z+ with 3% heat 
inactivated FCS and 0.1% sodium azide) at a concentration of 107 
cells/ml. Staining was performed by incubating cells with antibodies 
on ice for 15 min followed by washing with 10 vol of staining buffer. 
Unconjugated antibodies were revealed by a subsequent incuba- 
tion with the appropriate fluorochrome-conjugated second anti- 
body, or in the case of biotinylated primary antibodies, with strep- 
tavidin PE (Biomeda, Foster City, CA) or streptavidin Peridinin 
CP (Becton Dickinson & Co., Mountain View, CA). B cells were 
identified by staining with FITC-labeled goat anti-mouse IgM 
(Southern Biotechnology Associates, Birmingham, AL). Subpopu- 
lations of B lineage precursors were then resolved using a second 
aliquot of the same cell suspensions with a modification of the proce- 
dures described by Hardy et al. (8). As a first step, B cells were 
depleted by adherence on anti-IgM-coated plastic dishes. The re- 
maining cells were then stained with FITC-labeled M1/69 (HSA; 
heat stable antigen) either purchased from PharMingen (San Diego, 
CA) or produced in our laboratory from hybridoma TIB125 (ATCC; 
American Type Culture Collection, Rockville, MD), biotinyhted-S7 
(CD43) purified and biotinylated in our laboratory from the hy- 
bridoma obtained from the ATCC, and PE-labeled 6B2 (CD45R) 
(PharMingen). This three-color analysis was then performed and 
interpreted as follows. Pro-B and large pre-B cells are all CD43 +, 
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and very early precursors (referred to by Hardy as Fraction "A"), 
were discriminated by their low expression of HSA. More mature 
cells (Fractions "B+C") display high levels of HSA. Bone marrow 
lymphocytes which are CD45R + and CD43- were small pre-B 
cells (Fraction "D"). All samples were analyzed with a FACScan | 
flow cytometer (Becton Dickinson & Co.). Parameters were estab- 
lished for discriminating total nucleated cells and lymphocytes by 
staining with appropriate antibodies, backgating on the positive 
cells, and setting forward and orthogonal scatter gates. Further de- 
tails about these analyses are specified in our recent publications 
(1, 2). 

Hormone Replacement. 5-6-wk-old female hpg mice were im- 
planted with Silastic | tubing (Dow-Corning, Midland, MI) con- 
taining 10, 20, or 40 #g/ml 17 fl-estradiol in 8 mg cholesterol or 
containing cholesterol alone. 

Statistical Analysis. The significance of differences were evalu- 
ated by paired t testing. 

Results and Discussion 

IL-7 appears to be critical for B lymphocyte formation and 
IL-7 responding precursors (CFU IL-7) can be readily identified 
with a donal assay (7, 9). Numbers of these precursors were 
dramatically elevated in bone marrow of female hpg mice (Fig. 
1). Highly significant increases were also detected in total 
B lymphocyte lineage precursors (CD45R +, slgM-) enu- 
merated by flow cytometry (10). Multiparameter flow cytom- 
etry was then used to resolve subpopulations of these cells 
at various stages of differentiation (8). The frequency of cells 
at an early stage (characterized as CD45R +, HSA 1~ CD43 + 
and termed Fraction A) were normal in hpg mice and were 
similarly unaffected by pregnancy or hormone treatment (1, 
2). Subsequent compartments (CD45R + , HSA hi, CD43+; 
termed Fractions B + C), including the clonable IL-7 re- 
sponding cells, were significantly elevated in hpg mice. How- 
ever, small pre-B cells (CD45R + , HSA hi, CD43 - ; Fraction 
D) represented the most substantially increased subpopula- 
tion. This is reciprocal to the situation in pregnant or es- 
trogen treated mice, where small pre-B cells were the most 
depressed of all B lineage cells (1, 2). 

A variety of evidence indicates that large IL-7 responding 
cells normally give rise to small pre-B ceils (Fraction D), which 
subsequently become newly formed B cells with an "imma- 
ture" phenotype (7, 11, 12). We found significant elevations 
in B cells in bone marrow of hpg mice (1.7-fold increase, p 
-- 0.003; Fig. 1). This included not only calls with imma- 
ture characteristics (slgM + , slgD-, and slgM + , HSAhi), but 
also sIgM +, slgD + cells, that might be part of a reck- 
culating pool of mature cells (data not shown) (12). B cells 
in the spleen were significantly increased (p <0.001) by ap- 
proximately twofold and again, this applied to immature and 
mature populations (data not shown). The total number of 
nucleated sptenocytes as a whole were increased by the same 
amount, but there was no significant change in the number 
of Mac-1 + cells in that site. Thus, changes in B lineage 
precursors within bone marrow were accompanied by some 
expansion of peripheral B lymphocytes. 

The bone marrow simultaneously produces cells in eight 
lineages and it is remarkable that pregnancy or estrogen treat- 
ment preferentially affects precursors of B cells (1, 2). Simi- 
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Figure I. A comparison of lymphoid and myeloid cells in bone marrow 
of hpg and phenotypically normal +/? mice. IL-7 responding ceils (CFU 
Ib7) and myeloid progenitor cells (CFU-G/M) were enumerated with 
colony assays (Materials and Methods). Flow cytometry was used to dis- 
criminate total B lineage precursors (CD45R + , slgM-) and subpopula- 
tions (Fractions A-D) using a modification of the procedure originally 
described by Hardy and colleagues (1, 2, 8). All results were normalized 
to the normal (+/?) littermate controls (means _+ SE) and statistical 
significance is indicated by asterisks (*, p gO.05; * *,/~ g0.01). 

larly, the elevations in cell number that we found in bone 
marrow of hpg mice were again highly selective (Fig. 1). 
Numbers of total nucleated cells were modestly, but 
significantly, increased in hpg bone marrow, a change totally 
accounted for by increases in B lineage lymphocytes. Mydoid 
progenitors detected with a clonal assay (CFU-G/M), or my- 
eloid and erythroid cells enumerated by flow cytometry (with 
Mac-1 and TER119 antibodies) were all within the normal 
range. 

The hypogonadal mutation ablates synthesis of GNKH 
and gonadotropins (follicle stimulating and luteinizing hor- 
mones) (3-5). Either these, or the sex hormones they regu- 
late, could be responsible for the changes we found. Hor- 
mone replacement experiments suggest that it is the deficiency 
in sex steroids that allows expanded lymphocyte production 
in the mutant mice (Fig. 2). Sustained elevations in serum 
estrogen were achieved with Silastic | tubing implants and 
this resulted in a dose-dependent decrease in B lineage cells. 
This procedure is known to cause an osteosclerotic reaction 
in the peripheral bones of normal mice (13), and we recov- 
ered fewer nucleated cells from estrogen treated hypogonadal 
mice. However, it was clear from subset analysis (data not 
shown) that this sex hormone preferentially depressed B lin- 
eage precursors and the highest dose brought their numbers 
even below the normal range. Thus, B lymphopoiesis in the 
mutant animals is sensitive to preferential negative regula- 
tion by this hormone, demonstrating again that systemic levels 
of sex steroids correspond reciprocally to the production of 
new cells within bone marrow. 

Thymus and spleen cells were evaluated in a previous study 
of hpg mice (14). Small increases in thymus size and cell number 
were recorded in male, but not female hpg animals. There 
were also no significant changes in the thymuses of mice we 
examined (data not shown). This is in striking contrast to 
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Figure 2. Estrogen replacement reduces numbers of B cell precursors 
in hypogonadal mice. B lineage lymphocyte populations in hpg and +/? 
littermate mice were evaluated 5 wk after implantation of 17 ~-estradiol 
or cholesterol control tubing. Cells recovered from one femur and one 
tibia were analyzed by two-color flow cytometry for total B lineage 
precursors (CD45R +, slgM- cells). Highly significant (* *, p g0.001) 
and significant (*, p = 0.036) differences from control values are indicated. 

the elevations we documented in bone marrow lymphocytes. 
While we found that the mutation significantly increased 
numbers of splenic B cells, this was not found in the earlier 
study, where the mutation was carried on a different genetic 
background. 

We also evaluated B lineage lymphocyte precursors in cas- 
trated BALB/c mice (nine of each sex). In male mice, the 
numbers of IL-7 responsive cells and small pre-B ceils in bone 
marrow increased approximately twofold as compared with 
sham operated controls (p <0.001 for both). The same 
parameters were variable in ovariectomized BALB/c mice and 
no significant changes were found (p --0.863 and 0.310, respec- 
tively). However, significant elevations (1.6-fold) in B lin- 
eage cells were found when phenotypically normal females 
of the same strain as the hypogonadal mice (HPG/Bm- +/?) 
were ovariectomized (p -- 0.022). 

It is not dear why the effects of surgical castration had 
less influence on B lymphopoiesis than the hpg mutation, 
but it could relate to the timing of sex hormone withdrawal. 
For example, it has been shown that GNRH is required for 
the normal development of the enzymes required for steroid 
production and that these enzymes are almost undetectable 
in the hpg mouse ovary (15). On the other hand, estrogen 
can be produced in the ovaries of normal mice as early as 
seven days after birth, thus possibly exposing B cell precursors 
to this steroid until the animals are castrated at 3-5 wk of 
age (15). Another possibility is that gonadotropins in cas- 
trated mice direct synthesis of sex steroids outside the gonads. 
Although, estrogen levels were below the reliable RIA de- 
tection range in both hypogonadal and castrated animals, 
uterine weight, an indicator of estrogen levels, was extremely 
lowin hpg mice (12.2 • 7.2mgvs. 94.0 _+ 35.3 mg in normal 
littermates), in agreement with previous studies (3). Castra- 
tion did not decrease uterine weights as severely as in hpg 
mice (data not shown), which could be consistent with a 
hormone deficiency that is less in magnitude and/or dura- 
tion. Regardless, the devation orB lymphopoiesis in hpg mice 
was brought within normal values by estrogen replacement. 
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Detailed studies of the thymus have revealed that there may 
be multiple "control points" where critical events must occur 
in order for differentiation to proceed (16). Similarly, gene 
disruptions and natural mutations have been informative about 
essential steps in B lymphopoiesis (17). The results of the 
present study are consistent with our previous analyses of 
pregnant or hormone-treated mice which indicate that the 
negative regulatory effects of sex steroids must be at, or close 
to, the IL-7-responsive stage (1, 2). Elevations in such early 
precursors should produce an even greater number of differen- 
tiating cells and indeed we measured significant increases in 
small pre-B cell and B cell numbers. However, there must 
be other limitations because the magnitude of the latter 
changes were less than the elevations in IL-7 responding cells. 
Furthermore, the hpg mutation did not overcome the B cell 
deficiency in doubly mutant hypogonadal, severe combined 
immunodeficiency (kpg/kpg scid/scid) mice (6), although there 
were significant elevations in IgM-, CD45R + B lineage 
precursors (scid/scid --- 1.43 x 106, and hpg/hpg scid/scid -- 
2.51 x 106 cells; p ~<0.001). A limiting amount of physical 
space or cytokines in the marrow, the need for successful rear- 
rangement and expression of immunoglobulins, and/or the 
action of other negative regulators may determine the size 
of subsequent compartments. We found no evidence of B 
lineage precursors in the spleen of hpg mice, indicating that 
the normal site orb lymphopoiesis was unchanged (data not 
shown). Future studies should reveal the actual mechanisms 
through which sex steroid(s) control B lymphopoiesis. How- 
ever, there is already reason to believe that they act via the 
microenvironment, rather than directly on B lineage precursors 
(18). The normal rate of B cell production can be diminished, 
or greatly elevated by changes in systemic hormone levels. 
However, the possibility also exists that steroid hormones 
can be produced locally by cells within the bone marrow 
microenvironment (19). 

While there has been rapid progress in identifying cytokines 
and other molecules that may be potential regulators of lym- 
phopoiesis, physiological relevance has been demonstrated for 
very few of them (20). When considered together with the 
findings from pregnant and hormone-treated mice, the results 
with hpg mice make a strong case that normal B lymphopoi- 
esis is actively regulated by sex steroids. There is some reason 
to believe that this paradigm may extend to the production 
of other types of lymphocytes. The thymus has been reported 
to increase in size with castration or in some circumstances 
where there is an inability to produce and respond to sex 
hormones (21-24). In addition, the thymus decreases in size 
during pregnancy or after estrogen treatment (25, 26). How- 
ever, as noted above, the thymus was not enlarged in female 
hypogonadal mice and this indicates that additional regulators 
may be operative in that organ. There are reports of mito- 
genic receptors for GNKH on thymocytes (27) and it is pos- 
sible that the absence of a positive stimulus (GNRH) is com- 
pensated by loss of a negative regulator (estrogen) in hpg mice. 
Further studies of this kind offer promise for successful in- 
tervention in some immune deficiencies and highlight the 
need to better understand the consequences of hormone 
therapy on development and regulation of the immune system. 
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