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Abstract: Breslow thickness is a major prognostic factor for melanoma. It is based on histopathological
evaluation, and thus it is not available to aid clinical decision making at the time of the initial
melanoma diagnosis. In this work, we assessed the efficacy of multispectral imaging (MSI) to predict
Breslow thickness and developed a classification algorithm to determine optimal safety margins of
the melanoma excision. First, we excluded nevi from the analysis with a novel quantitative parameter.
Parameter s’ could differentiate nevi from melanomas with a sensitivity of 89.60% and specificity of
88.11%. Following this step, we have categorized melanomas into three different subgroups based
on Breslow thickness (≤1 mm, 1–2 mm and >2 mm) with a sensitivity of 78.00% and specificity of
89.00% and a substantial agreement (κ = 0.67; 95% CI, 0.58–0.76). We compared our results to the
performance of dermatologists and dermatology residents who assessed dermoscopic and clinical
images of these melanomas, and reached a sensitivity of 60.38% and specificity of 80.86% with a
moderate agreement (κ = 0.41; 95% CI, 0.39–0.43). Based on our findings, this novel method may help
predict the appropriate safety margins for curative melanoma excision.

Keywords: melanoma; surgery; Breslow thickness; LED; dermoscopy; quantitative analysis; melanin;
multispectral imaging; histology; diagnosis

1. Introduction

Melanoma is a malignant melanocytic tumor that accounts for the majority of the
skin cancer-related mortality [1–3]. Approximately 232,100 new invasive melanomas are
diagnosed worldwide, and melanoma accounts for more than 55,000 deaths annually [4].
Melanoma has four main subtypes: (1) superficial spreading melanoma (SSM), (2) nodular
melanoma (NM), (3) lentigo maligna melanoma (LMM), and (4) acral lentiginous melanoma
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(ALM) [5]. According to the American Academy of Dermatology, the National Institute
of Health, and the National Comprehensive Cancer Network, surgical excision followed
by histopathological evaluation is the gold standard for diagnosing melanoma [6,7]. The
Breslow tumor thickness is the maximum perpendicular invasion of the tumor, the distance
in millimeters between the granular layer of the dermis or the base of ulceration, and the
deepest point invaded by tumor cells [6,8] not including deeper follicular or adventitial
extension [6]. The presumed or confirmed tumor depth is a vital element of the tumor
staging [9], which defines the required surgical safety margin [10]. If histology finds thicker
melanoma than clinically expected and the melanoma excision had insufficient surgical
margins, reoperation is needed. Breslow thickness is the strongest predictor of metastatic
spread [11] and determines the need for sentinel lymph node biopsy (SLNB). SLNB is
required if Breslow thickness is more than 0.8 mm [12].

Non-invasive optical imaging modalities have great potential in melanoma diagnosis
and the estimation of tumor depth. Dermoscopy is the most widely used skin imaging
tool in dermatology. Among various other applications, it has also been applied to predict
Breslow thickness [13]. Specific dermoscopic patterns can be helpful in predicting thickness.
Light brown color, atypical pigment network, regression, and hypopigmented areas are
typically present in thin melanomas. In contrast, thick melanomas are associated with
blue-white veil, milky red areas, blue-black pigmentation, irregular vessels, shiny white
streaks, rainbow pattern, ulceration, and pseudolacunae [14].

Various non-invasive imaging methods have been used to assess melanoma thickness,
such as high-frequency ultrasound (HFUS) [15] and photoacoustic microscopy [16]. Optical
coherence tomography (OCT) is a potent tool to diagnose melanoma in vivo based on
the structural and visual characteristics [17] and can predict the depth of thin melanomas
(<400 mm) [18]. HFUS was more suitable to measure the thickness of deeper lesions (>400
mm) [18]. Reflectance confocal microscopy (RCM) is a non-invasive imaging modality
which can differentiate melanomas from other skin lesions based on their visible and
characteristic patterns in vivo [19] and ex vivo [20]. RCM could classify melanomas into
thick (>1 mm) and thin (≤1 mm) subgroups in vivo [21]. Another confocal microscopy
modality, confocal laser scanning microscopy, proved to be a promising tool to estimate
preoperative tumor thickness also, and its ex vivo results correlated with the histological
findings [22]. These non-invasive imaging techniques are capable of providing a diagnosis
of melanoma and estimate its depth, but their prices are high and their use requires special
training and expertise.

Multispectral imaging (MSI) is an emerging diagnostic technique [23,24] that uses
different wavelength bands to capture images [25] mostly between the visible and infrared
light spectrum (400–970 nm) provided by light bulbs or LED lights [26]. This method
combines the advantages of spectrophotometry (spectral resolution) and digital cameras
(spatial resolution) [23]. MSI has been used formerly to distant map skin chromophores,
such as hemoglobin and melanin [27]. The primary advantage of MSI compared to other
imaging modalities is its cost-effectiveness and that it can also be implemented into smart-
phone cameras [28,29]. Recently, MSI was also used to detect skin cancer recurrence [30,31].
MSI can also differentiate benign lesions from malignant tumors based on their autoflu-
orescence intensity (AF) [32]. Our research group has previously shown this technique
to differentiate seborrheic keratosis from melanoma [33]. In addition, we introduced MSI
for the diagnostics of rare skin disorders, including pseudoxanthoma elasticum [34] and
keratinopathic ichthyosis [35].

In our present study, we aimed to develop and assess a novel MSI algorithm for
melanoma Breslow tumor thickness prediction, and thus the determination of optimal
safety margins of melanoma surgeries. Then we compared the algorithm to the performance
of clinical assessment by dermatologists and dermatology residents.
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2. Materials and Methods
2.1. Inclusion Criteria

In this study we included primary cutaneous melanomas histologically verified by
expert dermatopathologists, and nevi confirmed by two expert dermatologists with clinical
and dermoscopic examination. Only lesions on body parts accessible to the MSI device
were investigated. If the lesion was larger than the field of view, multiple image sets were
captured.

2.2. Exclusion Criteria

We excluded cases where histopathological report was not available, cases that proved
to be melanoma metastases, as well as primary melanomas of special sites (acral, genital, or
mucosal melanoma), and melanomas with tumor thickness higher than 10 mm. Thick hair
density, bleeding, or scales that impeded an adequate dermoscopic evaluation were also
excluded. In situ melanomas were also excluded from this study.

2.3. Multispectral Imaging and Analysis of Intensity Values and Shape Descriptors

MSI was performed at the Department of Dermatology, Venereology and Derma-
tooncology, Semmelweis University (Budapest, Hungary) and at the Oncology Center of
Latvia (Riga, Latvia). The handheld prototype used in this study was developed by the
University of Latvia in collaboration with Riga Technical University (Riga, Latvia). The
illumination source was an LED ring which contained four types of LED-diodes with
wavelengths of 405 nm (autofluorescence/AF), 525 nm (green/G), 660 nm (red/R), and
940 nm (infrared/IR), penetrating to different layers of skin with irradiating power density
of 20 mW/cm2 and field of view of 2 × 2 cm2. We used the G, R, and IR channels for
the quantitative analyses. This device was designed to measure skin diffuse reflectance
images by using these four different LED illuminations fixed at 35 mm distance, arranged
circularly in the ring and covered by a matt plate diffusor to deliver uniform illumination.
Images were collected with a color CMOS 5-megapixel IDS camera (MT9P006STC, IDS
uEye UI3581LE-C-HQ, Obersulm, Germany) fixed at 60 mm distance from the illuminated
skin [36]. The acquired images were automatically transferred to a cloud server for further
data processing and analysis [37]. A long-pass filter (T515 nm > 90%) was inserted in
front of the camera, allowing it to capture G, R, and IR spectral channels. The detailed
description of this prototype device has been previously published [36,38]. The LED-based
multispectral images were analyzed with ImageJ v1.46 software (NIH, Bethesda, MD,
USA) [39]. For the intensity analysis and shape description, we manually selected the
regions of interests (ROI) using freehand selections. ROIs of melanomas were recorded
using the ROI manager function of the ImageJ software. Therefore, the analyzed area
was identical in all channels (G, R, IR). We measured the mean gray value (integrated
density/area), circularity (4πarea/perimeter2), solidity (area/convex area), and roundness
(4 × area/(π ×major_axis2)).

2.4. Differentiation of Nevi from Melanomas with the Use of Parameter s’

We used a novel parameter to exclude nevi as the first step of the melanoma classifica-
tion algorithm. Parameter s’ is based on our previous studies [40–43].

parameter s′ = lg
IG · I2

R_skin

IG_skin · I2
R

(1)

where IG: intensity of lesion in green channel,
IG_skin: mean intensity of skin in green channel,
IR: intensity of lesion in red channel,
IR_skin: mean intensity of skin in red channel.
We used the patient data of the melanoma patients mentioned before from which

98 patients met the requirement of the parameter s’ assessment (126 image sets). The ac-
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quired images were automatically transferred to a cloud server for further data processing
and analysis [37]. The image processing algorithms were developed in Matlab (Math-
Works) [41]. We used the patient data of the Department of Dermatology, Venereology and
Dermatooncology, Semmelweis University (Budapest, Hungary) and the Oncology Center
of Latvia (Riga, Latvia), including 143 nevi.

2.5. Melanoma Classification Algorithm

We developed an algorithm to classify melanomas into three subgroups (Breslow tumor
thickness ≤ 1 mm, Breslow tumor thickness 1–2 mm, and Breslow tumor thickness > 2 mm)
based on the shape descriptors and intensity values of their MSI images. As a first step,
this method confirms melanomas and rules out nevi from the calculation. This is followed
by the second step where the algorithm carries out the thresholding between low and high
circularity (threshold: 0.727; arbitrary unit, A.U.) The next step is the intensity analysis
of these two subgroups. Melanomas with low circularity go through an intensity mea-
surement of the G channel (threshold: 8.0 A.U.). Melanomas with a higher G intensity are
classified as melanomas with Breslow ≤ 1 mm, and melanomas with lower G intensity are
classified as tumors with Breslow 1–2 mm. The IR channel was analyzed for melanomas
with low circularity. Melanomas with lower intensities (threshold 107.9 A.U.) were clas-
sified as Breslow > 2 mm and melanomas with higher IR intensities were classified as
Breslow 1–2 mm.

2.6. Dermoscopic Image Analysis by Dermatologists and Dermatology Residents

A spreadsheet-based evaluation form was sent to the dermatologists and dermatology
residents of the Department of Dermatology, Venereology and Dermatooncology. This
spreadsheet contained dermoscopic images of the 100 investigated melanomas (one to
three), a clinical image of the melanomas, and the answers included for the three subgroups
(Breslow ≤ 1 mm, Breslow 1–2 mm, Breslow > 2 mm).

2.7. Statistical Analysis

One-way ANOVA was used for statistical analysis to compare the intensity values and
shape descriptors. We used receiver operating characteristic (ROC) curves to count the area
under the curves (AUC) with default settings (Wilson/Brown method with a confidence
interval of 95%). We used Pearson correlation to correlate intensity values with Breslow
thickness. Cohen’s kappa (κ) was used to calculate concordance. Statistical tests were
performed using GraphPad Prism v8.0.1. software (GraphPad Software Inc., La Jolla, CA,
USA) and R version 3.6.1. p values below 0.05 were considered statistically significant. The
results are expressed as mean ± standard error.

3. Results
3.1. Patient Data and Histology

In this study, we examined 100 patients with primary melanoma. In total, 128 image
sets were collected. Of the 100 melanomas, 69 were SSM (69%), 19 NM (19%), 2 ALM (2%),
3 LMM (3%), 1 naevoid (1%), and 6 unclassified (6%). The mean age of affected patients
was 62.64 ± 14.29 years. The sex ratio was 37% women and 63% men. The mean Breslow
thickness was 1.777 ± 1.728 mm, ranging from 0.12 mm to 7.5 mm (Figure 1).
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Figure 1. Representative images of melanomas with different Breslow thicknesses. Upper row (a–
f); melanoma with Breslow 0.345 mm, pT1a, Clark II, superficial spreading melanoma (SSM), clinical 
photograph (a), dermoscopic image (b), G (c), R (d), and IR (e) channels and histological image (f). 
Middle row (g–l); melanoma with Breslow 1.81 mm, pT2a, Clark IV, SSM, clinical photograph (g), 
dermoscopic image (h), G (i), R (j), and IR (k) channel, histological image (l). Lower row (m–r); 
melanoma with Breslow 2.42 mm, pT3b, Clark IV, SSM with a nodular component, clinical photo-
graph (m), dermoscopic image (n), G (o), R (p), and IR (q) channels and histological image (r). Black 
markers (area: 0.125 cm2) are used for image alignment. Histology magnification 51X (f) and 50X 
(l,r) (H&E staining). 

3.2. Intensity Values 
When the intensity values of various melanomas were studied, we found significant 

differences in the green (G) and red (R) MSI channels that allowed us to efficiently differ-
entiate the Breslow ≤1 mm group from the other two groups. In these tumors, the intensity 
measured in these channels of Breslow ≤1 mm melanomas were significantly higher than 
in the other two subgroups. Readouts in the infrared (IR) channel did not provide valuable 
information to distinguish between thinner or thicker, more invasive melanomas. The 
strongest correlation was between IR intensity and Breslow thickness (r: −0.6593, p value: 
<0.0001, 95% confidence interval: −0.7576 to −0.5317), whereas the G and R channels dis-
played a lower correlation with tumor thickness (Figure 2). 

Figure 1. Representative images of melanomas with different Breslow thicknesses. Upper row (a–f);
melanoma with Breslow 0.345 mm, pT1a, Clark II, superficial spreading melanoma (SSM), clinical
photograph (a), dermoscopic image (b), G (c), R (d), and IR (e) channels and histological image (f).
Middle row (g–l); melanoma with Breslow 1.81 mm, pT2a, Clark IV, SSM, clinical photograph (g),
dermoscopic image (h), G (i), R (j), and IR (k) channel, histological image (l). Lower row (m–r);
melanoma with Breslow 2.42 mm, pT3b, Clark IV, SSM with a nodular component, clinical photograph
(m), dermoscopic image (n), G (o), R (p), and IR (q) channels and histological image (r). Black markers
(area: 0.125 cm2) are used for image alignment. Histology magnification 51× (f) and 50× (l,r) (H&E
staining).

3.2. Intensity Values

When the intensity values of various melanomas were studied, we found significant
differences in the green (G) and red (R) MSI channels that allowed us to efficiently dif-
ferentiate the Breslow ≤ 1 mm group from the other two groups. In these tumors, the
intensity measured in these channels of Breslow ≤ 1 mm melanomas were significantly
higher than in the other two subgroups. Readouts in the infrared (IR) channel did not
provide valuable information to distinguish between thinner or thicker, more invasive
melanomas. The strongest correlation was between IR intensity and Breslow thickness (r:
−0.6593, p value: <0.0001, 95% confidence interval: −0.7576 to −0.5317), whereas the G
and R channels displayed a lower correlation with tumor thickness (Figure 2).

3.3. Shape Descriptors

Among the shape descriptors, both circularity and solidity proved significantly lower
in the Breslow≤ 1 mm group than in the other two subgroups. Investigations of the circular-
ity and solidity made it possible to distinguish the Breslow 1–2 mm and the Breslow > 2 mm
subgroups. This was based on the fact that Breslow > 2 mm melanomas had significantly
higher circularity and solidity values. However, the roundness did not show any significant
differences. Circularity (p: <0.0001) and solidity (p: <0.0001) proved to be efficient in
differentiating thick or nodular melanomas from thin melanomas. Pearson’s correlation
showed a high correlation between solidity (r: 0.6324, 95% confidence interval: 0.4978
to 0.7372, p: <0.0001) and between circularity and Breslow thickness (r: 0.7109 95% confi-
dence interval: 0.5980 to 0.7961, p: <0.0001), whereas the roundness showed no significant
differences between the three subgroups (p value = 0.2139).
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dence interval: 0.4978 to 0.7372, p: <0.0001) and high between circularity and Breslow thickness (i) 
(r: 0.7109, 95% confidence interval: 0.5980 to 0.7961, p: <0.0001) p values between 0.01 and 0.001 were 
considered very significant (**) and values between 0.001 and 0.0001 were considered extremely 
significant (***). The results are expressed as mean ± standard error (n = 100). A.U. = arbitrary unit. 
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Figure 2. Comparison of melanomas with different tumor thicknesses and correlations between
intensity values, shape descriptors, and Breslow thickness. One-way ANOVA and Tukey’s post
comparison test were used to compare the intensity values and shape descriptors. The intensity
values proved to be statistically significant (a) G (p < 0.0001), (b) R (p < 0.0001), and (c) IR (p < 0.0001)
and among the shape descriptors. (d) Circularity (p < 0.0001) and (e) solidity (p < 0.0001) were
statistically significant. The roundness (f) could not separate the three groups effectively (p: 0.2759).
Moreover, the (G (a), R (b), and IR (c) channels proved to be effective to identify tumors of Breslow
≤ 1 mm from the other two groups, whereas the IR channel could differentiate the Breslow 1–2 mm
and Breslow > 2 mm from each other. Pearson’s correlation was used to correlate Breslow thickness
with IR, circularity, and solidity. It showed a high correlation between IR intensity (g) and Breslow
tumor thickness (r: −0.659, 95% confidence interval: −0.7576 to −0.5317, p: <0.0001), whereas the
correlations between Breslow tumor thickness and G or R intensities were low (r: −0.226 and −0.244,
respectively). The correlation was high between solidity and Breslow thickness (h) (r: 0.6324 95%
confidence interval: 0.4978 to 0.7372, p: <0.0001) and high between circularity and Breslow thickness
(i) (r: 0.7109, 95% confidence interval: 0.5980 to 0.7961, p: <0.0001) p values between 0.01 and 0.001
were considered very significant (**) and values between 0.001 and 0.0001 were considered extremely
significant (***). The results are expressed as mean ± standard error (n = 100). A.U. = arbitrary unit.

3.4. Differentiation of Nevi from Melanomas with the Use of Parameter s’

Parameter s’ was able to distinguish melanomas from nevi with a sensitivity of 89.60%
and specificity of 88.11% as the first step of the algorithm. The melanomas had significantly
higher parameter s’ values compared to the nevi. The ROC AUC analysis showed signifi-
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cant differences also. The comparison of melanoma and nevus groups had an AUC of 0.944
(patients: melanoma, control: nevi, 95% confidence interval, p < 0.0001) (Figure 3).

J. Clin. Med. 2022, 11, x FOR PEER REVIEW 7 of 14 
 

 

significantly higher circularity and solidity values. However, the roundness did not show 
any significant differences. Circularity (p: <0.0001) and solidity (p: <0.0001) proved to be 
efficient in differentiating thick or nodular melanomas from thin melanomas. Pearson’s 
correlation showed a high correlation between solidity (r: 0.6324, 95% confidence interval: 
0.4978 to 0.7372, p: <0.0001) and between circularity and Breslow thickness (r: 0.7109 95% 
confidence interval: 0.5980 to 0.7961, p: <0.0001), whereas the roundness showed no sig-
nificant differences between the three subgroups (p value = 0.2139).  

3.4. Differentiation of Nevi from Melanomas with the Use of Parameter s’ 
Parameter s’ was able to distinguish melanomas from nevi with a sensitivity of 

89.60% and specificity of 88.11% as the first step of the algorithm. The melanomas had 
significantly higher parameter s’ values compared to the nevi. The ROC AUC analysis 
showed significant differences also. The comparison of melanoma and nevus groups had 
an AUC of 0.944 (patients: melanoma, control: nevi, 95% confidence interval, p < 0.0001) 
(Figure 3).  

 
Figure 3. Differentiation of nevi from melanomas with the use of parameter s’. A superficial spread-
ing melanoma, Breslow: 1.02, Clark: IV, pT2a (upper row), and a pigmented nevus (middle row). 
The parameter maps (d,h) were calculated using the G (a,e), R (b,f), and IR (c,g) channels. The mel-
anoma with higher parameter s’ is red (d), whereas the nevus with its lower parameter s’ is visual-
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Figure 3. Differentiation of nevi from melanomas with the use of parameter s’. A superficial
spreading melanoma, Breslow: 1.02, Clark: IV, pT2a (upper row), and a pigmented nevus (middle
row). The parameter maps (d,h) were calculated using the G (a,e), R (b,f), and IR (c,g) channels.
The melanoma with higher parameter s’ is red (d), whereas the nevus with its lower parameter s’ is
visualized deep blue (h). The redness means higher probability of melanoma (highest parameter s’
is 1.5: rufous color), while blueness refers to a higher probability of nevus (lowest parameter s’ is
−1.5: deep blue color). Using the maximum values (i) with a threshold of 0.511 arbitrary unit (A.U.)
melanomas could be differentiated from nevi with a sensitivity of 89.60% and specificity 88.11%. The
area under the curve (AUC) was 0.944 (patients: melanoma, control: nevi, 95% confidence interval,
p < 0.0001) (j). Y-axis: sensitivity, x-axis: 1-specificity.

3.5. Melanoma Classification Algorithm

We have developed a novel melanoma classification algorithm based on MSI shape de-
scriptors and intensity values that allow us to classify melanomas into the above-mentioned
three subgroups with a sensitivity of 78% and specificity of 89%, (Figure 4). The sensi-
tivities for each subgroup were 80.85% (Breslow ≤ 1 mm), 76.19% (Breslow 1–2 mm),
and 81.25% (Breslow > 2 mm). The specificities were 96.22% (Breslow ≤ 1 mm), 82.27%
(Breslow 1–2 mm), and 94.11% (Breslow > 2 mm). The total agreement for predicting the
right subgroup was substantial (κ = 0.67; 95% CI, 0.58–0.76), also it was substantial clas-
sifying melanomas to Breslow ≤ 1 mm subgroup (κ = 0.76; 95% CI, 0.63 to 0.89) and to
Breslow > 2 mm subgroup (κ = 0.73; 95% CI, 0.59 to 0.88). The agreement was moderate
when the algorithm classified melanomas to the Breslow 1–2 mm subgroup (κ = 0.47;
95% CI, 0.28 to 0.65).
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Figure 4. Melanoma classification algorithm. Based on the shape descriptors and intensity values, our
melanoma classification algorithm was calculated to classify the multispectral images of melanomas
with different Breslow tumor thicknesses. As a first step, this algorithm excludes nevi from the
analysis with the use of parameter s’ (threshold: 0.511 A.U.). The second step is a threshold between
lower and higher circularities that was established (threshold: 0.727 A.U.), which sorted melanomas
into two groups: (1) low and (2) high circularity. The third step was the classification of melanomas
from these two subgroups to the three previously defined groups (Breslow tumor thickness ≤ 1 mm,
Breslow tumor thickness 1–2 mm, Breslow tumor thickness >2 mm). We used the intensity values of
green channel (threshold: 8.0 A.U.) and the infrared channel (threshold: 107.9 A.U.). This algorithm
was able to classify melanomas into three subgroups with a sensitivity of 78% and specificity of 89%.

3.6. Dermoscopic Image Analysis by Dermatologists and Dermatology Residents

The total sensitivity of their categorization into the three groups described above was
60.38%, while the specificity was 80.86% with a moderate total agreement (κ = 0.41; 95%
CI, 0.40 to 0.43) (Table 1). The sensitivity of the assessment by dermatologists was 62.19%
with a specificity of 81.09% and a moderate agreement (κ = 0.44; 95% CI, 0.42 to 0.47),
whereas the sensitivity of the evaluation by dermatology residents was 58.44%, with a
specificity of 79.76% and a fair agreement (κ = 0.39; 95% CI, From 0.36 to 0.41). Among
subgroups, classifying into the Breslow > 2 mm subgroup had the highest total sensitivity
of 90.37% and specificity of 78.58% with high substantial agreement (κ = 0.65; 95% CI, 0.61
to 0.69). Classification into the Breslow ≤ 1 mm subgroup had a sensitivity of 51.69% and
specificity of 96.95% with a moderate agreement (κ = 0.49; 95% CI, From 0.46 to 0.52). The
classification into the Breslow 1–2 mm subgroup had a sensitivity of 38.51% and specificity
of 72.07% with no agreement (κ = 0.09; 95% CI, 0.06 to 0.13).
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Table 1. Comparison of the melanoma classification algorithm and the assessment based on dermo-
scopic and clinical images by dermatologist and dermatology residents (n = 100).

Melanoma Classification
Algorithm

Assessment Based on Dermoscopic
and Clinical Image

Cohen’s kappa 0.67 0.41
Sensitivity 78.00% 60.38%
Specificity 89.00% 80.86%

4. Discussion

MSI allows the examiner to use several wavelength-dependent features and has
been previously used to detect melanomas. However, these studies mainly focused on
the differentiation of melanomas from other skin lesions [44–49], and only a few studies
focused on depth prediction [50]. To the best of our knowledge, we were the first to
analyze melanoma tumor thickness with multispectral imaging to classify melanomas into
subgroups of great clinical relevance. This was all based on the analysis of their shape
descriptors and intensity values. Shape descriptors efficiently differentiated high and
low-risk melanomas, namely over 2 mm vs. less than 1 mm. SMMs are more common
among thin melanomas (p < 0.001) and NMs are more common among patients with thick
melanomas (p < 0.001) [51].The combination of shape descriptors and intensity values was
sensitive and specific enough for the melanoma classification algorithm to sort melanomas
into the three categories, with a sensitivity of 78.00%, specificity of 89.00% with a substantial
agreement (κ = 0.67; 95% CI, 0.58–0.76). Circularity, the sphericity of lesions was the most
suitable shape descriptor to classify melanomas into a low- and high-risk group as the
second step. Larger and thicker melanomas were more circular. However, circularity alone
is not sufficient to accurately establish melanoma thickness, thus a third classification step
was needed.

The third analysis step relied on analysis more closely related to the dermal localiza-
tion of melanoma cells. These findings are in line with our previous findings as shorter
wavelengths, such as G and R, penetrate the dermis only superficially and are absorbed and
reflected by tumor chromophores mainly from the surface [33]. The IR penetrates deeper
to the skin and is reflected by tumor chromophores deeper from the dermis [52], consis-
tently with the literature [53]. Therefore, G channel was suitable to differentiate between
Breslow ≤ 1 mm melanomas and Breslow 1–2 mm melanomas, whereas the IR channel
could distinguish between Breslow 1–2 mm melanomas and melanomas with higher than
2 mm Breslow thickness. Because of its physical characteristics, the G channel was more
useful to identify superficial lesions. Thinner melanomas had higher intensities because
of the lower melanin concentration, whereas G channel could not differentiate between
Breslow 1–2 mm and Breslow > 2 mm melanomas. The IR channel was able to provide
information about the deeper layers of the skin. Therefore, it was effective to distinguish
better between Breslow 1–2 mm and Breslow > 2 mm melanomas. Thinner melanomas are
characterized by a higher chance of regression and presence of hypopigmented areas [16],
which lesions had higher intensity values in both G and IR channels.

We built in an additional first step into the algorithm to exclude nevi from the analysis
using parameter s’. Parameter s’ is an improved formula based on our previous findings
to differentiate melanoma from nevi [40–43]. It utilizes the intensity values of the lesion
and the surrounding skin in G and R channels to calculate a predictive value. In our study,
melanomas had significantly higher parameter s’ values compared to nevi. Therefore,
with our thresholding algorithm nevi could be differentiated from melanomas with a
sensitivity of 89.60% and specificity of 88.11% (Figure 3). These findings are consistent
with the literature, where multispectral imaging had been previously applied successfully
to differentiate these two entities [45]. Beyond multispectral imaging, melanoma and
nevus differentiation is one of the most researched topics in dermatology using various
imaging modalities. Many studies have focused on this problem and used computerized
and AI-aided methods to differentiate benign lesions from malignant skin tumors [54–57].
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This is a potentially applicable step to exclude benign pigmented nevi and reconsider the
clinical diagnosis when our algorithm is used to estimate tumor thickness of melanoma.

In this study, we also compared the performance of our MSI-based algorithm to that
of human observers. Clinical and dermoscopic images of 100 melanomas were shown to
dermatologists and dermatology residents to assess their ability to classify the lesion based
on tumor thickness. Dermatologists and dermatology residents completed the form with
a total sensitivity of 60.38%, of which the dermatologists reached a sensitivity of 62.19%,
and the dermatologist residents performed at a sensitivity rate of 58.44%. Specificity
reached 80.86%, with 81.09% and 79.76% for dermatologists and dermatology residents,
respectively. The total agreement was found to be moderate (κ = 0.41; 95% CI, 0.40 to 0.43).
Compared to the melanoma classification algorithm, all human investigators achieved a
lower sensitivity and specificity in classifying melanomas into subgroups based on likely
histological tumor thickness. Humans had lower accuracy, and the agreement was higher
using the algorithm (κ = 0.67; 95% CI, 0.58–0.76). However, it is important to note that
palpation is an important guide to clinicians to aid their vision when estimating the tumor
thickness during routine examinations, which was not possible in this study. These data
were similar to earlier findings in the literature. Dermoscopy was recently described to
predict Breslow tumor thickness with a concordance of 0.52, and it could even differentiate
between in situ melanomas and tumors thicker than 1 mm [15].

This MSI technique and our novel algorithm is a potential tool to aid clinicians in
the evaluation of melanoma depth. It is fast and easy-to-perform, the imaging takes 20 s
whereas running the algorithm needs one minute. It is comparable to other modalities,
such as HFUS, which could estimate the required surgical margins of melanomas (1, 2, or 3
cm) in 26 of the 31 subjects [13]. Moreover, preoperative HFUS was found to be a potential
tool aid for the excision of melanoma in one step [58]. Combining HFUS with digital
dermoscopy enhanced the accuracy also, and could differentiate thick and thin melanomas
with a sensitivity of 86.7% [59]. Optical coherence tomography is a potential tool also to
predict melanoma tumor thickness based on their vascular morphology [60]. Reflectance
confocal microscopy proved to be an accurate modality in the presurgical margin mapping
of only LMMs [61,62]. Although these imaging modalities can be used to estimate Breslow
tumor thickness, compared to MSI, their main disadvantage is that they are expensive, and
their efficacy depends fundamentally on the examiner’s skill and proficiency [63–65].

This multispectral LED-based imaging and our algorithm has several limitations. The
field of view of 2 × 2 cm2 of the device limits the maximum area of the imaging. Another
limitation is the acquisition of images of special sites (acral, genital, or mucosal melanoma)
is also not possible. The algorithm we created could be potentially further improved in
the future. The acquired multispectral images could be applicable as training data for
machine learning algorithms. The MSI imaging procedure takes 30 s and an additional
30 s is required to upload the images to the cloud server. It takes around one minute
to manually carry out the required image analysis for the algorithm and complete the
classification. The automatization of this melanoma classifying algorithm is one of our
future plans. As a result, the time required for melanoma classification could be further
reduced. The last limitation factor is the fact that a multispectral LED device prototype is
not widely available yet and it is difficult to compare our results to MSI findings acquired
with other imaging settings. The Breslow thickness and its connection with the progression
of melanoma is thoroughly investigated in the literature. Thick melanomas show a high
risk of early metastasis and locoregional spread [66]. Kulkarni et al. also noted histologic
patterns that predict a higher risk of recurrence based on H&E images processed by deep
learning [67]. Breslow thickness and ulceration remain the main predictors of prognosis.
Paolino et al analyzed 244 acral melanomas and also noted the importance of these two
factors [68].
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5. Conclusions

MSI is a potentially helpful tool to determine the required surgical margin based on
the estimated Breslow thickness. It is easy-to-access, cost-effective, and can be used as a
mobile add-on device using the camera of a smartphone. The collected data may serve as a
training pool for machine learning algorithms for further improvements in order to achieve
a more accurate estimation of Breslow thickness, as Marchesini et al. suggested [50].

MSI and dermoscopy are non-invasive imaging modalities. Both can help the spe-
cialists estimate melanoma tumor thickness and can aid the differentiation of nevi from
melanomas. However, dermoscopy is a tool designed for healthcare professionals with
dedicated training [13,51,69]. In contrast, MSI requires no previous training and may be
used as smartphones attachment to estimate tumor thickness. Based on our findings, MSI
may be used in clinical practice for the prediction of appropriate safety margins for curative
melanoma excisions.
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Pálma Anker, Kincső Blága, Zsófia Tari, Karolina Polgár, József Szakonyi, Isolde Joura, Laura Belvon,
and Eszter Müller for helping in the spreadsheet questionnaire. We thank Marta Lange and Bl,izn, uks
for the development.

Conflicts of Interest: The authors declare no conflict of interest.



J. Clin. Med. 2022, 11, 189 12 of 14

References
1. MacKie, R.; Hauschild, A.; Eggermont, A. Epidemiology of invasive cutaneous melanoma. Ann. Oncol. 2009, 20, vi1–vi7.

[CrossRef]
2. Garbe, C.; Leiter, U. Melanoma epidemiology and trends. Clin. Dermatol. 2009, 27, 3–9. [CrossRef]
3. Almashali, M.; Ellis, R.; Paragh, G. Melanoma Epidemiology, Staging and Prognostic Factors. In Practical Manual for Dermatologic

and Surgical Melanoma Management; Springer: Berlin/Heidelberg, Germany, 2021; pp. 61–81.
4. Schadendorf, D.; van Akkooi, A.C.; Berking, C.; Griewank, K.G.; Gutzmer, R.; Hauschild, A.; Stang, A.; Roesch, A.; Ugurel, S.

Melanoma. Lancet 2018, 392, 971–984. [CrossRef]
5. Ward, W.H.; Farma, J.M. Cutaneous Melanoma: Etiology and Therapy; Codon Publications: Brisbane, Australia, 2017; p. 85.
6. Swetter, S.M.; Tsao, H.; Bichakjian, C.K.; Curiel-Lewandrowski, C.; Elder, D.E.; Gershenwald, J.E.; Guild, V.; Grant-Kels, J.M.;

Halpern, A.C.; Johnson, T.M. Guidelines of care for the management of primary cutaneous melanoma. J. Am. Acad. Dermatol.
2019, 80, 208–250. [CrossRef] [PubMed]

7. Sober, A.J.; Chuang, T.-Y.; Duvic, M.; Farmer, E.R.; Grichnik, J.M.; Halpern, A.C.; Ho, V.; Holloway, V.; Hood, A.F.; Johnson, T.M.
Guidelines of care for primary cutaneous melanoma. J. Am. Acad. Dermatol. 2001, 45, 579–586. [CrossRef] [PubMed]

8. Sladden, M.J.; Balch, C.; Barzilai, D.A.; Berg, D.; Freiman, A.; Handiside, T.; Hollis, S.; Lens, M.B.; Thompson, J.F. Surgical excision
margins for primary cutaneous melanoma. Cochrane Database Syst. Rev. 2009, 3. [CrossRef] [PubMed]

9. Gershenwald, J.E.; Scolyer, R.A.; Hess, K.R.; Sondak, V.K.; Long, G.V.; Ross, M.I.; Lazar, A.J.; Faries, M.B.; Kirkwood, J.M.;
McArthur, G.A. Melanoma staging: Evidence-based changes in the American Joint Committee on Cancer eighth edition cancer
staging manual. CA Cancer J. Clin. 2017, 67, 472–492. [CrossRef]

10. Coit, D.G.; Andtbacka, R.; Anker, C.J.; Bichakjian, C.K.; Carson, W.E., 3rd; Daud, A.; Dilawari, R.A.; Dimaio, D.; Guild, V.;
Halpern, A.C.; et al. Melanoma. J. Natl. Compr. Cancer Netw. 2012, 10, 366–400. [CrossRef]

11. Koshenkov, V.P.; Broucek, J.; Kaufman, H.L. Surgical management of melanoma. In Melanoma; Springer: Cham, Switzerland, 2016;
pp. 149–179.

12. Koshenkov, V.P.; Shulkin, D.; Bustami, R.; Chevinsky, A.H.; Whitman, E.D. Role of sentinel lymphadenectomy in thin cutaneous
melanomas with positive deep margins on initial biopsy. J. Surg. Oncol. 2012, 106, 363–368. [CrossRef] [PubMed]

13. Polesie, S.; Jergéus, E.; Gillstedt, M.; Ceder, H.; Dahlén Gyllencreutz, J.; Fougelberg, J.; Johansson Backman, E.; Pakka, J.; Zaar, O.;
Paoli, J. Can Dermoscopy Be Used to Predict if a Melanoma Is In Situ or Invasive? Dermatol. Pract. Concept. 2021, 11, e2021079.
[CrossRef] [PubMed]

14. Rodríguez-Lomba, E.; Lozano-Masdemont, B.; Nieto-Benito, L.M.; Hernández de la Torre, E.; Suárez-Fernández, R.; Avilés-
Izquierdo, J.A. Dermoscopic Predictors of Tumor Thickness in Cutaneous Melanoma: A Retrospective Analysis of 245 Melanomas.
Dermatol. Pract. Concept. 2021, 11, e2021059. [CrossRef] [PubMed]

15. Machet, L.; Belot, V.; Naouri, M.; Boka, M.; Mourtada, Y.; Giraudeau, B.; Laure, B.; Perrinaud, A.; Machet, M.-C.; Vaillant, L.
Preoperative measurement of thickness of cutaneous melanoma using high-resolution 20 MHz ultrasound imaging: A monocenter
prospective study and systematic review of the literature. Ultrasound Med. Biol. 2009, 35, 1411–1420. [CrossRef] [PubMed]

16. Oh, J.-T.; Li, M.-L.; Zhang, H.F.; Maslov, K.; Wang, L.V. Three-dimensional imaging of skin melanoma in vivo by dual-wavelength
photoacoustic microscopy. J. Biomed. Opt. 2006, 11, 034032. [CrossRef] [PubMed]

17. Rajabi-Estarabadi, A.; Bittar, J.M.; Zheng, C.; Nascimento, V.; Camacho, I.; Feun, L.G.; Nasiriavanaki, M.; Kunz, M.; Nouri, K.
Optical coherence tomography imaging of melanoma skin cancer. Lasers Med. Sci. 2019, 34, 411–420. [CrossRef] [PubMed]

18. Wang, T.; Mallidi, S.; Qiu, J.; Ma, L.L.; Paranjape, A.S.; Sun, J.; Kuranov, R.V.; Johnston, K.P.; Milner, T.E. Comparison of pulsed
photothermal radiometry, optical coherence tomography and ultrasound for melanoma thickness measurement in PDMS tissue
phantoms. J. Biophotonics 2011, 4, 335–344. [CrossRef] [PubMed]

19. Stevenson, A.D.; Mickan, S.; Mallett, S.; Ayya, M. Systematic review of diagnostic accuracy of reflectance confocal microscopy for
melanoma diagnosis in patients with clinically equivocal skin lesions. Dermatol. Pract. Concept. 2013, 3, 19. [CrossRef]

20. Waddell, A.; Star, P.; Guitera, P. Advances in the use of reflectance confocal microscopy in melanoma. Melanoma Manag. 2018, 5,
MMT04. [CrossRef]

21. Kardynal, A.; Olszewska, M.; de Carvalho, N.; Walecka, I.; Pellacani, G.; Rudnicka, L. Reflectance confocal microscopy features of
thin versus thick melanomas. G. Ital. Dermatol. Venereol. 2019, 154, 379–385. [CrossRef]

22. Hartmann, D.; Krammer, S.; Ruini, C.; Ruzicka, T.; von Braunmühl, T. Correlation of histological and ex-vivo confocal tumor
thickness in malignant melanoma. Lasers Med. Sci. 2016, 31, 921–927. [CrossRef]

23. Jolivot, R.; Benezeth, Y.; Marzani, F. Skin parameter map retrieval from a dedicated multispectral imaging system applied to
dermatology/cosmetology. Int. J. Biomed. 2013, 2013, 26. [CrossRef]

24. Zherdeva, L.A.; Bratchenko, I.A.; Myakinin, O.O.; Moryatov, A.A.; Kozlov, S.V.; Zakharov, V.P. In vivo hyperspectral imaging
and differentiation of skin cancer. In Proceedings of Optics in Health Care and Biomedical Optics. J. Biomed. Opt. 2016, 10024,
100244G.

25. Kuzmina, I.; Diebele, I.; Spigulis, J.; Valeine, L.; Berzina, A.; Abelite, A. Contact and contactless diffuse reflectance spectroscopy:
Potential for recovery monitoring of vascular lesions after intense pulsed light treatment. J. Biomed. Opt. 2011, 16, 040505.
[CrossRef] [PubMed]

26. Kuzmina, I.; Diebele, I.; Asare, L.; Kempele, A.; Abelite, A.; Jakovels, D.; Spigulis, J. Multispectral imaging of pigmented and
vascular cutaneous malformations: The influence of laser treatment. Laser Appl. Life Sci. 2010, 7376, 73760J. [CrossRef]

http://doi.org/10.1093/annonc/mdp252
http://doi.org/10.1016/j.clindermatol.2008.09.001
http://doi.org/10.1016/S0140-6736(18)31559-9
http://doi.org/10.1016/j.jaad.2018.08.055
http://www.ncbi.nlm.nih.gov/pubmed/30392755
http://doi.org/10.1067/mjd.2001.117044
http://www.ncbi.nlm.nih.gov/pubmed/11568750
http://doi.org/10.1002/14651858.CD004835.pub2
http://www.ncbi.nlm.nih.gov/pubmed/19821334
http://doi.org/10.3322/caac.21409
http://doi.org/10.6004/jnccn.2012.0036
http://doi.org/10.1002/jso.23093
http://www.ncbi.nlm.nih.gov/pubmed/22422155
http://doi.org/10.5826/dpc.1103a79
http://www.ncbi.nlm.nih.gov/pubmed/34123569
http://doi.org/10.5826/dpc.1103a59
http://www.ncbi.nlm.nih.gov/pubmed/34123562
http://doi.org/10.1016/j.ultrasmedbio.2009.03.018
http://www.ncbi.nlm.nih.gov/pubmed/19616369
http://doi.org/10.1117/1.2210907
http://www.ncbi.nlm.nih.gov/pubmed/16822081
http://doi.org/10.1007/s10103-018-2696-1
http://www.ncbi.nlm.nih.gov/pubmed/30539405
http://doi.org/10.1002/jbio.201000078
http://www.ncbi.nlm.nih.gov/pubmed/20954204
http://doi.org/10.5826/dpc.0304a05
http://doi.org/10.2217/mmt-2018-0001
http://doi.org/10.23736/S0392-0488.18.05863-7
http://doi.org/10.1007/s10103-016-1936-5
http://doi.org/10.1155/2013/978289
http://doi.org/10.1117/1.3569119
http://www.ncbi.nlm.nih.gov/pubmed/21529066
http://doi.org/10.1117/12.873701


J. Clin. Med. 2022, 11, 189 13 of 14

27. Setiadi, I.C.; Nasution, A.M.; Chandra, T.G. A new LED-based multispectral imaging system for blood and melanin content
estimation: The validation. AIP Conf. Proc. 2019, 2193, 050017. [CrossRef]

28. Cook, S.E.; Palmer MD, L.C.; Shuler, M.; Franklin, D. Smartphone Mobile Application to Enhance Diagnosis of Skin Cancer: A
Guide for the Rural Practitioner. West Va. Med. J. 2015, 111, 22–29.

29. Kuzmina, I.; Lacis, M.; Spigulis, J.; Berzina, A.; Valeine, L. Study of smartphone suitability for mapping of skin chromophores. J.
Biomed. Opt. 2015, 20, 090503. [CrossRef] [PubMed]
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