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Abstract

Background: Sepsis and cancer are both leading causes of death, and occurrence of any one, increases the likelihood
of the other. While cancer patients are susceptible to sepsis, survivors of sepsis are also susceptible to develop certain
cancers. This mutual dependence for susceptibility suggests shared biology between the two disease categories. Earlier
analysis had revealed a cancer-related pathway to be up-regulated in Septic Shock (SS), an advanced stage of sepsis.
This has motivated a more comprehensive comparison of the transcriptomes of SS and cancer.

Methods: Gene Set Enrichment Analysis was performed to detect the pathways enriched in SS and cancer. Thereafter,
hierarchical clustering was applied to identify relative segregation of 17 cancer types into two groups vis-a-vis SS.
Biological significance of the selected pathways was explored by network analysis. Clinical significance of the pathways
was tested by survival analysis. A robust classifier of cancer groups was developed based on machine learning.

Results: A total of 66 pathways were observed to be enriched in both SS and cancer. However, clustering segregated
cancer types into two categories based on the direction of transcriptomic change. In general, there was up-regulation
in SS and one group of cancer (termed Sepsis-Like Cancer, or SLC), but not in other cancers (termed Cancer Alone, or

with survival in the SLC group of cancers.

CA). The SLC group mainly consisted of malignancies of the gastrointestinal tract (head and neck, oesophagus,
stomach, liver and biliary system) often associated with infection. Machine learning classifier successfully segregated
the two cancer groups with high accuracy (> 98%). Additionally, pathway up-regulation was observed to be associated

Conclusion: Transcriptome-based systems biology approach segregates cancer into two groups (SLC and CA) based
on similarity with SS. Host response to infection plays a key role in pathogenesis of SS and SLC. However, we
hypothesize that some component of the host response is protective in both SS and SLC.
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Background

Sepsis is a potentially life-threatening complication caused
by dysregulated host response to infection, often leading
to organ failure and death. Estimated global burden of
sepsis is more than 48.9 million people in 2017 with 11
million deaths [1]. Septic shock is the advanced stage of
sepsis with metabolic dysregulation and uncontrolled
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hypotension. Several epidemiological studies have linked
sepsis and cancer [2, 3]. Liu et al. [2] conducted an associ-
ation study between sepsis and ensuing risk of cancer in
elderly adult population of the United States, and observed
that sepsis is significantly associated with increased risk
for many cancers including chronic myeloid leukemia,
myelodysplastic syndrome, acute myeloid leukemia, can-
cers of the cervix, liver, lung, rectum, colon. Another asso-
ciation study revealed 2.5 fold increased risk of sepsis in
survivors of cancer in community-dwelling adults (the risk
is increased up to 10 times in hospitalized cancer patients)
[3]. Co-occurrence of cancer with sepsis is associated with
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higher mortality than sepsis alone without cancer [4]. On
the other hand, sepsis is a common cause of death in crit-
ically ill patients with cancer, with high ICU and hospital
mortality [5-7]. Interestingly, mortality due to sepsis var-
ies widely from 42 to 82% across cancer tissue types [8],
suggesting varying likelihood of survival of patients suffer-
ing from different cancers.

This study is motivated by multiple shared features of
septic shock (SS) and cancer. There is co-occurrence of
the two entities, with synergistic effect on mortality.
Both are associated with inflammation at some stage of
the disease. Inflammation is well understood to promote
malignant growth with participation of diverse immune
cells and molecules, such as, cytokines [9]. Similarly,
sepsis is understood as a non-resolving inflammatory re-
sponse to infection that leads to organ dysfunction [10].
Both the diseases are associated with anaerobic metabol-
ism with lactic acidosis being a hallmark of septic shock
[9, 11]. In our earlier work, we have observed a cancer
associated pathway to be significantly up-regulated in
septic shock [12]. Additionally, there are previous re-
ports on shared molecular changes in sepsis and cancer.
Bergenfelz et al. [13] reported that Wnt5a induces im-
munosuppressive phenotype of macrophages in sepsis
and breast cancer patients. HMGBI, a key late inflam-
matory mediator of systemic inflammatory response syn-
drome associated with bacterial sepsis, is also implicated
in tumorigenesis and disease progression [14]. Muscle
wasting - observed in patients with cancer, severe injury
and sepsis - is associated with increased expression of
several genes, particularly transcription factors and nu-
clear cofactors, regulating different proteolytic pathways
[15]. Methodologically, all of these studies employed
gene-level analysis, ie., considering gene as the func-
tional unit. On the other hand, a gene set or pathway
represents coordinated molecular activity and represents
a higher-order functional unit in a tissue or cell
Pathway-level analysis allows detection of a cumulative
signal that is not accessible at the gene-level. To our
knowledge, there is no report in literature on pathway-
level comparison between sepsis and cancer. In the
present study, we have performed unbiased analysis of
SS and cancer datasets to discover shared patterns of
pathway-level transcriptional alteration underlying the
two illnesses.

Methods

Gene expression data

TCGA data

Gene expression data as FPKM (Fragments Per Kilobase
of transcript per Million mapped reads) values were
retrieved from The Cancer Genome Atlas (TCGA) data-
base (https://portal.gdc.cancer.gov/) on July 5, 2018 for 17
different human cancers i.e., bladder urothelial carcinoma
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(BLCA), breast invasive carcinoma (BRCA), cholangiocar-
cinoma (CHOL), colon adenocarcinoma (COAD), esopha-
geal carcinoma (ESCA), head and neck squamous cell
carcinoma (HNSC), kidney chromophobe (KICH), kidney
renal clear cell carcinoma (KIRC), kidney renal papillary
cell carcinoma (KIRP), liver hepatocellular carcinoma
(LIHC), lung adenocarcinoma (LUAD), lung squamous
cell carcinoma (LUSC), prostate adenocarcinoma (PRAD),
rectum adenocarcinoma (READ), stomach adenocarcin-
oma (STAD), thyroid carcinoma (THCA) and uterine
corpus endometrial carcinoma (UCEC). For each can-
cer type, TCGA project code was provided in the
search field and RNA-seq data for paired samples (each
pair consisting of tissue from tumour zone and tissue
from adjacent unaffected zone in the same individual)
were downloaded. In all, gene expression data were
derived from 687 patients with cancer. Data were trans-
formed to logarithmic scale (base 2).

GEO data

Six studies of septic shock (SS) were selected following the
procedure described earlier [12]. Normalized gene expres-
sion data from the series matrix files were retrieved from
NCBI Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/) on April 10, 2019. Data were
transformed to logarithmic scale (base 2). Expression in-
tensity for each Entrez gene ID was calculated after re-
moving duplicated probe sets. Genes common to all SS
studies were included in the analysis. In all, gene expres-
sion data were derived from 445 patients with SS and 116
control subjects. Redundant samples (other than control
and SS) were excluded from analysis.

Characteristics of 23 distinct data sets used in the
current study (6 of SS and 17 of cancer) are listed in
Table 1. Each data set consisted of transcriptome-wide
expression data from a number of patients suffering
from a single disease (SS or cancer). For SS, each data
set consisted of blood transcriptome data. For cancer,
each data set consisted of transcriptome data from a tis-
sue. Control was defined as adjacent normal tissue for
cancer (TCGA), and a healthy subject for SS (GEO).

Pathway enrichment analysis

Pathway (gene set) enrichment analysis was performed
using the algorithm previously described [12, 16]. Gene
sets were defined based on pathways annotated at KEGG
[17]. Any pathway with 10 or less number of genes was
discarded from analysis. For each gene, t-statistic was
computed to denote change in gene expression in case
group compared to the control group. For each pathway,
a score was calculated by weighted averaging (i.e., sum of
the gene-level t-statistics divided by the square root of the
number of genes in the pathway) of all gene-level t-statistics
for the pathway. Significance of the observed pathway
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Table 1 Characteristics (such as tissue of origin, source database, disease type, sample size of each study and details about the
platform technology used to generate the data) of the 23 data sets (17 cancer + 6 septic shock) included in the analysis. Study_code
refers to the code assigned by the source database (either TCGA or GEO) to the data set. TCGA stands for The Cancer Genome Atlas.
GEO stands for NCBI Gene Expression Omnibus. Paired control refers to adjacent normal tissue in the same cancer patient.
Technology for transcriptome assay is either sequencing (RNA-seq) or hybridization-based microarray (Affymetrix)

Study_Code  Data source  Disease Tissue Number of ~ Paired  Technology
samples control

BLCA TCGA Cancer Bladder 38 Yes RNA-seq (lllumina)
BRCA TCGA Cancer Breast 220 Yes RNA-seq (lllumina)
CHOL TCGA Cancer Gallbladder, liver and parts 18 Yes RNA-seq (lllumina)

of biliary tract
COAD TCGA Cancer Colon and rectosigmoid junction 82 Yes RNA-seq (lllumina)
ESCA TCGA Cancer Esophagus 16 Yes RNA-seq (lllumina)
HNSC TCGA Cancer Base of tongue, floor of mouth, 86 Yes RNA-seq (lllumina)

gum, hypo- and oro-pharynx,

larynx, etc.
KICH TCGA Cancer Kidney 48 Yes RNA-seq (lllumina)
KIRC TCGA Cancer Kidney 144 Yes RNA-seq (lllumina)
KIRP TCGA Cancer Kidney 64 Yes RNA-seq (lllumina)
LIHC TCGA Cancer Liver and intrahepatic bile ducts 100 Yes RNA-seq (lllumina)
LUAD TCGA Cancer Bronchus and lung 114 Yes RNA-seq (lllumina)
LUSC TCGA Cancer Bronchus and lung 98 Yes RNA-seq (lllumina)
PRAD TCGA Cancer Prostate gland 104 Yes RNA-seq (lllumina)
READ TCGA Cancer Rectum rectosigmoid junction 20 Yes RNA-seq (lllumina)
STAD TCGA Cancer Stomach 62 Yes RNA-seq (lllumina)
THCA TCGA Cancer Thyroid gland 116 Yes RNA-seq (lllumina)
UCEC TCGA Cancer Corpus uteri 46 Yes RNA-seq (lllumina)
GSE4607 GEO Septic Shock  Whole Blood 84 No Microarray (Affymetrix HGU 133 Plus 2.0)
GSE8121 GEO Septic Shock ~ Whole Blood 75 No Microarray (Affymetrix HGU 133 Plus 2.0)
GSE9692 GEO Septic Shock ~ Whole Blood 45 No Microarray (Affymetrix HGU 133 Plus 2.0)
GSE13904 GEO Septic Shock  Whole Blood 124 No Microarray (Affymetrix HGU 133 Plus 2.0)
GSE26378 GEO Septic Shock ~ Whole Blood 103 No Microarray (Affymetrix HGU 133 Plus 2.0)
GSE26440 GEO Septic Shock  Whole Blood 130 No Microarray (Affymetrix HGU 133 Plus 2.0)

score was calculated by permutation testing performed in
the following manner. In each permutation, the samples
were randomly re-labelled as case and control, with calcu-
lation of a simulated pathway score. This was done 10,000
times generating 10,000 simulated values representing the
null distribution of the pathway score. Deviation of the
observed pathway score from the null distribution was
quantified by the fraction of times that the simulated score
was more extreme than the observed score. This result
was assigned as permutation p-value of the observed path-
way score. Pathway enrichment analysis was performed
using code modified from the R function gseattperm() of
the package Category [18].

Cluster analysis
Pathway scores of all 23 studies (6 SS + 17 cancer) were
subjected to hierarchical clustering in the following

manner. First, the Euclidean distance matrix was computed
to capture the pairwise dissimilarity among the studies.
Thereafter, the distance matrix was subjected to agglomera-
tive hierarchical cluster analysis, with “complete” linkage
method. Distance matrix computation and cluster analysis
were performed using the R functions dist() and hclust()
respectively. Output of the cluster analysis was plotted as a
dendrogram.

Visualization of pathway-level and gene-level expression
scores

A pathway was selected if it was significantly enriched
(permutation p <0.01) in 80% or more of the studies in
one or both of the cancer groups (SLC, CA). The path-
way score matrix was generated for all selected pathways
across all 23 data sets. Heat map was generated with the
R function heatmap.2() of the package gplots [19]. For
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each pathway, the mean pathway score across the dis-
ease group was calculated separately. Boxplot of the
pathway scores for the three disease groups (SS, SLC
and CA) was drawn using R function boxplot().

For generating gene-level heat maps of individual
pathways, the following steps were followed. First, aver-
age log-expression level was calculated for the case
group and control group separately. Log2(fold-change)
or LFC was calculated by subtracting the average control
value from the average case value. This was done for
each gene. For each disease type (SS, SLC or CA), me-
dian LFC was calculated across the studies in that dis-
ease group. Combined heat map was generated based on
the pathway genes and the three disease groups. Only
those genes with similar LFC directionality in SLC and
SS were included in visualization.

Network analysis

Firstly, a background network was constructed by includ-
ing all the pathways (KEGG) [17] with overlapping gene
memberships, i.e., for a pathway to be included, it must
share at least 5% of the total number of genes with an-
other pathway. Pathways connected to less than 3 other
pathways each were dropped from network analysis. In
this network, each pathway was considered a node, and
the edge between two nodes represented overlap between
the two pathways. In this way, a network was constructed
with 244 nodes and 5304 edges. Degree distribution of the
network was calculated using the function degree_distri-
bution() of the package igraph [20]. Plot of the degree dis-
tribution of the network was drawn. For each node in the
network, degree and betweenness centrality were calcu-
lated with the R functions degree() and betweenness() re-
spectively. In the network diagram, selected pathways
were shown as nodes coloured in red. Box plot was drawn
to show the difference of degrees between selected and
other pathways.

Sample-level pathway score

Individual pathway scores for the cancer patients were
computed in the following manner. For each subject,
two genome-wide expression vectors were retrieved
from TCGA: one for the tumour tissue (T) and another
for the adjacent normal tissue (N). Normalized gene ex-
pression vector (E) was then calculated by subtracting
the normal expression values from the tumour expres-
sion values (E =T - N). For each of the selected 66 path-
ways, a score (Z) was calculated as the weighted average
of the expression of the genes in the pathway (i.e., sum
of the individual gene expression scores divided by the
square root of the number of genes in the pathway).
This resulted in 66 pathway scores for each patient.
These individual pathway scores were used for survival
analysis.
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Machine learning

For the machine learning-based prediction, we retrieved
additional transcriptome data for SLC (Sepsis-Like Can-
cer) and CA (Cancer Alone) cancers from NCBI GEO. Six
datasets containing 542 cancer subjects (of both SLC and
CA) and 180 healthy control subjects were included (Add-
itional file 7: Table S4.). The additional validation data sets
were required because the TCGA data sets were used for
feature selection (i.e., 66 pathways) and segregation of can-
cer groups (SLC and CA). For each cancer sample, path-
way scores were generated by weighted averaging of the
gene-level t-statistic between the case group and control
group, (i.e, sum of the individual t-statistic divided by the
square root of the number of genes in the pathway). The
scores of the 66 pathways were used as input and the can-
cer group label (SLC or CA) as output in machine
learning-based classification of cancer patients. Support
Vector Machine (SVM) and Neural Net (NN) classifiers
were implemented using R package MLInterfaces [21].
SVM was used through the function call Mlearn() with
the learning function svml. Neural Network was used
through the function call MLearn() with the learning func-
tion nnetl and three nodes in the hidden layer, with
weight decay set to 0.01. Confusion matrix from the classi-
fier output of five-fold cross-validation was collected for
calculation of misclassification rate (fraction of samples
wrongly predicted by the algorithm) and accuracy.

Survival analysis

Based on the number of cases and available survival infor-
mation, three SLC cancer types (HNSC, KIRC and LIHC)
were selected for survival analysis. The following clinical
metadata were collected as provided by TCGA: days (to
death or last follow-up) and outcome (survivor or non-
survivor). Patient-level (sample-level) pathway score was
used for analysis. For each cancer type, the patients were
divided into two groups (high-score and low-score) by ap-
plying the median pathway score as threshold. Survival
plots were generated using the functions in the R package
survival [22] as described here. First, a survival object was
created applying the function Surv(), with day and out-
come. The output, i.e., the fitted model, was passed to the
function survfit() that created two survival curves, based
on the level of pathway score (high or low). Survival plots
were displayed using the function ggsurvplot() from the
package survminer [23]. Significance of the difference be-
tween the survival plots of the two curves was calculated
by the function surv_pvalue() from the same package.

Code and data availability

All programming was done in the R programming language
[24]. Data and R code are available at the following link:
https://figshare.com/ (https://doi.org/10.6084/m9.figshare.81
18413.v3,  https://doi.org/10.6084/m9.figshare.8118647.v5).
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The whole data can be downloaded as a single zip file
(tcnibmgdoc.zip). Upon uncompressing the zip, instructions
for running the code and generating the figures of this
manuscript are available in the file howto.pdf.

Selection of the transcriptome data sets and analysis
workflow leading to the final list of 66 significant path-
ways are described in Fig. 1. The study characteristics of
the data sets are listed in Table 1.

Results

The transcriptomic data for 23 studies (17 cancer and 6
SS) consisted of 687 patients with cancer and 445 with
SS. The data were subjected to progressive analysis and
pathway filtering (Fig. 1).

Hierarchical clustering revealed two groups of cancers

At the outset, independent of our data, there were a
total of 272 pathways in the KEGG database. Application
of permutation-based testing of each pathway revealed
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that 90 of these were significantly (p < 0.01) enriched in
each of the 6 SS data sets, thus constituting a robust set of
SS-specific pathways. Hierarchical clustering on combined
cancer and sepsis data sets for these 90 pathways revealed
two groups of cancers, with one group segregating with SS
(Additional file 1: Figure S1). The 6 cancers (HNSC, ESCA,
STAD, LIHC, CHOL and KIRC) belonging to the SS clade
were termed Sepsis-Like Cancer (SLC). The other 11 can-
cers (BLCA, BRCA, COAD, KICH, KIRP, LUAD, LUSC,
PRAD, READ, THCA and UCEC) formed the other clade
and were termed the CA (Cancer Alone) group.

In order to exclude those pathways that may be irrele-
vant to cancer biology, the 90 pathways were tested for
enrichment in any or both of the cancer groups (i.e., sig-
nificantly enriched in at least 80% of a group of cancer).
24 out of the 90 SS-specific pathways were observed not
to be associated with any of the two cancer groups.
Exclusion of these 24 non-significant pathways resulted
in retention of 66 pathways significantly associated with
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both SS and cancer. Pathway score matrix of these 66
pathways across all diseases (including SS, SLC and CA)
was visualized as a heat map (Fig. 2a). The sample den-
drogram of this heat map recapitulated the segregation
of the cancer groups as observed earlier with 90 path-
ways (Additional file 1: Figure S1). In general, the heat
map demonstrated up-regulation of the pathways in SS
and SLC. Further, for each pathway, mean score was cal-
culated across all data sets in one disease group (SS, SLC
or CA). Box plot of these scores clearly demonstrated the
shared directionality in pathway dysregulation in SS and
SLC, i.e., in both these conditions there was up-regulation
of the pathway (Fig. 2b). Additionally, the average number
of pathways up-regulated in a disease group was observed
to be 63, 58 and 11 for SS, SLC and CA respectively (Add-
itional file 4: Table S1), thus establishing general agree-
ment in the direction of pathway transcriptional change
between SS and SLC. The overall trend in pathway dysreg-
ulation was also reflected in the gene-level heat map for
individual pathways (Additional file 2: Figure S2).

Network analysis
Genome-level biological significance of the selected
pathways was revealed by network analysis. Here, the
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network consisted of all KEGG pathways as nodes
and substantial pairwise gene-overlap among path-
ways as edges. The centrality of the selected pathways
was further quantified in terms of degree and betweenness
centrality. Degree captures short-range connectivity of a
node (i.e., how many nodes are connected to this node?),
while betweenness centrality captures long-range central-
ity (i.e., how often this node falls on the shortest path be-
tween any two other nodes?) Degree captures the number
of immediate neighbours of a node, while betweenness
captures the essentiality of a node to the structure of the
network. The degree and betweenness values for the se-
lected 66 pathways were recorded (Additional file 5: Table
S2).

The degree distribution of the network showed scale-
free property of a biological network, i.e.,, many nodes
with a few edges and a few nodes with large number of
edges (Additional file 3: Figure S3 - panel A). Visual
exploration revealed the selected pathways at the core of
the network (Fig. 3), and this was confirmed by compar-
ing the degree of these 66 pathways with other pathways
in the human genome. As shown in Additional file 3:
Figure S3 (panel B), selected pathways had higher de-
grees than the other pathways.
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Fig. 2 a Pathway heat map for 66 selected KEGG pathways where each pathway is significantly perturbed in at least 80% of the studies in one or
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and GIMP (Version 2.8.22)
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Fig. 3 KEGG overlap network is constructed with each KEGG pathway as a node and overlapping gene membership between two pathways as
an edge. The selected 66 pathways are shown in red, while the other pathways are shown in grey. Red nodes (selected pathways) have more
connecting edges than the grey nodes, thus representing hub-like nature of selected pathways. This suggests that key biological processes are

perturbed in both SS and SLC. This figure was generated using R programming language (Version 3.4.4)

Machine learning-based prediction of cancer group (SLC/CA)
from 66 pathway scores

In order to assess the clinical relevance of the selected
pathways, we asked if it is possible to predict (by a ma-
chine learning algorithm) the cancer group based on the se-
lected pathway scores of an individual patient of cancer.
For each patient, 66 pathway scores were input for the clas-
sifier, with the expected output being SLC or CA. Five-fold
cross-validation was employed with balanced partitioning

in each fold. Both algorithms - Support Vector Machine
(SVM) and Neural Net (NN) — performed with high accur-
acy in assigning the samples to their respective cancer
groups. SVM correctly assigned 537 (99.08%) out of 542 pa-
tients, while NN correctly assigned 536 (98.89%) out of 542
patients, with a misclassification rate of 0.9 and 1.1% re-
spectively (Table 2). This independent validation showed
the clinical relevance of the selected 66 pathways for pre-
diction of cancer group from individual patient-level data.
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Table 2 Two machine learning algorithms - Support Vector
Machine (SVM) and Neural Network (NN) - were implemented
through the function call MLearn (of R package MLInterfaces).
SVM was applied with default parameters. NN was applied with
three nodes in the hidden layer, with weight decay set to 0.01.
Five-fold cross-validation was performed by generating a
partition function (for cross-validation), where the partitions are
approximately balanced with respect to the distribution of
cancer tissue types (SLC or CA) in training and test sets in each
fold. Confusion matrix from the classifier output was collected
for calculation of misclassification rates

Support Vector Machine Predicted
CA SLC
Given CA 349 1
SLC 4 188
Misclassification rate 09
Neural Network Predicted
CA SLC
Given CA 347 3
SLC 3 189

Misclassification rate 1.1

Survival analysis

Another measure of clinical relevance of pathway signa-
ture was provided by its association with survival. For a
given pathway, the patients were divided into two groups
of subjects (high-scoring and low-scoring) based on the
level of pathway score. Survival probability for these two
groups was assessed both graphically and statistically.
For many of the pathways, there was a higher pathway
score in survivors compared to non-survivors in SLC.
This directionality was also maintained in SS, i.e., higher
pathway score in survivors compared to non-survivors
(Additional file 6: Table S3). The number of pathways
associated (p < 0.1) with survival varied: 9 (14%) in HNSC,
28 (42%) in LIHC and 34 (52%) in KIRC (Fig. 4a). Repre-
sentative plots were drawn to show survival differences
between high-score and low-score patients for the path-
way “Fc gamma R-mediated phagocytosis” (Fig. 4b-d).

Functional classification of the pathways

The selected 66 pathways were divided into categories
based on their functional relevance. The categories in-
cluded: immune system, infection, cancer, catabolism,
signal transduction, ribosome biogenesis and carbohy-
drate metabolism (Additional file 9: Text S1).

Viral integration in TCGA samples

Out of the 687 cancer samples from TCGA analysed by
us, there was overlap of 425 (61.9%) samples with the
samples analysed for viral integration by Tang et al. [25];
of the 425 samples, 120 belonged to SLC group, and 305
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belonged to CA group. Viral integration was observed in
9 (7.5%) SLC samples and 2 (0.66%) CA samples, show-
ing significantly (p =0.0003) higher viral integration in
SLC. In another study by Cao et al. [26], there was an
overlap of 533 (77.6%) of 687 samples analysed by us. Of
the 533, 200 (37.5%) were SLC while 333 (62.5%) were
CA cancers. There was significantly (p =0.001) higher
viral integration in SLC (30%) compared to CA (17.4%).
The report by Kazemian et al. [27] was not associated
with supplementary sample-level data. However, re-analysis
of summary data provided (Additional file 8: Table S5) led
to the finding of significantly (p =4.10E-13) higher viral
integration in SLC (18.7%) compared to CA (5.6%). Over
all, the findings were consistent with SLC cancers to have
greater likelihood of prediction of viral integration.

Discussion

Comprehensive system-level analysis reveals shared tran-
scriptomic response between septic shock (SS) and a
subset of cancers (SLC). The SLC group predominantly
consists of cancer of the upper GI tract, including head
and neck, oesophagus, stomach, liver and biliary tract.
The striking segregation of the SLC group with SS sug-
gests shared elements of pathophysiology operational in
these disorders. Sixty-six pathways differentially
expressed in both SS and SLC represent critical bio-
logical processes, such as metabolism, immune response
and protection against infection. Network analysis re-
veals the selected pathways as a core functional module
(Fig. 3) of the genome-scale network dysregulated in
both SS and SLC. Many of these processes, such as me-
tabolism and inflammatory response are known to con-
tribute to the pathogenesis of both sepsis and cancer [9].

The segregation of cancer into two groups (SLC and
CA) prompted us to investigate the prospect of the se-
lected pathways as a classifier. Machine learning-based
validation of an independent data set proved that the
pathways indeed consist of a robust sample-level signa-
ture of the cancer groups. It is thus possible to predict,
with high accuracy, whether a patient belongs to a par-
ticular cancer group (SLC or not). With plummeting
costs and increasing acceptability of clinical transcripto-
mics, this signature may be useful in future for patient
stratification.

Similarity in the direction of change in pathway activ-
ity immediately evokes an explanation in terms of shared
immunological response in either case. SLC are often as-
sociated with infection (i.e., human papilloma virus in
“head and neck”, H. pylori in stomach, hepatitis viruses
in liver). In fact, TCGA data analysed for the presence of
viral sequence reads in RNA-seq datasets of several can-
cers have revealed infection status of the samples. Inter-
estingly, the majority of the infected samples belong to
the GI associated cancers including head and neck
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Fig. 4 (a) Three SLC data sets were selected for survival analysis. For each cancer, association with survival was accepted at threshold of p < 0.1.
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presented in this bar plot. As shown, up to 50% of the pathways are associated with survival in the SLC group. (B-D) Kaplan-Meier plot showing
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generated using R programming language (Version 3.4.4)

(HNSC), oesophagus (ESCA), stomach (STAD) and liver
(LIHC) [25-29]. Cao et al. (2016) [26] estimated a high
percentage of infected samples in TCGA datasets for
liver (21.2%), head and neck (16.6%), stomach (14.8%)
and oesophagus (12%). It is known that sepsis starts out
as an infection, but it is the uncontrolled host response
that drives the phase of shock. Similarly, in cancers with
an infectious origin, host response (e.g., inflammation)
plays a role in malignant transformation [9]. Pathways
related to immune response are consistently differen-
tially expressed in both SS and SLC. Although the time
scale of pathogenesis is much shorter in SS compared to
cancer, our finding calls for greater attention into the
shared cellular processes underlying these two distinct
clinical phenotypes.

The finding of pathway up-regulation associated with
survival brings new insight into the relationship between
the shared transcriptomic patterns and disease outcome.
Sepsis is a highly lethal dysregulated host response to

infection, and SLC, by extension, appears to share a part
of that response. Since the pathways are selected on the
basis of up-regulation in both SLC and SS (compared to
control), a plausible explanation is that the pathway up-
regulation is protective rather than detrimental to the
human host. It is worth mentioning that viral integration
or bacterial infection in a setting of cancer has been re-
ported to favour survival in SLC cancers of oropharynx
[30], liver [31] and kidney [32].

Alteration of intestinal permeability is known in both
sepsis and cancer [33]. It may be speculated that ana-
tomical proximity increases the likelihood of the liver
and upper gastrointestinal tissue to be exposed to the
translocated microbial products through a permeable
gut, eliciting a host response in both SS and SLC. Sig-
nificant association between survival and up-regulation
of phagocytosis-associated pathways (i.e., Fc gamma R-
mediated phagocytosis) lends support to this view. In
general, sepsis is less lethal in patients with cancer of the
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digestive system than cancer of other organs [8]. The
role of gut in survival from sepsis and cancer is an active
area of research with translational potential.

Conclusions

Firstly, transcriptome-based systems biology approach
segregates cancer into two groups (SLC and CA)
based on similarity with SS. Secondly, the similarity is
based on a set of pathways associated with pathogen-
esis of sepsis and cancer. These pathways form a ro-
bust signature of a novel cancer grouping. Lastly, up-
regulation of the pathways is protective rather than
detrimental to the patient. A mechanism of the
shared protective host response is hypothesized in
terms of immunocompetence induced by microbial
products from the permeable gut. This work is the
first step towards a systems biology-based patient
stratification. It is hoped that future work in this dir-
ection shall generate actionable knowledge for clinical
management of both cancer and septic shock.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512885-020-06774-9.

Additional file 1: Figure S1. For the 90 pathways significantly
associated with SS, pathway scores were computed for the cancer
studies. Scores for SS (6 studies) and cancer (17 studies) were subjected
to hierarchical clustering (details in main text). As shown in this
dendrogram, there is clear segregation of the cancer studies into two
groups: sepsis—like (SLC) and other cancer (CA).

Additional file 2: Figure S2. Gene level heat map of each of the
selected 66 pathways. LFC for each gene was calculated from disease
and normal samples (disease-normal) for all studies. For each disease
type (CA, SLC or SS), median LFC was calculated across the studies in
that disease type. Combined heat map was generated based on the
pathway genes and the three disease groups. We considered only those
genes which have similar LFC directionality in SLC and SS. Red colour
represents up-regulation in disease compared to control, while green
colour represents down-regulation. Pathway names with KEGG identifiers
are shown on the top, gene symbols and names are row-labels of heat
map. The major class (to which the pathway belongs) is shown at the
bottom.

Additional file 3: Figure S3. (A) This is the degree distribution of the
network generated by overlapping KEGG pathways. This shows that there
are many nodes with very low connectivity but a few nodes with very
high connectivity. This is consistent with the scale-free property of bio-
logical networks. (B) Box plot showing comparison of degree between
two groups of nodes in this network - selected 66 and others. The higher
value of the selected 66 nodes suggests that these are highly overlap-
ping pathways forming a functional core of the human genome.

Additional file 4: Table S1. Selected 66 pathways with their
significance and direction of regulation in all the studies. Coloured cells
are a representation of pathway scores. Red indicates significant up-
regulation, green indicates significant down-regulation and grey indicates
non-significant change in pathway. Number of up- and down-regulated
pathways in each study is shown at the top. Group membership (to CA,
SLC or SS) is shown as a label on top of the code of the data set. First
three columns of the sheet are pathway name, annotation (functional
class) and KEGG ID respectively.

Additional file 5: Table S2. This table contains the property of each
node of the network. Degree of a node is the number of edges
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connected to a node. Betweennes centrality is a measure of how much
information flows through a specific node, i, the average number of
shortest paths passing through the node. Degree refers to the number of
neighbours of a node while betweenness centrality refers to how
important the node is for maintaining the overall structure of that
network. The two nodes with highest betweenness centrality (Glycolysis/
Gluconeogenesis, Lysosome) in the network are highlighted.

Additional file 6: Table S3. Three SLC cancers were selected for
survival analysis. The value in each cell corresponds to the p-value for
association of the pathway with the cancer type. At a threshold of p <
0.1, the cell has been high-lighted, noting significant association of the
pathway with survival from cancer. For each cancer, the proportion of
pathways associated with survival was calculated and converted to per-
centage (bottom row of the table).

Additional file 7: Table S4. List of additional cancer data sets for
machine learning-based prediction of cancer samples.

Additional file 8: Table S5. Viral integration in TCGA samples.

Additional file 9: Text S1. [Functional classification of the pathways]
The selected 66 pathways are divided into categories based on their
functional relevance. The categories include catabolism, immune system,
infection, cancer, signal transduction, ribosome biogenesis and
carbohydrate metabolism.
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