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Abstract
Hypothesis testing is a central statistical method in psychology and the cognitive sciences. However, the problems of null
hypothesis significance testing (NHST) and p values have been debated widely, but few attractive alternatives exist. This
article introduces the fbst R package, which implements the Full Bayesian Significance Test (FBST) to test a sharp null
hypothesis against its alternative via the e value. The statistical theory of the FBST has been introduced more than two
decades ago and since then the FBST has shown to be a Bayesian alternative to NHST and p values with both theoretical
and practical highly appealing properties. The algorithm provided in the fbst package is applicable to any Bayesian model
as long as the posterior distribution can be obtained at least numerically. The core function of the package provides the
Bayesian evidence against the null hypothesis, the e value. Additionally, p values based on asymptotic arguments can be
computed and rich visualizations for communication and interpretation of the results can be produced. Three examples of
frequently used statistical procedures in the cognitive sciences are given in this paper, which demonstrate how to apply the
FBST in practice using the fbst package. Based on the success of the FBST in statistical science, the fbst package should
be of interest to a broad range of researchers and hopefully will encourage researchers to consider the FBST as a possible
alternative when conducting hypothesis tests of a sharp null hypothesis.

Keywords Full Bayesian Significance Test · e value · Bayesian hypothesis testing ·
Null hypothesis significance testing (NHST)

Introduction

Hypothesis testing is a widely used method in the cognitive
and biomedical sciences. However, the recently experienced
replication crisis troubles experimental sciences, and the
underlying problems are still widely debated (Wagenmakers
& Pashler, 2012; Pashler & Harris, 2012; Wasserstein et al.,
2019; Haaf et al., 2019). Among the identified problems is
the inappropriate use and interpretation of p values, which
are used in combination with null hypothesis significance
tests (NHST) (Benjamin & Berger, 2019; Benjamin et al.,
2018; Colquhoun, 2014; 2017). As a consequence, in 2016
the American Statistical Association issued a statement
about the identified problems and recommended to consider
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alternatives to p values or supplement data analysis with
further measures of evidence:

“All these measures and approaches rely on further
assumptions, but they may more directly address the
size of an effect (and its associated uncertainty) or
whether the hypothesis is correct.”
Wasserstein & Lazar (2016, p. 132)

Due to the problems with NHST and p values, the editors
of Basic and Applied Social Psychology even decided to ban
p values and NHST completely from their journal.

In the recent literature, various proposals have been made
how to improve the reproducibility of research and the
quality of statistical data analysis, in particular the reliability
of statistical hypothesis tests. These proposals range
from stricter thresholds for stating statistical significance
(Benjamin et al., 2018) to more profound methodological
changes (Kruschke & Liddell, 2018a; Wagenmakers et al.,
2016; Morey et al., 2016). In the last category, an often-
stated solution is a shift towards Bayesian data analysis
(Wagenmakers et al., 2016; Kruschke & Liddell, 2018a;
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Kruschke et al., 2012; Ly et al., 2016a; 2016b). The
advantages of such a shift include the adherence of
Bayesian methods to the likelihood principle (Birnbaum,
1962), which has important implications. Some of them
are the simplified interpretation and appealing properties of
Bayesian interval estimates for quantifying the uncertainty
in parameter estimates (Morey et al., 2016). Others are
given by the independence of results of the researcher’s
behavior (Kruschke & Liddell, 2018b; Berger & Wolpert,
1988; Edwards et al., 1963) as well as the ability to
make (simplified) use of optional stopping (Rouder, 2014).
The last property is, in particular, appealing in practical
research, as it allows to stop recruiting participants and
report the results based on the collected data in case they
already show overwhelming evidence. Notice that this is not
permitted when making use of NHST and p values, which
can lead to financial and ethical problems, in particular in
the biomedical and psychological sciences. Here, the ethical
obligations, for example for patients in clinical trials, are
profound.

Considering Bayesian alternatives to NHST and p val-
ues, the most prominent approach to Bayesian hypothesis
testing is the Bayes factor, which is often attributed to Jef-
freys (1935), see also Etz and Wagenmakers (2015).1 The
Bayes factor is often advocated as a Bayesian alternative
to the frequentist p value when it comes to hypothesis
testing, in particular in the cognitive sciences and psy-
chology (Van De Schoot et al., 2017; Wagenmakers et al.,
2016; Wagenmakers et al., 2010; Ly et al., 2016b; van
Doorn et al., 2019; van Dongen et al., 2019; Kelter, 2021).
However, there are also other approaches like Bayesian
equivalence testing based on the region of practical equiva-
lence (ROPE) (Kruschke, 2013; 2015; Kruschke & Liddell,
2018b; Kruschke, 2018; Westlake, 1976; Kirkwood, 1981;
Liao et al., 2020; Kelter, 2020a; 2020f; 2020d) which
are based on an analogy to frequentist equivalence tests
(Lakens, 2017; Lakens et al., 2018). Also, there exist var-
ious other measures and alternatives to test hypotheses in
the Bayesian approach, including the MAP-based p value
(Mills, 2018), the probability of direction (PD) (Makowski
et al., 2019; Makowski et al., 2019) and the Full Bayesian
Significance Test (FBST) (Pereira & Stern, 1999; Stern,
2003; Madruga et al., 2001; Madruga et al., 2003; Pereira
et al., 2008; Pereira & Stern, 2020; Esteves et al., 2019).
In contemporary literature, there is still debate about which
Bayesian measure to use in which setting for scientific
hypothesis testing, and while some authors argue in favor of
the Bayes factor (Wagenmakers et al., 2016; Etz & Van-
dekerckhove, 2016; Kelter, 2020b), there is also criticism

1Based on the analysis of Etz and Wagenmakers (2015) the Bayes
factor goes back to Wrinch and Jeffreys (1921), and additionally,
Haldane (1932) may have had more influence in the development of
the Bayes factor than has hitherto been assumed.

about the focus on the Bayes factor in the cognitive sci-
ences (Tendeiro & Kiers, 2019; Greenland, 2019). By now,
comparisons of different Bayesian posterior indices are rare,
but the existing results show that it is useful to consider
various different Bayesian approaches to hypothesis testing
depending on the research goal and study design, see Kelter
(2020a), Makowski et al. (2019) and Liao et al. (2020).

In this paper, attention is directed to one specific Bayesian
alternative to NHST and p values, the Full Bayesian Sig-
nificance Test (FBST) and the e value, and the R package
fbst is introduced. The FBST was developed over two
decades ago in the statistical literature (Pereira & Stern,
1999), and since has been employed successfully in a broad
range of scientific areas and applications. It is not possible
to cover all of the theoretical and practical work that has
been pursued concerning the FBST in the last two decades
in this paper, and for a concise review, the reader is referred
to Pereira and Stern (2020). The R package fbst intro-
duced in this paper offers an intuitive and widely applicable
software implementation of the FBST and the e value. The
package has been designed to work in combination with
widely used R packages for fitting Bayesian models in
the cognitive sciences and psychology and offers appealing
visualizations to communicate and share the results of an
analysis with colleagues.

The structure of this paper is as follows: First, the under-
lying theory of the FBST and the e value is outlined.
Second, details about the available functionality and soft-
ware implementation of the package are provided. Subse-
quently, it is demonstrated with three examples of widely
used statistical models in psychological research how the
FBST can be applied in practice via the fbst package.
Finally, a conclusion is given that draws attention to the
benefits and limitations of the package and provides some
ideas about future extensions. In summary, the FBST and e

value could be an appealing Bayesian alternative to NHST
and p values, which has been widely under-utilized by now
in the cognitive and biomedical sciences. This clearly can
be attributed to the dearth of accessible software imple-
mentations, one of which is presented in form of the R
package introduced in this paper. The fbst package hope-
fully will foster critical discussion and reflection about
different approaches to Bayesian hypothesis testing and
allow to pursue further research to investigate the relation-
ship between different posterior indices for significance
and effect size (Kelter, 2020a; Makowski et al., 2019; Liao
et al., 2020).

The FBST and the e value

This section describes the statistical theory behind the FBST
and the e value in more detail. The philosophical basis
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(or conceptual approach) is first described briefly, and
subsequently, the necessary notation is introduced.

Conceptual approach of the FBST

The Full Bayesian Significance Test was first introduced by
Pereira and Stern (1999) more than two decades ago as a
Bayesian alternative to traditional frequentist null hypoth-
esis significance tests. It was invented to test a sharp (or
precise) point null hypothesis H0 against its alternative H1.

Traditional frequentist approaches measure the incon-
sistency of the observed data with a null hypothesis H0

(Kempthorne, 1976; Cox, 1977). Frequentist hypothesis
tests employ p values to order the sample space according
to increasing inconsistency with the hypothesis. Notice, that
a p value is defined as the probability of obtaining a result
(which, of course, is located in the sample space) equal to or
more extreme than the one observed under the assumption
of the null hypothesis H0 (Held & Sabanés Bové, 2014). In
contrast, the e value produced in the FBST aims at ordering
the parameter space according to increasing inconsistency
with the observed data (Pereira et al., 2008). In formulas,
traditional frequentist significance tests use the p value to
reject the null hypothesis H0:

p = Pr(x ∈ C|θ0)
Here, C often is the set of sample space values x ∈ X
(where X is the sample space) for which a test statistic Tθ0

(derived under the assumption of the null hypothesis value
θ0) is at least as large as the test statistic value t calculated
from the observed data. The set C can be interpreted as
the sample space values x ∈ X , which are at least as
inconsistent with the null hypothesis H0 as the observed
data. The p value now quantifies the evidence against H0 by
calculating the probability of sample space values x being
located precisely in this set (Casella & Berger, 2002).

The idea put forward in Pereira and Stern (1999) and
Pereira et al. (2008) is simple: Instead of considering the
sample space, a Bayesian should inspect the tangential set
T of parameter values (which are, of course, located in the
parameter space). This set consists of all parameter values
which are more consistent with the observed data x than θ0,
which is the Bayesian evidence ev. Here, ev is defined as

ev = Pr(θ ∈ T |x)

and ev = 1 − ev. The quantity ev can be interpreted as
the evidence value supporting the null hypothesis H0, while
ev is interpreted as the evidence against H0. This latter
value is the probability of all parameter values θ which
are more consistent with the data x than the null value
θ0. The conceptual approach of the FBST consists, as a
consequence, of constructing a duality between Bayesian
theory and frequentist sampling theory. This duality is

constructed between frequentist significance measures,
which are based on ordering the sample space according
to increasing inconsistency with the data, and the Bayesian
e value, which is based on ordering the parameter space
according to increasing inconsistency with the observed
data. This conceptual basis ensures that the FBST allows a
seamless transition to Bayesian data analysis for researchers
who are acquainted with NHST and p values. The FBST
produces the e value which can be interpreted similarly to
the frequentist p value and little methodological changes
are required. However, the consequences of the conceptual
basis of the FBST are substantial: As the quantity ev

is a fully Bayesian quantity, it allows statements in
terms of probability to quantify the evidence. Traditional
frequentist measures like p values do not make probabilistic
statements about the parameter (because they are computed
over the sample space instead of the parameter space),
which is questionable as the goal of an experiment or
study often is to quantify the uncertainty about a given
research hypothesis, which naturally can be achieved via
probability measures (Howie, 2002; Berger & Wolpert,
1988). Frequentist procedures are often interested in the
“long-term” performance of a procedure, and examples are
Neyman–Pearson tests where the type I error probability
is controlled in expectation, but no statement about the
false-positive (or false-negative) probability of the research
hypothesis at hand can be made:

“Without hoping to know whether each separate
hypothesis is true or false, we may search for rules to
govern our behavior with regard to them, in following
which we insure that, in the long run of experience,
we shall not be too often wrong. Here, for example,
would be such a “rule of behavior”: to decide whether
a hypothesis, H , of a given type be rejected or not,
calculate a specified character, x, of the observed
facts; if x > x0 reject H , if x ≤ x0 accept H . Such a
rule tells us nothing as to whether in a particular case
H is true when x ≤ x0 or false when x > x0. But
it may often be proved that if we behave according
to such a rule, then in the long run we shall reject H

when it is true not more, say, than once in a hundred
times, and in addition we may have evidence that we
shall reject H sufficiently often when it is false.”
(Neyman & Pearson, 1933, p. 291)

There are various situations in which such reasoning
is adequate (e.g., medical tests for a disease which are
repeated under approximately similar conditions a large
number of times or quality control of items produced by
a machine). However, experiments and studies are seldom
repeated under identical or even approximately similar
conditions, and one could even argue that in the biomedical
and cognitive sciences this is not possible at all. In situations
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where probabilistic statements about a research hypothesis
are desired, the Bayesian approach thus may be more
appropriate, also because of the adherence to the likelihood
principle (Birnbaum, 1962; Basu, 1975; Berger & Wolpert,
1988). Due to their Bayesian nature, the FBST and the
e value also follow the likelihood principle, which brings
several advantages with it:

– Researchers can use optional stopping. This implies
that they are allowed to stop recruiting participants
or even abort an experiment and readily report the
results when only a fraction of the data already shows
overwhelming evidence for or against the hypothesis
under consideration (Edwards et al., 1963; Rouder,
2014). Of course, frequentist statisticians can also
use optional stopping, if the test statistic is changed
accordingly when using a different stopping rule.
However, this complicates the analysis and introduces
a “researcher degree of freedom”, as the stopping rule
used can change the outcome of a hypothesis test.
Partially, this also applies to the Bayesian approach,
but as long as the stopping rule is noninformative (that
is, the stopping rule provides no information about the
parameter), the stopping rule principle – see Berger
& Wolpert (1988, Chapter 4) – guarantees that the
stopping rule does not influence the obtained results
(Hendriksen et al., 2020).

– Censored data (which are often observed in longitudinal
studies or clinical trials in the cognitive sciences
and psychology) can be interpreted easily (Berger &
Wolpert, 1988). The likelihood contribution of a single
observation in a study where no censoring was possible
is equal to the likelihood contribution of a single
observation in a study where censoring is possible but
did not occur (for the single observation considered).
This simplifies the analysis and interpretation of
statistical models which include censoring mechanisms,
see Berger & Wolpert (1988, Chapter 4).

– As highlighted by Edwards et al. (1963), Wagenmakers
et al. (2016), and Kruschke (2018), the result of
a hypothesis test (in this case, the FBST), is not
influenced by the researchers’ behavior. This last
property is substantial for improving the reliability of
research in the cognitive sciences and psychology, see
McElreath and Smaldino (2015).

Statistical theory of the FBST

In this section, the necessary mathematical notation for a
rigid understanding of the FBST is introduced. The FBST
can be used with any standard parametric statistical model,
where θ ∈ Θ ⊆ R

p is a (vector valued) parameter
of interest, p(x|θ) is the model likelihood and p(θ) is

the prior density for the parameter θ of interest. A sharp
(or expressed equivalently, precise) hypothesis H0 makes
a statement about the parameter θ : Specifically, the null
hypothesis H0 states that θ lies in the so-called null set
ΘH0 . For simple point null hypotheses like H0 : θ = θ0,
which are often used in practice, this null set consists of the
single parameter value θ0 so that the null set can be writ-
ten as ΘH0 = {θ0}. As detailed in the previous section,
the conceptual approach of the FBST is to state the Bayesian
evidence against H0, the e value. This value is the proposed
Bayesian replacement of the traditional p value. To con-
struct the e value, Pereira et al. (2008) introduced the poste-
rior surprise function s(θ) which is defined as follows:

s(θ) := p(θ |x)

r(θ)
(1)

The surprise function s(θ) is the ratio of the posterior
distribution p(θ |x) and a suitable reference function r(θ).
The first thing to note is that two important special cases
are given by a flat reference function r(θ) = 1 or any
prior distribution p(θ) for the parameter θ . First, when
a flat reference function is selected the surprise function
recovers the posterior distribution p(θ |x). Second, when
any prior distribution is used as the reference function, one
can interpret parameter values θ with a surprise function
value s(θ) ≥ 1 as being corroborated by the observed data
x. In contrast, parameter values θ with a surprise function
s(θ) < 1 indicate that they have not been corroborated by
the data. The next step is to calculate the supremum s∗ of
the surprise function s(θ) over the null set ΘH0 .

s∗ := s(θ∗) = sup
θ∈ΘH0

s(θ)

This supremum is subsequently used in combination with
the tangential set, which has been introduced in the last
section. Pereira et al. (2008) defined

T (ν) := {θ ∈ Θ|s(θ) ≤ ν} (2)

and the tangential set T (ν) to the sharp null hypothesis H0

is then given as follows:

T (ν) := Θ \ T (ν) (3)

When setting ν = s∗, the tangential set T (ν) has its
unique interpretation which has been discussed in the
previous section: While T (s∗) includes all parameter values
θ which attain smaller or equal surprise as the supremum
value s∗, T (s∗) includes all parameter values θ which
attain a larger surprise value than the supremum s∗ of the
null set.

The final step to obtain the e value, the Bayesian evidence
against H0, is to make use of the cumulative surprise
function W(ν)

W(ν) :=
∫

T (ν)

p(θ |x)dθ (4)
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The cumulative surprise function W(ν) is simply an integral
of the posterior density p(θ |x) over all parameter values
with surprise function values s(θ) ≤ ν. Setting ν = s∗, the
cumulative surprise function W(s∗) becomes the integral
of the posterior p(θ |x) over T (s∗). This is the integral of
the posterior p(θ |x) over all parameter values which have
a surprise function value s(θ) ≤ s∗. The e value is then
given as

ev(H0) := W(s∗) (5)

Here W(ν) := 1 − W(ν). Figure 1a visualizes the FBST
and the e value ev(H0). The solid line shows the posterior
distribution p(δ|x) of the effect size δ after observing the
data x, and is produced by a Bayesian two-sample t test
(Kelter, 2020d). A flat reference function r(δ) = 1 was
selected in Fig. 1a. The supremum over the null set ΘH0 =
{0} is s∗ = s(0), shown as the blue point. The horizontal
blue dashed line visualizes the boundary between T (0) and
T (0), and values with posterior density p(δ) > p(0) are
located in T (0), while values with p(δ) ≤ p(0) are located
in T (0). The blue shaded area is the cumulative surprise
function W(0), which is the integral over the tangential set
T (0) against H0 : δ = 0. This is the e value ev(H0) against
H0, the Bayesian evidence against the sharp null hypothesis.
The red shaded area is the integral W(0) over T (0), which
equals the e value ev(H0) in favor of H0 : δ = 0. Figure 1b
shows the same situation, but now the reference function is
selected as a wide Cauchy prior C(0, 1), so that the surprise
function becomes

s(δ) = p(δ|x)/c(δ)

where c(δ) is the p.d.f. of the C(0, 1) Cauchy distribution.
Although the situation seems similar to Fig. 1a, the scaling
on the y-axis now is different. Also, the evidence has
changed based on the new surprise function and the
interpretation of the surprise function has changed, too.
While in Fig. 1a, the surprise function could be interpreted
as the posterior density, now it is interpreted as follows: If
one assumes a Cauchy prior C(0, 1) on the effect size δ,
then parameters with a surprise function value s(δ) ≥ 1 can
be interpreted as being corroborated by the data. Parameter
values with a surprise function s(δ) < 1 are interpreted as
not being corroborated by the data.

Pereira and Stern (1999) formally defined the e value
ev(H0) in support of H0 as

ev(H0) := 1 − ev(H0) (6)

but notice that one cannot interpret this value as evidence
against H1. This can be attributed to the fact that H1 is not
even a sharp hypothesis, see Definition 2.2 in Pereira et al.
(2008).

It is crucial to note that by definition of the FBST it
is not possible to utilize the e value ev(H0) to confirm
the null hypothesis H0. The FBST formally is defined as
the procedure which rejects H0 when ev(H0) is small,
or equivalently, when ev(H0) is large (Pereira et al.,
2008, Definition 2.3, Definition 4.2). Therefore, it is by
definition not possible to accept H0 based on ev(H0)

or ev(H0). Even if one would be tempted to extend the
definition of the FBST to allow for such acceptance of
the null hypothesis whenever ev(H0) is large enough (or
equivalently, when ev(H0) is small enough), problems with

Fig. 1 The FBST and the e value ev(H0) against H0 : δ = 0 in a
Bayesian two-sample t test, where δ is the effect size. aA flat reference
function r(δ) = 1 is used, and the solid line is the resulting posterior
density p(δ|x) after observing the data. The supremum over the null
set s∗ = 0 is visualized as the blue point. The blue shaded area corre-
sponds to the cumulative surprise function W(0), which is the integral

over the tangential set T (0) of H0 : δ = 0. This is the e value ev(H0)

against H0. The red area is the integral W(0) over T (0), and equals the
e value ev(H0) in favor of H0 : δ = 0. b The same situation as in (a),
but now a Cauchy C(0, 1) prior has been used as reference function
r(δ)
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interpretation can arise: Kelter (2020a) showed that even
when data are distributed as specified under H0 the e
value ev(H0) does not necessarily converge to one for
n → ∞. Details are provided in Kelter (2021a) and Ly
and Wagenmakers (2021). This troubles the identification
of a threshold based on which H0 is accepted. However,
the FBST can be generalized into an extended framework,
which then allows for hypothesis confirmation and itself
is an active topic of ongoing research (Esteves et al.,
2019). In summary, the e value ev(H0) can only be used
to reject H0 if ev(H0) is sufficiently small, and then
also asymptotic arguments are available (Pereira et al.,
2008, Section 5). Borges and Stern (2007) showed that the
e value converges in distribution to a Chi-square cumulative
distribution function

ev(H0)
d−−−→

n→∞ Fk(||m − M||2) (7)

where k is the dimension of the parameter space Θ , M is the
posterior mode calculated over the entire parameter space
Θ and m is the posterior maximum over ΘH0 . Fk(·) denotes
the cumulative distribution function of the χ2

k -distribution
with k degrees of freedom. Now, as ev(H0) = 1 − ev(H0),
one can approximate ev(H0) as

ev(H0) ≈ 1 − Fk(||m − M||2) (8)

in large samples, that is, as the upper tail of the cumulative
χ2

k distribution function starting from the point ||m − M||2.
There are two options for using asymptotic arguments

now: A frequentist one and a Bayesian one. The frequentist
p value associated with the Bayesian evidence in support of
H0 is based on the asymptotic distribution of the likelihood
ratio statistic and an analogy between the tangential set
and the likelihood ratio statistic (for details, see Pereira
et al. (2008)). It is calculated as the superior tail of the
χ2

k−h density with k − h degrees of freedom, starting from
−2λ(m0). Here, k is the dimension of the parameter space
Θ and h is the dimension of the null set ΘH0 . The quantity
m0 is the observed value and λ(t) = ln l(t) is the logarithm
of the relative likelihood function, where l(t) = L(t)/L(M)

is the relative likelihood. Denoting Fk−h as the Chi-square
distribution’s cumulative distribution function with k − h

degrees of freedom, the frequentist p value associated with
the Bayesian e value ev(H0) is then computed as

pv0 = 1 − Fk−h(−2λ(m0)) (9)

This latter p value has a frequentist interpretation. The
second option is a Bayesian p value based on Equation (7),
which can be expressed as

ev0 ≈ 1 − Fk(||m0 − M0||2) (10)

ev0 can be interpreted as a Bayesian significance value,
which can be used after calculating the difference of 1 and
Fk(||m0 − M0||2), which is obtained from the quantiles of

the Fk distribution. As a cumulative distribution function,
Fk ∈ [0, 1], so 1 − Fk(||m0 − M0||2) ∈ [0, 1] too. If
ev0 ≈ 1 − Fk(||m0 − M0||2) < 0.05, this implies that
the probability of obtaining an e value as small as ev(H0)

or even smaller is less than 0.05, and one could reject
H0. One can rephrase this also as follows: 1 − Fk(||m0 −
M0||2) < 0.05 is equivalent to Fk(||m0−M0||2) > 0.95. As
Fk(||m0−M0||2) ≈ ev0 = 1−ev0 (compare Equation (10)),
this means that the probability inside the tangential set – or
against H0 – which is given by ev0 is > 0.95. Thus, H0

should be rejected.
Consequently, after observing m0 and M0 one only needs

to calculate the Euclidian distance d0 = ||m0 − M0||2
and the difference between 1 and the value of the χ2

k

distribution’s cumulative distribution function Fk of this
distance is a large sample approximation for the Bayesian p

value ev0. Based on a threshold (like 0.05), one can decide
to reject the null hypothesis H0 : θ = θ0 or not. Notice
that the difference between pv0 and ev0 is merely that the
Bayesian p value ev0 is based on the asymptotic normality
of the posterior distribution (Held & Sabanés Bové, 2014;
van der Vaart, 1998), while the frequentist p value pv0
is based on the asymptotic distribution of −2λ(m), which
according to Wilk’s theorem is the χ2

k−h distribution with
k − h degrees of freedom (Pereira et al., 2008, p. 90).

However, if a p value is required that is closest to the
frequentist p value in interpretation, one should use the
standardized e value sev(H0), as defined in Borges & Stern
(2007, Section 2.2) and in Pereira & Stern (2020, Section
3.3). The standardized e value is defined as:

sev(H0) = Fk−h(F
−1
k (ev))

Here, F−1
k is the quantile function of the cumulative

distribution function of the χ2
k distribution with k degrees

of freedom. sev(H0) can, as a consequence, be interpreted
as the probability of obtaining less evidence than ev(H0)

against the null hypothesis H0. Defining

sev(H0) = 1 − sev(H0)

sev(H0) can then be interpreted as the probability of
obtaining ev(H0) or more evidence against H0, which is
closely related to the interpretation of a frequentist p value.
If sev(H0) is small, this implies that the probability of
obtaining even more evidence against the null hypothesis
H0 than the evidence against it observed, namely ev(H0),
is small. As a consequence, one can reject H0. However,
the p value operates in the sample space while the
standardized e value operates in the parameter space. The
standardized e value can be used as a Bayesian replacement
of the frequentist p value, while being very similar in
interpretation. For theoretical properties of sev(H0), see
Borges and Stern (2007) and Pereira and Stern (2020).
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In the examples below, the Bayesian evidence against
H0, the e value ev(H0) is reported and also the standardized
e values sev(H0) are given. The e value ev(H0) is fully
Bayesian and makes no use of any asymptotic arguments,
while the standardized e value sev(H0) uses the asymptotic
normality of the posterior, the well-known Bernstein-von-
Mises theorem (van der Vaart, 1998). Note that in small
samples, the standardized e value sev(H0) may thus be
unreliable.

To close this section, some information is provided how
to select or justify the reference function in practice. The
reference function is arguably a critical aspect on which the
justification of the whole procedure hinges. However, from
a theoretical perspective there are two rules of thumb which
are helpful:

1. The reference function should be equal (or at least
similar) to the model prior. The reason is that the
tangential set should express the relative surprise
p(θ |x)/r(θ), which naturally makes sense for the
a priori beliefs r(θ) = p(θ), where p(θ) is the
prior density on the parameter θ . If the reference
function is selected differently, caution is necessary
when interpreting the results: In the context of drug
development, one could choose the reference function
r(θ) = p′(θ |x) where p′(θ |x) is the posterior density
for the parameter θ (e.g., the effect size) of an existing
drug. This means that although one uses prior density
p(θ) to obtain the posterior p(θ |x) when studying the
new drug, one compares the new posterior to the old
posterior of the existing drug. When the new drug is
better, the surprise function s(θ) = p(θ |x)/p′(θ |x)

should be larger for θ �= 0 (and smaller for θ = 0).
If the sharp null hypothesis H0 : θ = 0 is chosen,
the tangential set T̄ (s∗) = {θ ∈ Θ : s(θ) > s∗} =
{θ ∈ Θ : p(θ |x)/p′(θ |x) > p(0|x)/p′(0|x)} becomes
the set for which the relative surprise p(θ |x)/p′(θ |x)

is larger than the relative surprise one would expect
to observe if there were no effect. That is, the ratio
between the posterior p(θ |x) of the new drug and
p′(θ |x) of the old drug should be at least as large as
the ratio p(0|x)/p′(0|x) we would observe when both
drugs would be ineffective. If this tangential set is large,
this implies that a lot of probability mass indicates
that the improvement of the new drug – expressed
as the increase in the ratio between both densities
p(θ |x)/p′(θ |x) – is larger than the “white noise” we
would expect to observe under no effects of both drugs.
This example illustrates that using different reference
functions offers high flexibility, but simultaneously
complicates interpretation.

2. As a second rule of thumb, it is recommended to
use weakly informative priors (McElreath, 2020) and

conduct a sensitivity analysis similar to the ones used
for Bayes factors (Kelter, 2020b) to study the influence
of a reference function and prior. This helps to avoid
unstable results which strongly depend on the reference
function (or model prior).

Overview and functionality of the fbst
package

The centerpiece of the fbst package is the fbst()
function, which is used to perform the FBST. In addition
to the fbst() function, the package provides customized
summary() and plot() functions which allow users to
print the results of a FBST or obtain a visualization of their
results to communicate and share the results. The fbst()
function has the following structure:

Here, posteriorDensityDraws needs to be a numeric
vector holding the posterior parameter draws obtained
via MCMC or any other numerical method of choice.2

The argument nullHypothesisValue is the value
specified in the null hypothesis H0 : θ = θ0, and
dimensionTheta is the dimension of the parameter
space Θ . dimensionNullset is the dimension of the
null set ΘH0 , and FUN and par are additional arguments
which only need to be specified when a user-defined
reference function r(θ) is desired. In general, FUN should
be the name of the reference function which should be used
and par should be a list of parameters which this reference
function utilizes (e.g., the location and scale parameters
when the reference function is a Cauchy prior). Details will
be given in the examples below.

The fbst() function returns an object of the class
fbst, which stores several useful details and the results
of the conducted FBST. To obtain a concise summary of
the FBST, the summary() function of the class fbst can
be used. To visualize the FBST, the plot() function of
the fbst class can be used. Details are provided in the
examples below.

From an algorithmic perspective, the fbst package
proceeds via the following steps when computing the e
value via the fbst() function:

1. Based on the posterior parameter samples
posteriorDensityDraws, the posterior density

2If the posterior is available in closed form, one can directly sample
from it and provide the argument with the samples.
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p(θ |x) is estimated via a Gaussian kernel density
estimator, resulting in a posterior density estimate
p̂(θ |x). The Gaussian kernel is used due to well-known
Bayesian asymptotics of posterior distributions, the
Bernstein-von-Mises theorem (Held & Sabanés Bové,
2014).

2. Based on this posterior density estimate p̂(θ |x), the
surprise function s(θ) is estimated (i) as the posterior
density estimate p̂(θ |x) if no arguments FUN and par
are supplied so that a flat reference function r(θ) = 1
is used as default, or (ii) as the ratio p̂(θ |x)/r(θ) if
arguments FUN and par are supplied. The result is a
surprise function estimate ŝ(θ).

3. The surprise function estimate ŝ(θ) is evaluated at
the null hypothesis value supplied via the argument
nullHypothesisValue, resulting in the value ŝ0.

4. The e value ev(H0) is computed via numerical
integration of the posterior density estimate p̂(θ |x)

over the tangential set T (H0), which is deter-
mined via a linear search algorithm on the vector
posteriorDensityDraws by including all values
θ which fulfill the condition ŝ(θ) > ŝ0.

5. The p value associated with the e value ev(H0) in favor
of the null hypothesis H0 and the standardized e values
sev(H0) are computed.

In summary, the FBST is based only on simple numerical
optimization and integration which makes it a computa-
tionally cheap option. This is a benefit, in particular, when
the parameter space Θ is high-dimensional (Pereira &
Stern, 2020; Stern, 2003; Kelter, 2020a; 2021). Also, the
presence of nuisance parameters does not trouble the com-
putation unlike in the case of the Bayes factor, as computing
the marginal likelihoods can quickly become difficult then
(Stern, 2003).

Example 1: Two-sample Bayesian t test

As a preliminary note, all analyses can be reproduced by
following the provided code.3. To demonstrate how to use
the fbst package, the two-sample t test is used, which is a
widely used statistical model in the cognitive sciences (Nui-
jten et al., 2016; Kelter, 2021b). The two-sample Bayesian
t test of Rouder et al. (2009) is employed with simulated
data. To use the FBST, one first needs a sample of posterior
draws which in this case is obtained via the BayesFactor
package of Morey and Rouder (2018). Note that in general,
there are multiple options available to obtain the required
posterior draws: Examples are the HamiltonianMonte Carlo

3However, a supplementary replication codebook is provided at the
Open Science Foundation under https://osf.io/u6xnc/.

sampler Stan4 and the rstanarm package (Goodrich et al.,
2020). Another popular option is the brms package of
Bürkner (2017, 2018). The recommended medium Cauchy
prior C(0,

√
2/2) was assigned to the effect size δ. Obser-

vations in the first group were simulated as N (0, 1.7), and
observations belonging to the second group were generated
from the N (0.8, 1.7) distribution. As a consequence, the
resulting true effect size δ according to Cohen (1988) is
given as

δ = 0 − 0.8√
(1.72 + 1.72)/2

= −0.47

which equals a small effect size. The code to simulate the
data is given in Listing 2.

The corresponding Bayes factor BF10 for the alternative
hypothesis H1 : δ �= 0 against the null hypothesis H0 : δ =
0 is given as BF10 = 1.06, which does not indicate evidence
worth mentioning according to Jeffreys (1961) or van Doorn
et al. (2019). The slight favor towards H1 can be attributed
to the medium Cauchy prior used, which centers the prior
probability mass closely around small effect sizes (and no
effect, too). As a consequence, although we know that there
is a small effect, the Bayes factor is slightly shrunken by the
prior towards the value 1. Figure 2 shows a prior-posterior
plot for the example. The code to compute the Bayes factor
is given in Listing 3. Note that in Listing 3 the posterior
MCMC draws produced by the ttestBF function in the
BayesFactor package are stored in the variable p. Here,
we could equally well use a different package like the brms
package of Bürkner (2017) or even use a different sampler
like Stan via the rstanarm package (Goodrich et al.,
2020) to obtain these samples.

4See for example Kelter (2020c) for a tutorial how to implement
statistical models via Stan for the biomedical sciences. Another
excellent resource is Kruschke (2015), who also shows how to obtain
posterior MCMC draws for a variety of models in the cognitive
sciences via the MCMC sampler JAGS (Plummer, 2003).
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Fig. 2 Prior-posterior plot for Example 1

To perform the FBST and compute the e value, we first
install and load the R package from CRAN by executing the
code in Listing 4.

Note that in the example, the parameter space Θ consists
of two parameters: The effect size δ �= 0 and the
standard deviation σ 2 > 0. The null set ΘH0 is
one-dimensional, as in H0, δ = 0 and σ 2 > 0.
As a consequence, the argument dimensionTheta is
therefore set to dimensionTheta=2. The null set ΘH0 is
one-dimensional so that dimensionNullset = 1. The
object stored in the variable resFlatSim is an object of
the class fbst, which stores several values used in the
summary() and plot() functions of the package. These
are available to communicate and visualize the results of the
FBST. For example, one can access the e value ev(H0) as
follows (see Listing 5):

Instead of accessing each attribute manually, to obtain a
summary of the FBST and print the relevant quantities the
summary() function of the fbst package provides a
more convenient option:

Based on the results, we can see that there is some evidence
against the null hypothesis according to the Bayesian e

value ev(H0) against H0 (compare Equation (5)). The
standardized e value sev(H0) ≈ 0.047 < 0.05 is significant
based on a threshold of 0.05 and indicates that the null
hypothesisH0 can be rejected. Note that when a significance
value is used for hypothesis testing, it is recommended to
use the standardized e value (Borges & Stern, 2007; Pereira
& Stern, 2020) instead of ev0 or pv0, so one would reject the
null hypothesis H0 : δ = 0 in this case. However, it is also
possible to use only the Bayesian evidence ev(H0) against
H0 without any significance value to quantify the evidence
continuously. As only 18 observations are observed in each
group, this may be the preferred choice here. One can
conclude that 85.97% of the posterior’s probability mass
indicate evidence against the null hypothesis.

The above shows that reporting and interpreting the e
value is relatively straightforward: If a Bayesian interpre-
tation is preferred, the Bayesian e value ev(H0) should be
reported directly, in this case, ev(H0) = 0.8597. This can
be interpreted as follows: 85.97% of the posterior probabil-
ity mass (notice that the reference function was flat) have
a larger posterior density value than the posterior density
value at the null hypothesis value δ = 0. As a consequence,
the majority of the posterior probability mass indicates evi-
dence for values θ �= 0 and therefore evidence against
H0 : δ = 0.

If a significance value similar to the frequentist p value
is desired, the standardized e value should be reported,
which is given as sev(H0) = 0.047 in the example. This
can be interpreted as the probability of obtaining 85.9% or
more evidence against the null hypothesis H0 : δ = 0.
As this probability is quite small, the standardized e value
can be used to reject the null hypothesis, e.g., based on a
predetermined threshold like sev(H0)= 0.047 < 0.05.

For more details on differences in the inferential founda-
tions and interpretation between the e value, p value, and the
Bayes factor (as well as multiple other Bayesian posterior
indices), the interested reader is referred to Kelter (2020a).

To visualize the results, the plot() function of the
fbst package is used:
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Fig. 3 a Visualization of the FBST for the Bayesian two-sample t test in Example 1 using a flat reference function r(δ) = 1; b Visualization of
the FBST for the Bayesian two-sample t test in Example 1 using a medium Cauchy prior as reference function r(δ) = C(0,

√
2/2)

The result is shown in Fig. 3a: The blue shaded area under
the surprise function (which is by default the posterior
distribution, that is, a flat reference function r(δ) = 1 is
used by default by the fbst() function) is the Bayesian
evidence againstH0, the e value ev(H0) ≈ 0.8597 (compare
Listing 6). The red shaded area is the e value ev(H0) in favor
of H0, which is ev(H0) ≈ 1 − 0.8597 = 0.1403.

Instead of a flat reference function r(δ) = 1, one could
also use a more reasonable prior distribution. For example,
as small to medium effect sizes are to be expected in the
cognitive sciences and psychology, Rouder et al. (2009)
recommended to use a medium Cauchy prior C(0,

√
2/2) as

a default prior on the effect size. To see if parameter values δ

have been corroborated (compared to this prior assumption)
by observing the data, on can use this prior as the reference
function r(δ) = C(0,

√
2/2), and the resulting surprise

function is shown in Fig. 3b. The code to produce the FBST
based on a Cauchy reference density is given in Listing 8:

There, the FUN argument is supplied with the name of
the density to be used and the par argument is supplied
with a list of arguments for this density. As the Cauchy
distribution has a location and scale parameter, these
are supplied here. Notice that the blue point which indicates
the surprise function value s(0) of the null hypothesis
parameter δ = 0 is not larger than one. This means that the
null hypothesis value has not been corroborated by the data.
However, most parameter values in the tangential set have
been corroborated by the data, and all of them have been
corroborated more by the data than the null value δ = 0.

Based on the continuous quantification, there is again
strong evidence against the null hypothesis when changing
the reference function to a medium Cauchy prior: More than
90% of the posterior distribution’s parameter values attain
a larger surprise function value than the null hypothesis
value. The resulting standardized e value sev(H0) is also
significant based on a threshold of 0.05.

Example 2: Directional two-sample Bayesian
t test

Example 1 showed how to apply the FBST in the setting
of the Bayesian two-sample t test. Example 2 is a slight
modification of Example 1. Instead of testing a two-sided
hypothesis, now a directional hypothesis is considered and
it is shown how such a hypothesis can easily be tested via
the fbst package, too. Therefore, data of Moore et al.
(2012) is used which provides the reading performance
of two groups of pupils: One control group and a treat-
ment group which was given directed reading activities. The
data are freely available in the built-in data library of the
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open-source software JASP5. Interest lies in testing the hypoth-
esis H0 : δ = 0 vs H1 : δ < 0, which is equivalent to the
hypothesis H1 : μ1 < μ2, where the measured quantity is
the performance of pupils in the degree of reading power
test (DRP) (Moore et al., 2012).

First, data are saved in a .csv-file (which is called
DirectedReadingActivities.csv in Listing 9),
the working directory is set and then data is loaded6:

The code to perform a standard hypothesis test based on the
Bayes factor is given in Listing 10, which results in BF10 =
4.32, indicating moderate evidence for the alternative H1 :
δ < 0 according to Jeffreys (1961).

5See www.jasp-stats.org
6The data set is also provided as a .csv-file at the OSF repository
https://osf.io/u6xnc/.

The code to perform the FBST with a flat reference function
r(δ) = 1 is given in Listing 11:

The dimensions of Θ and ΘH0 are identical to Example 1,
and the Bayesian e value ev(H0) ≈ 0.986 expresses strong
evidence against the null hypothesis H0 : δ = 0. Also, the
standardized e value sev(H0) ≈ 0.001 < 0.05 is significant
and leads to the same conclusion if a threshold of 0.05 is
applied. The results are visualized in Fig. 4a. Figure 4b
shows the FBST when a wide half-Cauchy prior C+(0, 1) is
used as the reference function r(δ) (Rouder et al., 2009)7.
Figure 4a is produced by the code in Listing 12, where
the additional parameter rightBoundary = 0 needs to
be added to inform the plot() function that a one-sided
hypothesis was used. Should the alternative be H1 : δ > 0,
one would supply the argument leftBoundary = 0 to
the plot() function.

Based on the continuous quantification of evidence against
H0 in form of ev(H0) and the standardized e value
sev(H0), one would reject the null hypothesis H0 : δ =
0 in favor of the alternative H1 : δ < 0. That is,
the performance in the treatment group is better than in
the control group which was not given directed reading
activities.

Example 3: Bayesian logistic regression

As a third example, it is demonstrated how to use the FBST via
the fbst package in the context of the Bayesian logistic
regression model (McElreath, 2020). Notice that while the
focus is on the standard logistic model here, the procedure
is applicable to any regression model of interest like probit

7A left-half Cauchy prior is used, as under H1 : δ < 0, so a priori only
negative effect sizes are assumed under the alternative hypothesis.

1124 Behav Res  (2022) 54:1114–1130

1 3

www.jasp-stats.org
https://osf.io/u6xnc/


Fig. 4 aVisualization of the FBST in Example 2 for the Bayesian two-
sample t test for testing H0 : δ = 0 against the one-sided hypothesis
H1 : δ < 0, using a flat reference function r(δ) = 1; b Visualization

of the FBST in Example 2 for the Bayesian two-sample t test for test-
ing H0 : δ = 0 against the one-sided hypothesis H1 : δ < 0, using a
wide half-Cauchy prior reference function r(δ) = C+(0, 1)

or linear regression models. Data from the Western Collab-
orative Group Study (WCGS) of Rosenman et al. (1975) are
used in which 3154 healthy young men aged 39 − 59 from
the San Francisco area were assessed for their personality type.
All were free from coronary heart disease at the start of
the research. Eight and a half years later, the change in this
situation was recorded. We use a subset of n = 3140 par-
ticipants, where 14 participants have been excluded because
of incomplete data. The data set is freely available in the
faraway R package, so again first data is loaded and
prepared as shown in Listing 13.

For illustration purposes, we use a Bayesian logistic regres-
sion model which studies the influence of the covari-
ates age, height, weight, systolic blood pressure
(sdp), diastolic blood pressure (dbp), fasting serum
cholesterol (chol) and the number of cigarettes smoked
per day (cigs) on the outcome chronic heart disease
(yes/no, variable chd) stored in the response variable
chd.

The model is fit via the Hamiltonian Monte Carlo sam-
pler Stan (Carpenter et al., 2017; Kelter, 2020c), which uses
the No-U-Turn sampler of Hoffman and Gelman (2014) to
sample from the posterior distribution. The posterior distri-
bution is obtained for the intercept and the seven regression
coefficients β1, ..., β7, belonging to the covariates included
in the model. The default weakly informative σ ∼ exp(1)
prior is assigned to the standard deviation σ , see Gabry and
Goodrich (2020). The rstanarm package (Goodrich et al.,
2020) is employed for fitting the Bayesian logistic regres-
sion model, and the code to prepare the data for Stan is given
in Listing 14.

The standard weakly informative prior distribution βj ∼
N (0, 2.5) is assigned to the regression coefficients βj , j =
1, ..., 7, and the intercept β0 is assigned the weakly
informative default prior β0 ∼ N (0, 10) recommended by
Gabry and Goodrich (2020). Listing 15 shows the code to
fit the model via the rstanarm package, summarize, and
plot the results.
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Figure 5 shows the marginal posterior distributions of
the regression coefficients βj for the Bayesian logistic
regression model in Example 3.

To compute the FBST on the regression coefficients,
one first needs to extract the posterior MCMC sample,
as shown in Listing 16. For illustration purposes, the
FBST is conducted on the regression coefficient belonging
to the covariate weight. The FBST is computed using
a normal prior N (0, 2.5) as reference function, which
was also used to fit the model. This way, the surprise
function quantifies which parameter values βj have been
corroborated more by observing the data than the null value
βj = 0.

The results are also shown in Fig. 6, which is produced via
the plot() function call in Listing 16.

Based on the standardized e value sev(H0) ≈
0.0000196516 and the Bayesian evidence against H0, the e

value ev(H0) ≈ 0.9762 one would reject the null hypoth-
esis H0 : βj = 0. Notice that because of seven predictors
β1, ..., β7, an intercept β0 and a standard deviation σ > 0
the parameter space Θ is nine-dimensional and the null set
is eight-dimensional (one parameter coefficient βj = 0 in
ΘH0 ).

Discussion

This paper introduced the R package fbst for computing
the Full Bayesian Significance Test and the e value for
testing a sharp hypothesis against the alternative. The
conceptual approach and the statistical theory of the FBST
were detailed, and three examples of statistical models
frequently used in psychology and the biomedical sciences
highlighted how the FBST can be computed in practice
via the fbst R package. It was shown that both one-
sided and two-sided hypotheses can be tested with the
fbst package. The package’s core function fbst()
requires only a posterior MCMC sample so it should
be applicable to a wide range of statistical models used
in the cognitive and biomedical sciences. The examples

Fig. 5 Marginal posterior distributions of the regression coefficients βj in the Bayesian logistic regression model in Example 3
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Fig. 6 Visualization of the FBST for H0 : βj = 0 against H1 : βj �= 0 for the regression coefficient of the covariate weight in the Bayesian
logistic regression model for the WCGS study

demonstrated that it is simple to combine the FBST via the
fbst package with widely used libraries like rstanarm
(Goodrich et al., 2020) or the BayesFactor package
(Morey & Rouder, 2018). The provided summary and
plot functions in the package allow intuitive use and
produce appealing visualization of the FBST results which
simplifies sharing and communication of the results with
colleagues. Simulation studies were omitted in this paper
because these were recently conducted by Kelter (2020a)
to which the interested reader is referred. For more details
on the theoretical properties of the FBST, see Pereira and
Stern (2020).

To conclude, attention is directed to some limitations and
possible extensions of the FBST and the fbst package
presented in this paper. First, the fbst package is widely
applicable but this strength can also be interpreted as a
limitation. The fbst package requires a posterior distribu-
tion which has been derived analytically or numerically to
conduct the FBST and compute the e value, so it is not a
standalone solution.

Second, the core functionality in the current form is restricted
to computing, summarizing and visualizing the FBST. Future
extensions could include more detailed analysis results like
robustness checks depending on the reference function used,
see van Doorn et al. (2019). Also, in its current form
the package uses only posterior MCMC draws, and future
versions could provide the option to provide the posterior
as a closed-form function. Another option to extend the
functionality would be to make various algorithms available
to estimate the posterior density based on the posterior

draws: By now, only Gaussian kernel density estimation is
used. In small sample situations the asymptotics of Bayesian
posterior distributions guaranteed by the Bernstein-von-
Mises theorem can be questionable and other approaches
like spline-based interpolation or non-Gaussian kernels may
be more useful.

Third, while the standardized e value may be used as
a replacement of frequentist p values, it is also based on
asymptotic arguments and future research is needed to study
the behavior of the standardized e value sev(H0) for small
samples. This is why in general it is recommended to prefer
the continuous interpretation of the Bayesian e value ev(H0)

over a threshold-oriented interpretation via the standardized
e value sev(H0).

In closing, it must be emphasized that it is not argued
against the appropriate use of p values, Bayes factors or any
other suitable method of hypothesis testing. However, the
ongoing debate about the concept of statistical significance
shows that it is useful to explore existing alternatives for sta-
tistical hypothesis testing and investigate the relationships
between these approaches both from a theoretical and prac-
tical perspective (Berger & Sellke, 1987; Makowski et al.,
2019; Liao et al., 2020). The fbst R package introduced
in this paper could contribute in particular to the former, as
simulation studies can easily be carried out by employing
the package, see for example Kelter (2020a).

There is much value in testing a sharp null hypothesis
against its alternative in the cognitive sciences and psy-
chology (Berger et al., 1994; Berger et al., 1997; Rouder
et al., 2009; Kelter, 2020e). While there are also other
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useful approaches such as equivalence testing (Lakens,
2017; Lakens et al., 2018; Kruschke & Liddell, 2018b;
Kruschke, 2018; Kelter, 2020d; 2020f) – the FBST has
shown to be an attractive alternative to NHST and p values
with desirable theoretical and practical properties (Kelter,
2020a; Pereira & Stern, 2020; Esteves et al., 2019). It is
hoped that this package will be useful to researchers from
the cognitive and biomedical sciences who are interested
in a fully Bayesian alternative to null hypothesis signifi-
cance testing which requires little methodological changes,
but offers all the benefits of a fully Bayesian data analysis.
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