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Abstract
Adequately selecting a therapeutic approach for bladder cancer depends on accurate grading and staging.
Substantial inaccuracy of clinical staging with bimanual examination, cystoscopy, and transurethral resection of
bladder tumor has facilitated the increasing utility of magnetic resonance imaging to evaluate bladder cancer.
Diffusion-weighted imaging (DWI) is a noninvasive functional magnetic resonance imaging technique. The high
tissue contrast between cancers and surrounding tissues on DWI is derived from the difference of water
molecules motion. DWI is potentially a useful tool for the detection, characterization, and staging of bladder
cancers; it can also monitor posttreatment response and provide information on predicting tumor biophysical
behaviors. Despite advancements in DWI techniques and the use of quantitative analysis to evaluate the apparent
diffusion coefficient values, there are some inherent limitations in DWI interpretation related to relatively poor
spatial resolution, lack of cancer specificity, and lack of standardized image acquisition protocols and data analysis
procedures that restrict the application of DWI and reproducibility of apparent diffusion coefficient values. In
addition, inadequate bladder distension, artifacts, thinness of bladder wall, cancerous mimickers of normal
bladder wall and benign lesions, and variations in the manifestation of bladder cancer may interfere with diagnosis
and monitoring of treatment. Recognition of these pitfalls and limitations can minimize their impact on image
interpretation, and carefully applying the analyzed results and combining with pathologic grading and staging to
clinical practice can contribute to the selection of an adequate treatment method to improve patient care.
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Introduction
Urinary bladder cancer is one of the most common urinary tract
malignancies, causing notable morbidity and mortality [1,2]. The
management and prognosis of bladder cancer are based on T staging,
pathologic grading of the tumor, and the presence or absence of
metastatic disease. Clinical staging of the primary tumor with
bimanual examination, cystoscopy, and transurethral resection of
bladder tumor (TURBT) is associated with an inaccuracy rate from
23% to 50% [3–7]. Therefore, obtaining an accurate imaging study is
important to facilitate choosing optimal management methods.
Magnetic resonance imaging (MRI) is a feasible and reasonably

accurate technique for the local staging of bladder cancer preferred
over computed tomography (CT) [2] not only because MRI provides
multiplanar images but also because the tissue contrast resolution is
high. Furthermore, the application of functional images such as
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diffusion-weighted imaging (DWI) and dynamic contrast-enhanced
imaging (DCE) to the anatomic images improves the accuracy of
tumor detection and staging, and helps in monitoring posttherapy
response and identifying recurrences [8–13].

DWI provides functional and structural information about
biological tissues. It can be obtained rapidly and noninvasively
without exposure to ionizing radiation and does not require
gadolinium contrast administration. This is beneficial to a substantial
group of bladder cancer patients who are allergic to contrast medium
or who have renal dysfunction because it allows them to avoid
contrast medium–induced nephrotoxicity and nephrogenic systemic
fibrosis. DWI has played an important role in the multiparametric
MRI and is a useful technique to increase the accuracy in detecting
and evaluating the extent of bladder cancer [8–11,13]. In addition, it
has also been applied to assess the biological behavior of bladder
cancer. Apparent diffusion coefficient (ADC) value derived from
DWI, which has been reported as a potential biomarker, could
predict histopathological grading and reflect the aggressiveness of
bladder cancer [14–18].

However, limitations exist, including a wide spectrum of cancer
mimickers on DWI, intrinsic matters limiting the clinical applications
of ADC values, inadequate patient preparation, presence of artifacts,
and thinning of the bladder wall leading to inaccurate diagnosis, any
of which could lead to under- or overstaging and impair the ability to
determinate tumor aggressiveness. Moreover, difficult differentiation
between benign lymph node and metastatic lymphadenopathy and
interpretation of DWI in bone lesions also challenge the application
of DWI to evaluate metastases. Although some studies have
thoroughly reviewed the clinical use of DWI for bladder cancer
assessment [19–21], pitfalls and limitations in the application of DWI
to evaluate bladder cancer were not systemically reviewed. Full
understanding of the limitations and careful avoidance of the pitfalls
would promote more efficient use of DWI to assess bladder cancer.

Herein we described the biophysics of DWI and ADC, the
histopathology of bladder cancer, the pitfalls and limitations in general
utilization, and the clinical application of DWI for bladder cancer
assessment based on our experiences and a review of the literature.

Biophysical Basis and General Limitations of DWI
and ADC

Biophysical Basis of DWI
DWI is a functional imaging technique that depicts differences in the

microscopic mobility of water molecules, called Brownian motion; this
mobility depends on the integrity of cell membranes and the cellularity
of the underlying tissue, thus reflecting biologic abnormalities.
Advancement of imaging techniques, such as echo planar imaging,
parallel imaging, multichannel coils, and high gradient amplitudes, has
enabled the application of DWI in the abdomen and pelvis [22,23].

The movements of water molecules within some normal tissues,
including neurological tissue, lymphatic tissue, bowel mucosa, testis,
and endometrium, are restricted because these are highly cellular
tissues that show persistently bright on DWI, even at high b-values.
Pathologic lesions, such as tumor and infarction, have been reported
to be associated with impeded water diffusion. Tumor tissue has high
cellular density, high nuclear-cytoplasmic ratio, and high extracellular
disorganization [22], causing restricted water diffusion leading to high
signal intensity (SI) on DWI and reduced ADC value. Restricted
water molecular movement in infarction is mainly related to cytotoxic
edema. Water diffusion is also impeded in fibrosis and in the presence
of highly viscous fluids such as abscess; thus, these conditions have the
same SI on DWI and ADC as malignancy [24,25]. Lesions with a
high fluid content have a strong T2 SI that may be carried onto the
DWI to mimic or obscure cancer as a T2 shine-through effect. This
pitfall may be avoided by referring to the ADC map and discloses its
true diffusivity.

Quantifying the Degree of Water Diffusion
The ADC value is quantitative assessment of the SI changes of

tissue as an increase of b-values. The calculation of ADC value is
acquired via a diffusion equation that requires two or more b-values.
The ADC map is a gray-scale display of the quantitative analysis of
DWI. The “b-value” is proportional to the amplitude and duration of
the applied gradient and the time interval between the paired
gradients [22,23]. Changing the b-value alters the sensitivity to detect
water diffusion. The SI of tissues on small b-values DWI incorporates
both the slow diffusion component of thermally generated water
mobility and the fast diffusion component that results from the
mobility within the capillary network, whereas the fast diffusion
component is restricted on higher b-values DWI. Increasing the
b-value of DWI would get higher lesion-to-tissue contrast; however,
this would decrease the signal-to-noise ratio and demonstrate greater
image distortion. Moreover, as the b-value increased, the ADC value
decreased [26] because of the exponential diffusion signal decay.
ADC values were statistically higher using dual–b-value than multi–
b-value DWI [13,25,27–30]. Few studies compared the application
of DWI with different b-values in bladder cancer evaluation [26,31];
and no optimal b-values were recommended until recently, when it
was recognized that further evaluation with extended variant b-values
is needed.

General Limitations of ADC Applications
To obtain the ADC value, one can simply draw an optimal-sized

region of interest (ROI), which avoids the partial volume effect on the
ADC map. However, because of the heterogeneity of lesions and
because ROI only appears on one or a few lesion-containing slices,
ROI analysis may not reveal the condition of the whole lesion. Some
researchers suggested that drawing a volume of interest (VOI) during
analysis [17] has the potential for less operator dependence than
traditional partial lesion ROI analysis, but to determinate accurate
tumor margin during drawing a VOI is also a challenge. Because of
poor anatomical details on DWI and ADC maps, it is necessary to
combine T1-weighted imaging (T1WI) and T2-weighted imaging
(T2WI) to evaluate lesion and to set ROI or VOI appropriately [21].
Moreover, the measurement of ADC value relies on the use of MRI
systems, imaging sequences, and parameters that limit the reproduc-
ibility of the ADC value. For example, the ADC threshold for
prostate cancer measured on fast spin echo DWI was 18% lower than
echo planar imaging DWI [32]. The variation of ADC values
measured at 1.5 and 3 T was up to 5% based on phantom studies [33]
and with 4% to 9% variation of gray and white matter of the normal
brain. And the variation was up to 8% when different coils were used
on the same scanner [34]. In addition, ADC value is also susceptible
to biological changes such as age and body temperature that cause
interpatient variation [35,36]. Some investigators studied on
normalized ADC by calculating the ADC ratio of lesion to
surrounding normal tissues, such as urine within bladder. Assessment
of normalized ADC would be an alternative method to standardize
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the evaluation of ADC values. However, overlap of normalized ADC
between low-grade tumors and high-grade tumors of the bladder does
occur. Appropriate internal reference and reproducibility of normal-
ized ADC between different observers and studies still need to be
validated [37,38].
In summary, a wide spectrum of structures from normal tissue to

malignancy showing high SI on DWI would cause difficulty in
differential diagnosis and can lead to misdiagnosis. In addition,
inherent variations in the equipment, biological changes of individual
patients, and lack of standardized analytic methods will reduce
the reliability of ADC comparisons between studies and limit the
clinical application.

Pitfalls and Limitations from Inadequate
Patient Preparation

Inadequate Bladder Distension
Optimal bladder distension is important in bladder cancer

assessment. With a lack of bladder distention, small tumors will
barely be visible secondary to detrusor muscle thickening. On the
other hand, overdistension of the bladder may result in uncontrollable
movements due to discomfort; and the thinness of bladder wall can
decrease sensitivity for small lesions [39].
Adequate bladder distention can be achieved by instructing the

patient to void 1 hour before imaging [8,31] or by instructing the
patient to start drinking an adequate amount of water 30 minutes to 1
hour before the MRI study. In patients with a urethral catheter, a
250- to 400-mL sterile saline was used to distend the bladder [9,40].
However, it is difficult to obtain an adequately distended urinary
bladder even by direct infusion of sterile saline via catheter placed into
the bladder when the patient has a spastic and overactive bladder.
This limits the application of MRI to evaluate bladder cancer in these
patients, for example, in long-standing anuric uremia patients who
frequently have bladder cancer. In addition, there are limitations in
using MRI to evaluate bladder cancer in patients with an enlarged
prostate, nerve dysfunction, and drug- or infection-related flaccid and
overdistended bladder. These patients may require a catheter to drain
excess urine and recheck on MRI localizer images to confirm that the
bladder is adequate distended.
Figure 1. A 61-year-old man suffered from gross hematuria due to b
posterior bladder wall (arrow) that mimics a flat-type cancer on DWI (l
shown); cystoscopy revealed no tumor in this area of bladder.
Gas-Produced Susceptibility Artifacts and Imaging Distortion
Susceptibility artifacts can occur next to gas-filled structures such as

a gas-filled bowel and postprocedure gas bubbles within urinary
bladder [41]. Susceptibility artifacts from gas in the small intestine,
colon, and rectum around the urinary bladder can potentially cause
image distortion with abnormally high SI of adjacent bladder walls on
DWI that may be misrecognized as a flat-type cancer (Figure 1); and
marked distortion can make cancer staging difficult (Figure 2). Gas
bubbles within the bladder also result in artifacts at the air-wall
interface that mimic malignancy (Figure 3). The common causes of
gas retained in the urinary bladder include the aftereffects of
cystoscopy or an indwelling Foley catheter that MRI is not
recommended following these procedures. These gas produced
susceptibility artifacts are increased while increasing the main
magnetic field strength and are approximately twice as large in
terms of volume at 3.0 T as at standard 1.5-T MRI [42]. It is believed
that some important findings may be obscured by these enlarged
susceptibility artifacts at 3.0-T MRI but may be visualized at standard
1.5-T MRI [41] because DWI is a gradient echo image that will
amplify these susceptibility artifacts and cause obvious image
distortion than T2WI. Identifying these susceptibility artifacts on
DWI and correlating them to anatomic images will help in obtaining
accurate diagnosis and staging.
Pitfalls and Limitations in Detection of
Bladder Cancer

Causes of Underdetection
High–b-value DWI is almost always used to detect lesion when

evaluating cancer. The maximal b-value used to evaluate various
organs in the abdomen and pelvis ranges from 500 to 1000 s/mm2.
Benign prostate parenchyma may retain mild high SI, and some focal
lesions will sink in this high-SI parenchyma due to the impaction of
T2 component on DWI using this range of b-values [43]. Similarly,
urine may persistently show mild high SI in patients with bladder
cancer that will also lead to underdetection of intraluminal tumor.
Carefully comparing with ADC map, T2WI, and DCE or use of
an ultrahigh–b-value DWI would improve tumor recognition and
differentiation [31,44,45].
ladder cancer. Rectal gas causes a band-like high-SI artifact on the
eft). No obvious SI change is observed on T2WI (right) and DCE (not



Figure 2. A 60-year-old man who had bladder cancer with right ureter, prostate, and bilateral seminal vesicle invasion underwent MRI
following chemotherapy for preoperative restaging. A prominent susceptibility artifact (long white arrows) adjacent to the tumor base
(stars) due to gas in the sigmoid colon is noted on two consecutive sections of DWI (left), and this interferes with the evaluation of tumor
invasion. The gas and fluid contained sigmoid colon (yellow arrow) and can be well recognized on T2WI (right). Some hypointense lesions
can be seen around the dilated right ureter (short arrows) and bladder wall at tumor base; however, these images cannot differentiate
residual cancer from scar tissue. Note that a blood clot on the tumor surface shows low SI with a high-SI rim on DWI and low SI on T2WI
(arrowheads).
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Bladder cancers generally show higher SI than surrounding tissues
on high–b-value DWI [25,28,30]. Several studies had reported high
sensitivity, specificity, and accuracy for identifying bladder cancers as
90% to 98%, 85% to 93%, and 89% to 97%, respectively
[9,26,29,40,46]. Nevertheless, because of poor spatial resolution of
DWI and insufficiency of tissue contrast between small tumors and
normal bladder wall, bladder cancer less than 1 cm may be missed on
DWI [9,14,26,40]. Similarly, DWI is also not reliable for the
assessment of carcinoma in situ that is generally excluded out of
studies [14,17,46].

Blood Clots Effects
Occasionally, high-SI blood clots on DWI accompany bladder

cancer. These blood clots may also cause local image distortion due to
magnetic susceptibility effects [47]. The SI of blood clots on DWI is
complex and is related to the relative amount of different hemorrhagic
products and the pulse sequence used (Table 1) [42,47,48].
Oxyhemoglobin shows hyperintensity on DWI and has a low ADC
value, indicating the relative restriction of water movement inside the
red blood cells [42,48]. Increased water mobility of extracellular
methemoglobin eliminates the inhomogeneous susceptibility effect
and results in a higher ADC value [42,48]; however, prolonging the
T2 component of the fluid with extracellular methemoglobin shows
hyperintensity on DWI. Other blood clot components, including
deoxyhemoglobin, intracellular methemoglobin, and hemosiderin,
show low SI on DWI because of magnetic susceptibility effects; and
ADC values cannot be reliably calculated for these hemorrhage products
because they have very low SI on T2WI [49]. Overall, these high-SI or
low-SI blood clots can potentiallymask an underlying small tumor or lead
to false-positive diagnosis for tumors (Figures 4–6).

Pitfalls and Limitations in Characterization of
Bladder Cancer

Bladder Cancer Mimickers
The urachus has some variability in the terminus of the lower end

[50] that causes variable SI in the apex of the bladder wall. The
urachal remnant is a fibroepithelial canal; and when the intravesical
segment of the urachal remnant has high SI on DWI, it can also be
confused with bladder cancer (Figure 7).



Figure 3. A 70-year-old man with a history of carcinoma in situ of the bladder after intravesicle immunotherapy with bacillus
Calmette-Guerin and a history of prostate carcinoma presented with hematuria. Diffuse bladder wall thickening with long segmental linear
mild high SI (arrowheads) in the inner portion of thick bladder wall on DWI (left) mimics an infiltrative tumor and shows no obvious SI
change on T2WI (right). However, pathology of transurethral bladder resection specimens demonstrated chronic inflammation with focal
granulomatous inflammation and no malignancy. Note that gas in the anterior portion of the bladder caused a high-SI artifact on the
anterior bladder wall (arrow).
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Inflammatory processes of the bladder wall such as interstitial
cystitis, cystitis cystica, eosinophilic cystitis, polypoid cystitis
(uroepithelial papilloma), and post-TURBT inflammation, especially
at early post-TURBT phase, have been reported to show high SI on
DWI and ADC maps, which could be differentiated from cancer, due
to the edematous tissue, inflammation, or fibrosis [12,13,26].
However, sometimes they might also cause decreased ADC values
that would be misinterpreted as cancer [12,13,26]. Other granulo-
matous or nongranulomatous chronic inflammatory processes with or
without fibrosis and benign wall thickening secondary to benign
prostatic hyperplasia may also show high signal changes on DWI
[12,13,29]. These inflammatory processes can be diffuse, occupying
Table 1. Signal Intensities of Different Stages of Hematoma Demonstrated on MR Images

T1WI T2WI DWI ADC map

Intracellular oxyhemoglobin Isointense Hyperintense Hyperintense Hypointense
Intracellular deoxyhemoglobin Isointense Hypointense Hypointense Hypointense
Intracellular methemoglobin Hyperintense Hypointense Hypointense Hypointense
Extracellular methemoglobin Hyperintense Hyperintense Hyperintense Hyperintense
Intracellular hemosiderin Hypointense Hypointense Hypointense Hypointense
the whole bladder (Figure 3), or appear as a focal lesion within the
bladder (Figure 8). They also showed low SI on T2WI and early
enhancement on DCE that mimics the image findings of malignancy
on MRI. In addition, clinical presentation and cystoscopy of these
inflammatory processes can occasionally mimic cancer and may
sometimes coexist with malignancy; for these reasons, biopsy is
always recommended.

Although several studies have shown that ADC values of bladder
malignancy are lower than those of benign bladder lesions and normal
bladder wall, there is substantial overlapping between malignancy and
benignancy [8,13,22,25,26,28–30,40,51]. Lack of a conclusive
cutoff ADC value from these studies would limit the application of
ADC value in differentiating malignancy from benign lesion and
normal bladder wall.

Limitations in Discriminating the Histopathological Subgroups
of Bladder Cancer

Cancers in bladder can be primary, metastases, or invasive tumors
from adjacent malignancies. Ninety percent of bladder cancers are
transitional cell carcinoma (TCC); and the other 10% are squamous
cell carcinoma, adenocarcinoma, sarcoma, small cell carcinoma,



Figure 4. An 86-year-old woman presented with gross hematuria due to bladder cancer. A long linear high SI (long arrows) located at the
posterior wall of the bladder on DWI (top left) mimics a flat-type cancer. It shows isointensity with urine on T2WI (top right) andmild high SI
with urine without enhancement on DCE (bottom right) corresponding to the SI of a blood clot. A small tumor beside the right ureteral
orifice (arrowheads) is noted on DCE, but it is difficult to distinguish the SI of the tumor from that of the blood clot on DWI. A small tumor
(short arrow) in the right lateral wall is also noted on DCE but is unrecognized on DWI and T2WI. Cystoscopy (bottom left) confirms
these findings.
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metastases, and invasive tumors from other pelvic malignancies. A
variety of bladder cancers presumably show high SI on DWI and have
low ADC values [8,9,26,30,40]. Because of the rarity of non-TCC,
there is limited literature focus on distinguishing TCC from
non-TCC of bladder on DWI. Daggulli et al., [26] found that the
ADC values of TCC were significantly higher than those of squamous
cell carcinoma, but El-Assmy et al., [30] did not. Generally,
Figure 5. A 41-year-old man presented with gross hematuria due to bla
DWI (left) and T2WI (middle) reveal a hyperintense lobulated contour m
(right) reveals a small early enhanced nodule within this mass, indic
(long arrows).
non-TCC of bladder is reported to be more aggressive and usually
extends beyond the bladder wall, and is usually larger than TCC of
the bladder at the initial time of diagnosis [52–54].

TCCs are categorized as high- or low-grade tumors based on how
abnormal the cells look undermicroscopy. Some researchers reported that
the mean ADC values of high-grade cancers (0.69-0.92 × 10−3 mm2/s)
were lower than those of lower-grade cancers (0.92-1.6 × 10−3 mm2/s)
dder cancer. Cystoscopy showed a bladder mass. Axial sections of
ass (long arrows) in the depending portion of the bladder; and DCE
ating that the tumor (short arrows) is hidden within the blood clot



Figure 6. An 88-year-old man was admitted because of gross hematuria. Axial sections of DWI (left), T2WI (middle), and DCE (right) reveal
a nodule in the right posterolateral wall showing low SI with a high-SI rim (long arrows) on DWI, heterogeneous SI on T2WI, and no
enhancement on DCE, indicating a blood clot. In addition, a small enhanced tumor (short arrow) proven to be cancer and hidden within the
blood clot is only well demonstrated by DCE.
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[8,13,26,46]. However, the ADC values overlap between high-grade and
low-grade tumors and between low-grade tumors and some benign
lesions [13]. It is essential to note that ADCvalue is a quantitative analysis,
the cutoff point of ADC value is not providing a “yes” or “no” answer,
and it gives only a gradient of clinical impression. This limits the
application of ADC to distinguish a high-grade tumor from low-grade
tumor or distinguish low-grade tumor from a focal cystitis, or find a
low-grade tumor out of diffuse cystitis.
Pitfalls and Limitations in Staging of
Bladder Cancer

Local Staging
It is important to distinguish muscle-invasive tumors from non–

muscle-invasive tumors because the management is varied. Utility of
divergent staging criteria, relatively poor spatial resolution of DWI,
thinness of the muscle layer, and the different appearance of cancer
may cause varying accuracy of DWI in staging bladder cancer. It
was reported that the accuracy of using DWI alone to discriminate
Figure 7. A 54-year-old woman had painless gross hematuria due t
(arrow) with SI higher than the normal bladder wall but lower than the
The focal lesion (arrow) appears hypointense on T2WI (right), and its
suspicious lesion corresponds to the urachal remnant and should no
muscle-invasive tumors from non–muscle-invasive tumors ranges
from 63.6% to 92% [9,46,55,56].

Staging of bladder cancer by DWI alone is in general unsatisfactory
[46], although a study revealed high accuracy of staging bladder
cancer with the combination of DWI and T2WI [8]. Staging a tumor
with a stalk showing imaging of “inchworm sign” not only is seen in
stage Ta or stage T1 tumors but also can be seen in stage T2 tumors
[46,57,58]. It is occasionally unable to determinate if the tumor
margin is smooth on DWI, which makes the correct categorization of
the tumor as stage T2 or stage T3 difficult [8]. Moreover, frequent
loss of normal signals of the thin muscle layer on DWI at some areas
of bladder wall, such as the junction of the lateroposterior wall, also
contributes to inaccurate staging (Figures 9–11). High-resolution
oblique T2WI perpendicular to the wall at tumor base allows
avoiding the partial volume effect of adjacent tissues on bladder wall.
This improves the evaluation of the relationship of high-SI tumor to
the low SI of muscle layer [59]. However, oblique DWI still cannot
be optimized to achieve enough signal-to-noise ratio and may cause
more image distortion.
o bladder cancer. Axial section of DWI (left) reveals a focal lesion
high-grade carcinoma (arrowhead) in the left posterior wall on DWI.
SI is also lower than the high-grade carcinoma (arrowhead). This
t be mistaken as a low-grade tumor.



Figure 8. A 79-year-old man underwent an imaging survey because of microscopic hematuria. Axial sections of DWI (top left), T2WI
(top middle), andDCE (top right) reveal two lesionsof similar SI, one in the right anterior dome (long arrows) and theother in the left lateralwall
(short arrows), showing high SI on DWI, early enhancement on DCE, and only slight wall thickening without change in signal on T2WI. The
pathology image of the right anterior dome lesion (bottom left) demonstrates chronic inflammation of the bladder mucosa with increased
lymphocytic infiltration (arrowhead), and the result for the left lateral wall lesion (bottom right) shows carcinoma in situ (short arrow).
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Several studies reported high accuracy of MRI for tumor staging;
however, these MRIs were performed before TURBT [8,9,56]. Post
TURBT would induce inflammation, and the inflammation is more
prominent at early post-TURBT phase. If MRI is performed early after
TURBT, it may result in overstaging and even misinterpretation of
inflammation for disease. Sometimes, this post-TURBT inflammation
would also miss small tumors, thus understaging the disease [12].

Infiltrative scattered tumors may not generate enough high signals
on DWI to be discriminated from normal bladder that can be
underdetected and lead to understaging (Figure 12). Furthermore, the
diagnosis of metastasis or invasion to some pelvic structures such as
testis, penis, seminal vesicle, and endometrium from bladder cancer
should be carefully made because these structures physiologically
show high SI on DWI. Therefore, when staging bladder cancer, it is
always needed to combine DWI with anatomic images and ADC
values rather than using DWI alone.

Lymph Node Metastasis
The sensitivities and specificities of lymph node detection on

routine MRI combined with DWI for bladder cancer were 76% to
79% and 79% to 89%, respectively, which were higher than those of
conventional CT and MRI alone. But the accuracy remains
unsatisfactory, even with the combination of DWI and routine
MRI with the use of ultra-small superparamagnetic particles of iron
oxide [60–64]. A significant number of patients staged as N0 with
unexpected microscopic lymph node metastasis are found after radical
cystectomy and pelvic lymph node dissection [65–68]. The major
limitation arises from failure to identify small metastatic lymph nodes
due to the limited spatial resolution of DWI; lack of anatomical
structures especially in the high–b-value images; artifacts from
adjacent bowel gas, motion, metal surgical clips, and pulsatile vessels
[69,70]; and a tiny component of metastases in lymph nodes unable
to raise enough tissue contrast [61–64]. Furthermore, it is important
to note that normal lymph nodes may show intermediate to high SI
on DWI due to the high cellularity of lymphoid tissue [19]. Some
studies have investigated the utility of ADC value to discriminate
metastatic from benign lymph nodes. They found significantly lower
mean ADC values in malignant lymph nodes than benign lymph
nodes [61,63]. However, ADC values overlap between benign and
malignant nodes [61,63] because some benign processes of lymph
nodes, such as inflammation, sinus histiocytosis, fibrosis, follicular
hyperplasia, and lipomatosis, also cause restriction of water diffusion.
In addition, partial volume effect, affecting the measurement of the
ADC values of these small lymph nodes, also leads to the inconsistent
results on the application of ADC [61–64].
Because of high false-negative rate in using DWI to detect

metastatic lymph nodes, an indicated extended pelvic lymph node
dissection cannot be prohibited by negative study on DWI, even
combined with the use of ultra-small superparamagnetic particles of
iron oxide [61–64].

Bone Metastasis
Abnormal high SI of pelvic bones found on DWI in routine staging

MRI is not rare, and 27% of these findings are bony metastasis [71].



Figure 9. A 63-year-old man presented with gross hematuria due to bladder cancer. Axial section images of DWI (top left) and T2WI
(top right) taken from the cephalic portion of the tumor reveal that the tumor extends out of the bladder wall with smooth contour
(long arrows), indicating at least stage T2. Axial sections of DWI (bottom left) and T2WI (bottommiddle) of the central portion of the tumor
show a submucosal stalk (short arrows). Final pathology (bottom right) shows that the tumor nests (arrowheads) only invade the lamina
propria (short arrow) and not the muscle layer (not shown), indicating stage T1.
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The interpretation of DWI in bone lesions differs from that in soft
tissue lesions because the relationship between cellularity and ADC
values in bone marrow is nonlinear [72]. The reduced water content,
the large-sized fat cells, the hydrophobic nature of fat, and poor
perfusion contribute to low SI on DWI and ADC values of yellow
bone marrow. Increased cellularity, abundant water content, and rich
perfusion of red marrow, like cancer, show increased SI on DWI but
paradoxically high ADC values [73,74]. Generally, the SI of bone
marrow varies; and normal adult bone marrow pattern, that is, the
distribution of red and yellow marrow, is established by age 25 years.
The changing distribution of red and yellow marrows is dependent on
patients’ age, sex, and underlying medical conditions that sequentially
affect the SI of bone marrow on DWI [72]. These limit the
Figure 10. A 54-year-old woman had painless gross hematuria due to
a tumor (long arrows) in the left posterior wall with discontinuity of h
(right) reveals high-grade tumor (arrowhead) infiltration in the lamina p
application of DWI in detection of bony metastases and character-
ization of bone lesions.

Pitfalls and limitations on visual assessment of bony metastases. Bony
metastases generally show high SI on high–b-value DWI. However, the
ability to detect these metastases is dependent on the cellularity and cell
size of the tumor, the background bone marrow, the location of
metastases, and treatment status [75]. DWI is better at detecting bony
metastases from small cell cancers such as myeloma, lymphoma, and
neuroendocrine tumors than TCC of bladder [76,77]. Early mild
metastatic cancer cell infiltration or hyperplasia of background bone
marrow would cause a false-negative finding on DWI [78]. In addition,
relatively increased cellularity in bone marrow is observed in bladder
cancer patients who are smokers, have chronic heart failure, and are
bladder cancer. Axial sections of DWI (left) and T2WI (middle) show
ypointense muscle layer, indicating stage T2. However, pathology
ropria (short arrow) but not in the muscle layer, indicating stage T1.



Figure 11. A 53-year-old woman had gross hematuria due to bladder cancer. Axial sections of DWI (top left) and T2WI (top middle) and
sagittal section of T2WI (top right) reveal a broad-base tumor (long white arrows) located over the right bladder neck and right bladder
base. In addition to a hyperintense tumor area found on DWI, a crescent moon–shaped hypointense area within the central base region is
also shown on DWI; and it shows high SI on T2WI (short white arrows), which mimics a thickened submucosa. Pathology (bottom) shows
that the tumor (black arrow) infiltrates the muscle layer (black arrowhead) without extending into the perivesical fat, indicating stage T2.
Retrospective review of the DWI and T2WI shows that a thin, curvilinear low SI (white arrowheads) could be found between the base of
the tumor and the crescent moon–shaped lesion on T2WI, corresponding to themuscle layer; the signal of themuscle layer on DWI could
not be identified in the tumor region. The crescent moon–shaped lesion is perivesical fat attracted into the tumor implanted region, not
the thickened submucosa.
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treated with hematopoietic growth factors such as granulocyte
colony-stimulating factors [73,78]. These patients may show increased
SI on DWI, which could not only hide metastatic cancer cell
infiltration but also be mistaken as false-positive diagnosis. DWI is of
limited value in detecting metastases in some bony regions such as at
anterior ribs and sternum due to motion, and in the skull base due to
susceptibility artifacts. Sclerotic or posttreated bony metastases are
more difficult to detect on DWI than diffuse, highly cellular infiltrative
lytic bony metastases because of the lower water and cellular content.
Rather, T1WI showed the best ability to detect sclerotic bone
metastases against the surrounding tissue [70].

Some benign bone conditions, such as fractures, osteoarthritis,
infection, intraosseous hemangioma, giant cell tumor of bone, and
treatment-induced bone marrow edema would lead to a false-positive
diagnosis on DWI because of the T2 shine-through effect [79–81].
Susceptibility artifacts resulting from various factors, including
metallic prostheses, air of adjacent bowel loops, and fat-water
interfaces, may also cause false-positive findings [79].

Limitations of applying ADC to evaluate bony metastases. Because
the diffusion coefficient of fat is approximately two orders of
magnitude lower than that of water and there are abundant fatty
components in the normal marrow, lipid contamination within the
ROI of bony metastases will lower the measured ADC value [82,83].
Moreover, ADC values overlap between malignancy and benign bone
lesions, thus limiting the application in the discrimination of bony
metastasis from bladder cancer to primary bony malignancy and
benignancy [84–87].
In summary, because of many aforementioned factors, the

interpretation of DWI in bone lesions differs from that in soft tissue
lesions. To achieve accurate diagnosis, careful comparison of findings
on DWI with anatomic images of MRI, conventional radiograph,
positron emission tomography/CT, and bone scan, and correlation
with clinical findings, should be taken.

Pitfalls and Limitations in Predicting the
Aggressiveness of Bladder Cancer
Some studies showed that ADC value could predict bladder cancer
aggressiveness because lower ADC value or kurtosis is associated with
post-TURBT recurrence in non–muscle-invasive disease [88], tumor
with lymph node and distant metastases [17,89], and tumor response
to chemoradiation therapy [90]. The reason that more aggressive
bladder cancer has a lower ADC value is not well recognized but is
presumed to be associated not only with morphological tumor
features such as higher cellularity, tissue disorganization, and
decreased extracellular space but also with biologic properties such
as strength of intercellular adhesion of primary tumor from which



Figure 12. An 82-year-old man presented with hematuria due to bladder cancer. DWI in sagittal and axial views (top left and top right
upper) reveals some band-like hyperintensities (long arrows) along the urinary bladder wall with one small hyperintense lesion
(short arrows) in the left lateral wall. T2WI in sagittal and axial views (top middle and top right lower) only shows the focal lesion in the left
lateral wall and a thick bladder wall corresponding to the area of mild high SI on DWI. There is no evidence of extravesical or seminal
vesicle invasion on MRI. Atrophic bilateral seminal vesicles are also noted. The patient underwent cystoscopy and transurethral resection
of the bladder tumor, and demonstrated invasion of multiple infiltrative high-grade tumors in the left lateral wall, trigone, base, and left
posterior wall extending to the right posterior and lateral wall (not shown). Radical cystoprostatectomy with bilateral pelvic node
dissection and ileal conduit diversion was thus performed. Pathology reveals diffuse high-grade infiltrative carcinoma (arrowheads)
with invasion through the muscularis propria (M; bottom left) into the perivesical soft tissue (F; bottom left) and bilateral seminal vesicles
(SV; bottom right) with lymph node metastasis (not shown).
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recurrence arises [88] and molecule profile that involves apoptosis
[91], cell cycle, and proliferative regulation [14,16]. However, these
findings were based on limited studies with low patient numbers
[14,16,17,88–90] or biased patients’ selection [14,17,88,89].
Contradictory findings also exist [17,89].
Studies have noted that several proliferative regulators, such as

Ki-67, p53, p21, pRB/p16, HER2, p27, and cyclin E1, can predict
patients with localized bladder cancer who are at risk of disease
progression and recurrence. This is due to the presence of occult
metastases at diagnosis [14,16,92–94]. Therefore, these patients
would benefit from systemic adjuvant chemotherapy. To obtain these
biomarkers requires invasive tissue sampling and human interaction
in selecting representative slides for analysis. Acquiring ADC value is,
however, noninvasive. However, there are only limited studies
performed to correlate DWI-derived ADC value with these
biomarkers. These studies showed that ADC values correlate with
prognostic factors of ki-67–, p53-, and p21-positive cells on
histopathology [14,16]; but ADC merely provides an incremental
prognostic value and cannot replace these traditional prognostic
markers [16]. Because DWI method is different among the studies,
one of the future directions of MRI/DWI applied on bladder cancer is
to correlate standardized ADC measurements with the cell cycle and
proliferative regulators; and the results can potentially be used to
predict cancer aggressiveness.

Overall, despite some encouraging results, direct application of
ADC values to replace other prognostic biomarkers is not
recommended. Further studies with larger patient numbers using
standardized ADC value measurements are necessary to verify the
ability of ADC value to predict cancer aggressiveness.

Pitfalls and Limitations in Monitoring
Posttreatment Bladder Cancer
Although DWI has a superior specificity and accuracy to T2WI or
DCE, all of them have similar low sensitivity of 43% to 57% [95].
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There is also a substantial overlap of ADC values between recurrent
tumors and the surrounding bladder wall that may be attributable to
the inflammatory reaction from previous TURBT [96]. Currently,
DWI still cannot replace cystoscopy to identify posttreatment
recurrence because of its limitations in discriminating posttherapeutic
inflammatory changes and fibrosis from small or microscopic viable
tumors [12,95,96].

Conclusions
DWI is a noninvasive functional imaging technique and has been
increasingly used as part of multiparametric MRI to evaluate bladder
cancer. It provides not only qualitative information to diagnosis of
bladder cancer but also quantitative analysis to predict the clinical
aggressiveness. Despite its potential utility, there are limitations and
pitfalls in clinical application of DWI; thus, pathology and clinical
findings should always be taken into account when interpreting the
MR images. Recognizing the inherent limitations, imaging artifacts,
and cancer mimickers of DWI, and variant manifestations of bladder
cancer on DWI with careful interpretation, and combining with
pathologic and clinical findings could improve the diagnostic
accuracy that facilitates the selection of an appropriate treatment
method for a patient.
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