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Gene regulatory network (GRN) construction is a central task of systems biology. Integration of different data sources to infer and
construct GRNs is an important consideration for the success of this effort. In this paper, we will discuss distinctive strategies of
data integration for GRN construction. Basically, the process of integration of different data sources is divided into two phases:
the first phase is collection of the required data and the second phase is data processing with advanced algorithms to infer the
GRNs. In this paper these two phases are called “structural integration” and “analytic integration,” respectively. Compared with the
nonintegration strategies, the integration strategies perform quite well and have better agreement with the experimental evidence.

1. Introduction

1.1. Conventional Strategies of Building GRNs. Biological
functions comprise numerous reactions at all levels of
biological organization, including cells, tissues, organs, and
body, and interchange with the environment. Overall, every
life phenomenon found in this multilevel system is supported
through many reactions interconnecting with each other
to compose the orchestra of life. It is, therefore, crucial to
have a systematic perspective in biomedical research. To gain
an overview of such a complex system, we can visualize
it in the form of a network. For instance, protein-protein
interactions, metabolic reactions, and genetic regulations
correspond respectively to a protein-protein interaction
network (PPI), metabolic network, and gene regulatory
network (GRN), which are subnetworks of the complex
multi-level system. In the representation of a network, nodes
typically correspond to molecules, while edges represent
the relationships between nodes. In the study of biological
networks, GRNs are one of the most popular models,
especially in the field of development. Developmental GRNs
provide important clues to elucidate the temporal and spatial
dynamics of gene expression during development. The use of
sea urchin and Drosophila has led to some of the greatest suc-
cesses in studying developmental GRNs to explain complex

developmental processes [1, 2]. Traditionally, the first step is
to identify putative regulatory genes through genome-wide
screening, such as expression microarrays, across distinct
temporal and spatial states. Quantitative PCR is used after-
wards to verify specific expression patterns [3]. Amazingly,
the gene repertoire used in the control of development is
relatively conserved across species, and thus regulatory genes
can be identified by sequencing-based homology alignments
[4]. As a central objective of modeling developmental
GRNs is to identify the epistatic relations among these
regulatory genes, the second step is to define experiments
to perturb/activate the system and examine the responses
via loss-of-function and gain-of-function experiments [3].
In a sea urchin GRN study, perturbation with morpholino-
substituted antisense oligonucleotides (MASOs) was the
main approach [5]. Rescue experiments are also an impor-
tant part of this step. Finally, by assembling findings from
many individual experiments, investigators may establish
the developmental GRN. Validation of the established GRN
can be accomplished precisely via mutagenesis of regulator
binding sites for their target genes to observe the abolishment
of the regulatory effect [6, 7].

Elucidation of gene regulation in the endomesoderm
specification in the sea urchin and in the development of
Drosophila embryos provides potent examples of the type
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of complexities revealed by the study of GRNs. In the sea
urchin embryo, blimp1 is autorepressive when its product
accumulates to high levels. At the same time, it provides
a required input for Wnt8 expression, which produces a
positive feedback effect for blimp1 via inducing Tcf to
activate blimp1 expression. Wnt8 can infect the adjacent
cells/territories with this circular bioinformation flow via
diffusion. This flow is terminated due to blimp1 autorepres-
sion [8]. In the early development of the Drosophila embryo,
Snail repressor activates the synthesis of Delta ligand in the
ventral mesoderm via repressing the transcription of Tom, an
inhibitor of the Delta, which is called a double-negative gate.
Delta triggers Notch signaling in the adjacent cells via dif-
fusion. However, transcription of the Notch signaling target
genes is repressed by the intraterritorial Snail repression in
the ventral mesoderm itself. An exactly parallel mechanism
causing transcriptional alternation inter-territorially is also
found in the sea urchin skeletogenic mesoderm [1, 2].
Despite such accomplishments, there is still a large portion
of the overall GRN in animal models that has not been
defined. The laborious approach to elucidating GRNs from
experiments for every node and every edge produces reliable
biological information as prior knowledge to support novel
findings. However, due to the complications in GRNs as
discussed above, elucidating the complete GRN of complex
eukaryotic organisms with respect to the whole genome
would be extremely difficult using this strategy, as much time
and labor are required even for just one conditional state.
The strategy described above is the bottom-up approach of
network construction. Computational strategies offer a top-
down approach to network construction that complements
what is described above.

1.2. Computational Strategies for Building GRN

1.2.1. Nonintegration Strategies. During this blooming peri-
od of biomedical research, high-content experimental data
is fuelling systems biology research, such as GRN con-
struction at the genome-wide scope. For example, expression
microarrays that can detect the relative abundance of gene
transcripts by comparing two or more biological samples are
commonly used for GRN construction. The new approaches
provide a perspective on the global molecular interactions
that bridge the gap between the external signal and internal
response. There are several popular algorithms being used to
construct GRNs from expression data (reviewed in [9]).

In the graphical representation of GRNs, nodes typically
represent genes corresponding to the transcription factor
proteins or target genes, while edges represent the regulations
between the transcription factors and their targets. Boolean
networks describe each element as a variable with the value
0 or 1 to represent the state of the element as “off” or “on,”
respectively. A Boolean network G(V ,F) is defined by a set
of nodes corresponding to genes V = {x1, . . . , xn} and a list
of Boolean functions F = ( f1, . . . , fn) describes how genes
in the network change their state (on or off) from one time
point to the next. The future state of an element is completely
determined by the states of other elements (regulators) by
means of the underlying logical Boolean functions.

Second, Bayesian networks model the biomedical net-
work with a directed acyclic graph. “Directed” means that
there are arrows to indicate causal influences, and “acyclic”
means that causal loops are prohibited. For each element,
a conditional distribution P(Xv | parents(Xv)) is defined
through the application of the conditional probability table
(CPT), where parents(Xv) denotes the variables correspond-
ing to the regulators of this element. Thereafter, an opti-
mization approach is applied, with the Bayesian information
Criteria (BIC) optimized to infer the best fitting network
model among a finite set of models.

In a third alternative, differential equations extract the
network from high-throughput experimental data through
taking the instantaneous concentration of each element
into consideration. The instantaneous concentration of each
element is completely determined by the concentration (xn)
of other elements involving a regulation function.

Differential equation modeling:

dxi
dt

= fi(x1, . . . , xn, t). (1)

In a fourth alternative, coexpression is used to model
GRNs based on co-variance analysis. However, the compari-
son between the covariances from datasets having different
scales would be difficult. The Pearson correlation coeffi-
cient addresses this difficulty. It measures the coexpression
between any two elements across a series of states resulting
in the value with the range from −1 to 1, which allows
networks to be established based on a certain threshold for
the magnitude of the correlation.

Finally, Mutual Information (MI) offers another ap-
proach to modeling GRNs based on the probability theory.
The mutual dependence of any two elements in the network
is measured using MI. It is reported that MI outperforms
the correlation in some studies [10, 11]. Using a reasonable
threshold, networks will be accurately constructed. Context
likelihood of relatedness (CLR) [10, 12], MRNet (maximum
relevance/minimum redundancy network) (R package), and
ARACNE (algorithm for the reconstruction of accurate cel-
lular networks) [11, 13] are the three representative strategies
of network construction applying MI. Numerous approaches
to GRN construction have been developed using various
combinations of the five main approaches described above.

1.2.2. Motivations for an Integration Strategy. The most pop-
ular algorithms contributing to the construction of GRNs
from genomic expression data were described above. How-
ever, each of them has certain drawbacks. The Boolean
algorithm assigns each variable a binary value, which
could omit important information of continuous variables.
Bayesian network construction is promising for representing
and inferring causal relationships, but this strategy is only
effective for the construction of small GRNs, due to the
superexponential increase in the algorithm running time for
large networks. The differential equation algorithm requires
knowledge of the equation of dynamics and parameter esti-
mation to optimize the GRN model against real data. How-
ever, deriving an appropriate equation of dynamics remains
a challenge. Furthermore, solving a differential equation
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system of any realistic complexity is difficult. As to the corre-
lation and mutual information algorithms, manually setting
appropriate thresholds without a principled reference poses
difficulties. Strategies applying algorithms with these draw-
backs are not satisfying; therefore, it motivates us to improve
the computational strategies. New strategies continue to be
developed against those difficulties. It is a great challenge
to refurbish algorithms to improve GRN construction using
genomic expression data. Improvements are difficult to
obtain algorithmically; however, the integration of multiple
types of genome-wide datasets with literature-based infor-
mation of regulation as prior knowledge is a straightforward
alternative to offer improvement. Generally, in the compu-
tational GRN construction methods mentioned above, only
genomic expression data like microarray data is used to
produce the desired network applying one of the algorithms
described [10, 11]. Based on a straightforward intuition
that more relevant information generates better confidence
for making correct predictions, we are optimistic about
the prospects of making improvement by data integration.
We have increasing availability of genome-wide data with
respect to every aspect of biology, genomic expression data,
genome sequences, proteomic data, genome-wide protein-
DNA binding site data [14], genomic SNPs, and high-content
data collections created from various types of biological or
pathological research objectives. Therefore, with reference to
the literature-based information of regulation as the prior
knowledge and the multiple types of genome-wide datasets
available as analyzable data, an integration strategy can offer
an excellent opportunity for elucidating complete GRNs.

2. Integration Strategies for Building GRNs

2.1. Sources for Integration. The past few decades were an
age of rapid progress in the development of biomedical
science. Numerous advanced technologies along with well-
founded theories lead the way for new findings in industrial
and academic biomedical research. For example, biomedical
investigators have developed genomic expression by microar-
ray, rapid genome and microbiome sequencing, proteome
definition by mass spectrometry, genome-wide protein-
DNA binding site definition by ChIP-seq, genomic SNP
identification by SNP array, and high-content knowledge
by literature mining. Overwhelmed with such impressive
quantity of genome-wide achievements, we are encouraged
to apply strategies to make good use of them intuitively, such
as integrating them properly for GRN construction. First we
need to take stock of the status of the biomedical sources that
are available to us.

It is difficult to summarize all the biomedical sources
as most sources are scattered in distinct research papers.
We will focus our attention on databases, as they are
an effective form of rearranging and storing sources for
specific objectives. Nucleic Acids Research (NAR) summa-
rizes the biomedical database status each year (Figure 1)
(http://nar.oxfordjournals.org/). Here is a table (Table 1)
summarizing some genome-wide databases popular in the
research of systems biology.
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Figure 1: This is the database (DB) summary from NAR database
issues. Each bar represents the total number of databases identified
by NAR that year.

Table 1: Prominent databases.

Category Databases

Metabolic pathways KEGG, ENZYME

Signaling pathways KEGG, WikiPathways

Protein-protein interactions BIND, STRING

Transcription factor binding
motifs

JASPAR, TRANSFAC

Genetic interaction networks BIND, BioGRID

Gene expression GEO, ArrayExpress

Sequences UCSC Genome Browrer

Protein-compound interactions
DrugBank, STITCH, ResNet,
CLiBE

Gene-disease associations OMIM

2.2. Structural Integration. A large number of genome-wide
sources are available that have not been fully leveraged to
infer novel GRNs. Before entering into a discussion of the
analytic algorithms for integrating multiple genome-wide
datasets for GRNs construction, we must first address the
challenge of extracting the desired datasets from the ocean of
biomedical sources. Structural integration retrieves desired
datasets from multiple heterogeneous sources to facilitate
querying the data for further analytic integration. There are
many sophisticated approaches being used for structurally
integrating target datasets through programmatic extraction
and recombination. Overall, these approaches to structural
integration can be divided into three general categories:
warehouse integration, mediator-based integration, and nav-
igational integration [15].

Before discussing the approaches to structural integra-
tion in the following Sections 2.2.1–2.2.3, we will finish this
section with a discussion of some key defining characteristics
of structural integration.

Variety of Data. This describes the typical data that can be
integrated and includes high-throughput datasets, molecu-
lar structures, molecular interactions, molecular pathways,
Gene Ontology annotation, and disease characteristics,
hence vertical integration is the aggregation of semantically

http://nar.oxfordjournals.org/
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similar data from multiple heterogeneous sources, while
horizontal integration is the composition of semantically
complementary data from multiple heterogeneous sources
[15].

Heterogeneity of Descriptive Terms. Semantics is the study of
the relation between form and meaning. Each source of data
or knowledge may refer to the same semantic concept or field
with its own descriptive term or identifier, which can lead to
a semantic confusion between the many sources. Conversely,
some sources may use the same term to refer to the different
semantic concepts. Semantic mapping is indispensable in
order to match descriptive terms or identifiers among
multiple heterogeneous sources or between the sources and
the objective integrated datasets.

Heterogeneity of Naming and Identity. One major hurdle in
current data integration efforts is the issue of naming and
identity such that a variety of aliases (e.g., synonyms for gene
symbol) exist for many genes, proteins, and keywords. Alias
mapping through lookups is critical for retrieving desired
data from multiple heterogeneous sources.

2.2.1. Warehouse Integration. Warehouse integration arran-
ges desired datasets from multiple sources into a local
warehouse (e.g., a local database) before querying, through
loading the required data from distinct sources and con-
verting them into standard formats before being stored
locally. Relying less on the Internet connectivity to access
data limits the impact of various problems such as access
restrictions, network bottlenecks, low response times, and
the occasional unavailability of sources. Moreover, using
local warehouses allows for improved accuracy, efficiency,
and flexibility for the subsequent query as it is performed
locally. However, this integration has an important drawback
of the overall system maintenance. It is expensive to have the
warehouse updated regularly to reflect those modifications
of heterogeneous external sources [15, 16]. Furthermore,
since the data retrieved and stored in the warehouse will
eventually be converted into the warehouse-specific format
every time the warehouse is updated, the semantic structure
of the warehouse database may need to be reformatted often.

NCBI, the UCSC Genome Browser [17], and EMBL-
EBI (http://www.ebi.ac.uk/) are three representative data
warehouses. Given the appeal of these resources, efforts
are increasingly made to improve the warehouse strategy
against its drawbacks. The GeNS platform is one of the
efforts to improve the efficiency of database maintenance.
GeNS is a biological data integration platform for warehouse
integration [18]. Representative databases were selected to
cover a broad area of biomedical research when constructing
the GeNS database. This warehouse accommodated the
data from EMBL-EBI, UniPort (Swissport and TrEMBL),
ExPASy (PROSITE and ENZYME), NCBI (Entrez, Taxon-
omy, Pubmed, RefSeq, GeneBank, and OMIM), Biomart,
ArrayExpress, InterPro, Gene Ontology, KEGG (genes, path-
ways, orthology and drugs), and PharmGKB (genes, drugs,
and diseases). A loader application responsible for converting

the corresponding data from each source database into
the format compatible with GeNS schema was designed to
coordinate tasks such as alias mapping. In order to overcome
the difficulty of maintenance, a general schema and a specific
schema were both developed in GeNS. To physically store
the data, a general model (general schema) that certified
the framework of the database was used, while supporting
this general model with a concrete meta model (specific
schema) where all the entities and relations from a specific
contributing database were specified locally [18]. Therefore,
the addition/modification of databases into this warehouse
needs modification in the meta model only, rather than in
the general model.

2.2.2. Mediator-Based Integration. Mediator-based integra-
tion retrieves desired datasets from multiple heterogeneous
sources at the time of querying through query translation,
as opposed to the data translation that is manifested at the
time of database creation in warehouse integration [15, 16].
The mediator, or core of the query translation, is an interface
responsible for reformulating a query given by the user
into the queries accommodating the local schemas of the
underlying data sources via a single mediated schema defined
by the mediator-based integration platform. Therefore, a
mapping is required in the mediated schema to capture
the semantic relation or the identity alias’ relation between
the sources and the given query, which thus allows the
query made by a user to be translated via the mediator into
the appropriate queries onto the individual sources. This
correspondence mapping is a crucial step in creating the
mediator, as it will influence the query reformulation and the
addition of new sources to or the removal of the old sources
from the integrated system.

There are two main approaches for establishing the
mediator, global-as-view (GAV) and local-as-view (LAV)
[15, 16]. The GAV has the mediator that translates the given
queries directly into the formats of the source queries. The
LAV has the format of query in every source defined into
the common format of mediation, which is defined by the
mediator via a wrapper. Therefore, each local source needs
a wrapper component that exports a view of the local data
into a common format of mediation via mediated schema.
Since the mediator-based integration retrieves data at the
run-time of querying, the problems such as access restriction,
network bottlenecks, low response time, and the occasional
unavailability of sources may occur. However, since the
queries are performed in the real-time fashion, there is no
special need of system maintenance via manually updating
the databases. More specifically, LAV makes it very simple
to add or to remove sources, while for GAV the addition or
removal of sources is much more difficult, as it requires a
modification of the mediated schema on the correspondence
mapping.

The mediator approach is a very popular approach of
data integration. Platforms like K2, TAMBIS, Discovery-
Link, and BACIIS are all designed based on this approach.
In the Discovery-Link platform (http://www.redbooks.ibm
.com/abstracts/sg246290.html/), the source-specific wrapper
symbolizes its data sources for further integration.

http://www.ebi.ac.uk/
http://www.redbooks.ibm.com/abstracts/sg246290.html/
http://www.redbooks.ibm.com/abstracts/sg246290.html/
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2.2.3. Navigational Integration. To extract the desired data-
sets, navigational integration follows the workflow in which
the query outputs from a source are redirected as the query
inputs to the next resource until the requested information
is reached [15, 16]. It resembles the nature of the web in
the context of increasing number of data sources, and it,
therefore, frees users from manually browsing several web
pages or data sources in order to obtain the desired datasets.
However, the drawbacks of the navigational integration are
similar to those of the mediator-based integration, such as
access restrictions, network bottlenecks, low response times,
and the occasional unavailability of sources. Additionally,
the time and effort required to build the correspondence
mapping are still costly.

Examples of this approach are Entrez and DiseaseCard
databases. DiseaseCard [19] is a web-based collaborative
service that aims to comprehensively integrate genetic and
medical information, including the information of rare
genetic diseases.

2.2.4. Choosing a Method for Structural Integration. Here is
a brief comparison (Table 2) that summarizes the features
of different structural integration approaches of extracting
desired datasets from the ocean of biomedical sources.

The main purpose of the structural integration in most
cases is to compile all available information for specific
objectives to prepare for arbitrary analytic integration
according to the user interest.

An ideal integration schema should have the following
characteristics.

(1) Efficient. It can optimize the time that users need to
finish the query. One of the recent ideas is to build
semantic webs.

(2) Easy to maintain.

(3) Stable.

(4) System performance metrics. It is critical for an
integration system to study source statistics in order
to refine the query plans and improve the overall
functionality and performance of the system. The
essential statistics that should be learned are the
coverage of sources, the average response time, the
cost, and the overlap between sources [15].

(5) High quality. The data integrated are extracted
from various heterogeneous sources, having different
degrees of quality. For example, compared with
the old data, new data from improved technologies
may have better quality; also, compared with com-
putationally predicted data, the experimental data
is expected to have better quality. Quality varies
within heterogeneous data sources, and some effort
to account for these differences should be considered
in the data integration strategies.

(6) Automated. the disciplines of operational optimiza-
tion and machine learning should be applied for an
effective automation program.

2.3. Analytic Integration. Along with the desired datasets
extracted from multiple heterogeneous sources through
structural integration, analytic integration is performed to
infer GRNs via data integration algorithms applied to the
desired datasets. The integration algorithm is, therefore, an
essential ingredient for optimizing GRN construction. In
contrast with the algorithms described in the above section,
the integration algorithm needs to be capable of dealing
with multiple types of data simultaneously. As a result,
heterogeneous data should merge smoothly regardless of
the differences in data types. As we discussed previously
in Section 1, many types of genome-wide datasets could
contribute to GRN construction. In the following discussion
of the analytic integration for GRN construction from
multiple types of genome-wide datasets or with reference
to prior knowledge, there are three main schemas to
consider: naı̈ve Bayesian applications, supervised learning,
and network topology applications. Each of these schemas
represents a distinct approach to analytic integration, yet
each can be applied to multiple categories of hypothesis
inference, such as transcriptional regulation, protein-protein
interaction, and gene-disease association.

2.3.1. Naı̈ve Bayesian Applications. The Bayesian schema
applying the naı̈ve Bayesian is specified in the biological
context: if association of two molecules occurs across mul-
tiple heterogeneous sources, there is an increased likelihood
that they have a strong connection that may, for example,
include a productive regulation or an indispensable physical
interaction. Therefore, the functional importance of the pair-
wise connection is evaluated through its incidence across the
multiple sources. And many types of genome-wide datasets,
such as genomic expression and phylogenetic profiles, will
contribute to the perceived functional importance of the
pairwise connections in the genome-wide scope. Therefore,
a scoring system is then applied to evaluate the functional
importance of the pairwise connections in the genome-wide
scope to gain insight about the confidence of the inferred
GRNs or PPIs. Two successful examples with naı̈ve Bayesian
applications are described below.

The STRING web application was designed to infer the
PPI via integrating multiple types of genome-wide datasets.
It was primarily constructed from the integration of three
genome-wide datasets, including phylogenetic profiles, a
database of transcription units, and a database of gene-
fusion events [20–24]. Phylogenetic profiles are derived from
the evolutionary tree. During evolution, functionally linked
proteins tend to be either preserved or eliminated in new
species simultaneously. This property of correlated evolution
is leveraged in the STRING database by characterizing each
protein via its phylogenetic profile that records the presence
or absence of an orthologous protein in every known
genome. Those proteins having matching profiles have a
strong tendency to be functionally linked. Transcriptional
units (operons) are extracted from a number of genomes
through identifying the conserved gene clusters. The protein
products of the genes in transcriptional units are hypothe-
sized to be functionally linked with each other. Gene-fusion
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Table 2: Properties of distinctive structural integration approaches.

Approach Maintenance System stability Effectiveness

Warehouse Difficult, costly Stable Poor

Mediator-based Easy for LAV Depends on source availability, accessibility, traffic Fair

Navigational Easy Depends on source availability, accessibility, traffic Good

events can be interpreted by the example that the interacting
proteins GyrA and GyrB subunits of E. coli DNA gyrase are
orthologs of a single fused chain (topoisomerase II) in yeast;
thus, the similarities of GyrA and GyrB to some segment of
topoisomerase II might be used to predict their functional
interaction in E. coli. STRING was developed as a multi-
dimensional integration interface by combining its three
original components (phylogenetic profiles, transcription
units, and gene fusions) together with genomic expression
and genome-wide dataset of protein-protein interaction
discovered via text mining from PubMed abstract, and so
forth. Putative protein-protein interaction of the PPI can be
evaluated with the confidence score of functional association
between two proteins across those genome-wide datasets.
Different datasets are weighted differently for their respective
contribution to the confidence score. In the STRING project,
a weight was assigned to each dataset by benchmarking
the performance of the prediction in this dataset against a
common reference set of trusted knowledge. The developers
chose the functional grouping of proteins maintained at
KEGG (Kyoto Encyclopedia of Genes and Genomes) as
the common reference set. The benchmark weight of each
dataset in STRING corresponded to the probability of
finding the linked proteins that were predicted in this dataset
within the same KEGG pathway. In the equation of the
confidence score, the confidence score is taken as S, the
weight of each dataset is taken as Si, and i is the number of
qualfied datasets with incidence of the pairwise connection.
Therefore, the confidence score of the putative protein-
protein interaction is evaluated through qualifying the naive
Bayesian probability of the incidence of the corresponding
protein connection across those multiple datasets under the
assumption of independence of the various datasets. Larger
confidence scores indicate higher confidence in a functional
protein-protein association:

S = 1−
∏

i

(1− Si), (2)

where Si is the weight assigned to each dataset over the
common reference set.

Figure 2 shows an example result of a STRING query
(http://STRING-db.org/) of the protein-protein interactions
seeded by Gata4, a well-known transcription factor in cardiac
development.

The confidence score for each putative protein-protein
interaction is, therefore, a Bayesian-probability-like score
supported by several types of genome-wide datasets. Putative
PPI thus follows the evaluation in the genome-wide scope to
gain confidence.

Another approach applies the Bayesian schema to ratio-
nally extend the ribosome biogenesis pathway in yeast

[25]. Li et al. constructed a computational predictor for
inferring the ribosome biogenesis genes by integrating
multiple heterogeneous datasets into a probabilistic model.
This model employed a naive Bayesian probabilistic scoring
system to integrate the multiple genome-wide datasets,
including genomic expression, a genome-wide dataset of
protein-protein interactions derived from literature cura-
tion, a genome-wide dataset of high-throughput yeast two-
hybrid assays, a genome-wide dataset of affinity purification
coupled with mass spectrometry, a genomic interaction
dataset, and in silico genome-wide interaction datasets into a
network (Figure 3). The plausibility that a putative yeast gene
belongs to the ribosome biogenesis pathway was evaluated
by calculating the naive Bayesian probability of the incidence
of its association with the known ribosome biogenesis genes
in the pathway. The ROC plot from cross-validation was
employed to check the effectiveness of this schema (Figure 3).
The top-scoring 212 genes were manually selected for the
further experimental validation.

Bayesian schemas that apply the naive Bayesian prob-
ability are a powerful approach for analytic integration.
Their application in the improves network construction
in the examples given by evaluating the putative network
with multiple genome-wide datasets integrated to calculate
the confidence score. This schema always outperforms
non-integration strategies. For example, the application of
the Bayesian schema in an algorithm called MAGIC, as
compared with the expression-based clustering methods,
predicted more true positives than clustering methods did
relative to the number of false positives [26].

2.3.2. Supervised Learning. Supervised learning assumes that
partial information is known for predictor variables and
outcomes, and this partial information is leveraged to make
deeper inferences of the target hypothesis. The known
information is taken as the prior knowledge. Supervised
approaches in statistics have been developed to make
new inferences with the prior knowledge of the study
objective to be integrated with the other relevant datasets.
The accuracy of inferences regarding network topology is
positively correlated with the amount of accurate prior
knowledge. In contrast, unsupervised approaches have the
problem that they are more likely to predict associations
that are unreliable. The supervised learning schema can
make inferences less error-prone. One analytic integration
approach uses supervised learning to integrate the prior
knowledge of the PPI with the other relevant genome-wide
datasets to improve the effectiveness of PPI construction.

Kato et al. developed a schema for supervised learning of
yeast PPI using known protein-protein interactions as a prior

http://STRING-db.org/
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nodes are genes that are not related to the ribosome biogenesis. Edge color indicates coexpression (light blue), affinity purification (red),
yeast two-hybrid assay (green), genetic interaction (yellow), cocitation (gray), and literature curation (black). The ROC curve shows cross-
validated recovery of the known ribosome biogenesis genes based on their network connectivity to one another. (This open-access figure
was reproduced from Li et al., [25].)

knowledge to be integrated with the other relevant genome-
wide datasets [27]. In this supervised network construction,
a kernel matrix is applied as the basis of the integration.
A kernel matrix is a matrix of similarity, and edges in the
kernel-based network are assigned to the connected nodes
whose kernel values (similarity) are above a certain threshold
δ. The kernel matrix representation is an appropriate method
for supervised PPI construction, as the network construction
problem boils down to the problem of inferring an integrated
kernel matrix of pairwise protein connections from com-
bining the known yeast protein-protein interactions with
the other relevant genome-wide datasets. Here, Kato et al.

generated 3 main steps of the yeast PPI construction applying
supervised learning.

Step 1. They translated the prior knowledge (known part
of yeast PPI) into the kernel matrix by diffusion kernels.
Diffusion kernels are functions for processing the network
structure to mine the underlying relationships between
nodes in the kernel matrix. However, this resulted in a
regional kernel matrix of pairwise protein connections given
a genome-wide scope because only the pairwise kernel values
(the intensity of pairwise protein associations) of the proteins
that were in the known part of PPI could be reconstructed.
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The regional kernel matrix could approximately recover the
known PPI when the appropriate threshold δ of the kernel
value was applied.

Step 2. A genome-wide dataset (e.g., genomic expression)
with the same objective can be used to establish a new
kernel matrix. Kato et al. took multiple types of genome-
wide datasets into consideration for the PPI construction.
They combined these new generated kernel matrices, each of
which was calculated from a particular genome-wide dataset,
such as genomic expression and genome-wide phylogenetic
profiles, into a combined kernel matrix of pairwise protein
associations in yeast.

Step 3. They integrated the combined kernel matrix with the
regional kernel matrix of the known part of yeast PPI to infer
the integrated kernel matrix of pairwise protein connections
that offered the pairwise kernel values in the genome-wide
scope to be able to qualify the PPI edges via comparing the
kernel values against the threshold δ.

Accuracy of edge prediction was measured by a 10-fold
cross-validation. With setting the parameter of the degree of
kernel diffusion to 3.0 when translating the known PPI into
the kernel matrix by diffusion kernels, the ROC score was
0.929 for the inferred yeast PPI.

The supervised learning improves the PPI construction
via integrating the experimentally-proven evidence of the
study objective as the supervisor into the analysis of the other
relevant genome-wide datasets. Thus the GRNs construction
can also apply the schema of the supervised learning via
having the known transcription factor-target gene regula-
tions as the prior knowledge to be integrated with the other
expression-relevant genome-wide datasets. One study com-
pared supervised methods with unsupervised methods for
GRN construction and found that the supervised methods
are more reliable than the unsupervised ones [28].

2.3.3. Network Topology Applications. In recent decades, a
large amount of experimental evidence about biological
networks has been collected, and this was coupled with
progress in elucidating the network topological features.
Approaches that have contributed to these strides in network
biology include scale-free networks, small world networks,
adaptive motifs, feed-back motifs, “AND” and “OR” logic
motifs, and modular networks. Therefore, a systematic effort
utilizing the network topological features will be required
and will benefit the effectiveness of network construction.
Modularity is one of the most accepted network topo-
logical features of GRNs. The modularity of GRNs can
be represented by gene module members that are co-
regulated via shared transcription factors combinatorially
binding their promoters. Therefore, members in such gene
modules manifest coexpression. Genomic expression and
the genome-wide transcription factor-DNA binding sites
are thus, integrated into GRN construction by identifying
coexpressed genes with conserved TF binding sites in their
promoters [29, 30]. Two examples applying this integration
schema to the inference of GRNs are discussed below.

GRAM is an algorithm for discovering GRNs by incor-
porating information from transcription factor (TF) binding
motifs, genome sequence, and genomic expression [31].
Regulatory relationships are effectively identified by genome-
wide location analysis of DNA-binding TFs via blasting
the corresponding TF binding motifs against promoter
sequences to infer the binding sites at the genome-wide
scope. However, location analysis may infer potential phys-
ical interactions between TFs and DNA at the genome-wide
scope but may not necessarily identify functional bindings.
Integrating the location analysis with genomic expression,
GRAM employs an effective and exhaustive strategy for GRN
construction. It searches over all the possible combinations
of TFs indicated by location analysis. When the binding
sites are in close proximity, the corresponding TFs are
defined to be in combination. A TF’s combinations are
used to identify its regulating gene set members that have
common combinations of TFs binding their promoters as
defined by location analysis. From the complete gene set, a
subset is generated by members that have highly correlated
expression in the expression dataset. The subset is taken
as the “seed” of a gene module. Then GRAM revisits the
genomic expression to add more genes having relatively
high correlated expression with the “seed” into the gene
module using less strict criteria (Figure 4). GRAM allows
genes to belong to more than one module. Regulation is,
therefore, inferred between the co-expression module and its
TFs combination to foster GRN construction.

In the GRAM project, this schema was applied to the
TF binding motif data of 106 TFs and over 500 microarray
expression experiments in Saccharomyces cerevisiae. The
GRN was reconstructed via identification of modules. Gene
modules were also identified as groups of genes annotated
with similar pathways. Identified gene modules were con-
trolled by more than one TF, which was the evidence for
inferring the TFs’ interactions (protein-protein interactions).
GRAM can assign different regulators to genes with similar
expression patterns, which cannot be accomplished using the
expression clustering methods alone. Moreover, by applying
the enrichment test of specific DNA binding motifs, genes
in the discovered modules are more likely to be coregulated
when compared with the set of genes obtained using genomic
location analysis alone.

Another application of this integration schema in GRNs
construction was developed by Segal et al. [32]. Those
authors designed an algorithm integrating a Saccharomyces
cerevisiae genomic expression dataset with the genome-
wide TF binding sites that were inferred via searching
the corresponding TF binding motifs in the genome-wide
scope. In their framework, a regulatory module was a set of
genes that were regulated in concert by a shared regulation
program. A regulation program specified the expression of
the genes in the module as a function of the expression of
a small set of regulators (Figure 5). After the enrichment
test of TF binding motifs to the regulatory module, novel
regulations were predicted between the TFs corresponding
to the overrepresented binding motifs and the regulatory
module to foster the GRN construction. Segal et al. found
in many regulatory modules that the TFs corresponding to
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Figure 4: Workflow of the GRAM algorithm. Known TF binding
motifs are blasted against the promoter sequences in the genome-
wide scope to infer the corresponding TF binding sites. A set of
synergic TFs is identified when the TFs’ binding sites are close to
each other. Regulated gene sets are defined by the corresponding sets
of synergic TFs through location analysis. A “seed” of a gene module
is selected from the regulated gene set based on the highly correlated
expression. Then GRAM revisits the genomic expression to add
more genes with closely correlated expression with the “seed” into
the gene module of the “seed.” The GRN construction is fostered by
the established regulations between the coexpression gene modules
and their corresponding sets of synergic TFs.

the overrepresented binding motifs of the module matched
the known regulators of the genes in that module quite well.

Applying the modularity feature in GRNs construction
via integrating genomic expression with genome-wide TF
binding sites improves the quality of network construction.
However, only limited information has been elucidated
about the GRN topological features. The schema with GRN
topology applied is expected to perform more compellingly
with increasing knowledge of those features in GRN.

2.3.4. Choosing a Method of Analytic Integration. The Baye-
sian application schema for the naive Bayesian probability
theorem is well accepted in most scientific fields. The naive
Bayesian integrates multiple types of relevant genome-wide
datasets into a scoring system that produces a confidence
score for the inferred network (e.g., PPI and GRN). However,
there is an important caveat with this approach: it is
rational to apply the naive Bayesian theorem only when
the situation satisfies the basic assumption that each type
of source dataset is independent of any other. Therefore,
under this assumption, there is no dependency between any
two types. However, in reality some datasets have known

dependencies. For example, in the case of STRING, the
datasets of experiments, databases, and text mining are
not completely independent of each other. The method of
evaluating individual weight is also a controversial part of
this schema. In the case of STRING, KEGG is used as the
standard for calculating the weights. However, KEGG is an
incomplete database in the genome-wide scope, and it is
actually constructed from various experiments, databases,
and text-mining resources, so it is necessarily dependent on
those resources. It is, therefore, not a good standard, as it is
biased—giving high weights to its own resources while giving
low weights to the others. This may promote its accuracy but
limit its predictive power. Hence, naı̈ve Bayesian applications
in GRN construction may be affected by those limitations.

Supervised learning integrates prior knowledge of the
study objective with the other relevant genome-wide datasets
to learn the networks (e.g., PPI, GRN). However, the
quality of its prediction varies with the quantity of the
prior knowledge. Also, when multiple datasets are involved,
weighting each dataset properly is still problematic. If we
employ the nonweighting integration approach to make the
primary prediction of the unknown part before it is trained
by the prior knowledge, we may have better quality on
the overall prediction even when the quantity of the prior
knowledge is relatively small.

The schema of network topology is a compelling strategy
of GRN construction via integrating genomic expression
with genome-wide TF binding sites. It associates the two
sources through the modularity feature to connect the gene
co-expression with the conserved TF binding sites on their
promoters. However, as mentioned in the two examples,
the TF binding sites are inferred from the corresponding
TF binding motifs via a genome-wide blast. It will be
improved when the CHIP-seq datasets regarding different
TFs are employed instead to generate the genome-wide TF
binding sites. It is a developing schema that keeps step with
the development of our knowledge of network topological
features.

The schemas of supervised learning and network topol-
ogy application may be described as advanced forms of the
schema of Bayesian application, progressing from the naive
to evidence-based logic. These approaches use principled and
logical integration of datasets rather than integration only.
Along with the increased experimentally proven knowledge
about regulatory relationships, the schema of network
topology application can be combined with supervised
learning to gain increased confidence in the inferred GRNs.
Overall, a positive-feedback effect that contributes to better
GRNs helps to develop our knowledge of additional GRN
topological features, while the more topological features
provide more or better clues for GRNs’ construction. The
PPI could be embedded into the GRN to assess the TFs’
combinatory regulations.

3. Summary and Future Directions

GRN construction via integration of multiple types of
genome-wide datasets or via literature-based information
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Figure 5: Workflow of the algorithm by Segal et al. This is an iterative procedure with application of the expectation maximization (EM)
algorithm. In the maximization step (M step), genes are partitioned into modules that result from previous clustering upon genomic
expression data and the best regulation program is learned for each module. In the E step, the best regulation programs corresponding
are compared with each gene module to determine the optimal predictor (the optimal predictive regulation program). The module
corresponding to the best predictor is selected and genes are reassigned to this module. The regulatory program learning stops on
convergence. Secondly, TFs are associated with the regulatory module via an enrichment test of their corresponding binding motifs to
the module.

about regulation as the prior knowledge partly avoids or
overcomes the drawbacks of the nonintegration strategies.
Along with the continuous increase in the availability of
new data sources, new opportunities emerge for us to use
integration strategies to construct GRNs. There are two main
categories of integration strategies: structural integrations
for extracting and recombining the required datasets and
analytic integrations for processing the queried datasets
to infer GRNs. There are three main types of structural
integration: warehouse integration naively aggregates the
required datasets into local storage before data querying,
mediator-based integration establishes a mediator application
to retrieve the required datasets via reformatting the user’s
query into the formats of queries in local data sources at
the time of data processing, and the navigational integration
follows the chain of data querying at the time of data
processing via using the query outputs of one step in the
process as query inputs in a next step. In a subsequent
analytic integration, the schema of Bayesian applications
use the naive Bayesian probability to integrate multiple
types of genome-wide datasets into a scoring system to
compute a confidence score for inferred GRNs. Supervised
learning integrates the prior knowledge of the study objective
with the other relevant genome-wide datasets to learn the
GRNs. And the schema of network topology applications
integrate genomic expression with genome-wide TF binding

sites through the modularity feature to connect gene co-
expression with conserved TF binding sites in their promot-
ers to foster the GRNs construction. Overall, the integration
strategies perform well and reliably as compared to the non-
integration strategies. Structural integration and analytic
integration take central roles in the overall integration
strategy of GRN construction.

Recently, cooperation of traditional experimental ap-
proaches with computational approaches has energized
biomedical research. These new approaches offer the abil-
ity to computationally infer novel hypotheses from prior
knowledge and relevant datasets to guide experimentation
by setting research priorities. A salient example of this
successful cooperation defines how to rationally extend the
ribosome biogenesis pathway in yeast [25]. After revealing
212 candidates from the Bayesian applied integration analysis
of multiple relevant genome-wide datasets, experiments were
employed to validate their findings. Li et al. identified 15
previously unreported ribosome biogenesis genes (TIF4631,
SUN66, YDL063C, JIL5, TOP1, SGD1, BCP1, YOR287C,
BUD22, YIL091C, YOR006C/TSR3, YOL022C/TSR4, SAC3,
NEW1, and FUN1). Segal et al. used a similar workflow
to validate the GRN construction [32]. Therefore, GRNs
inferred from the analysis with multiple types of integrated
datasets offer a sophisticated atlas for setting research
priorities.
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Abbreviations

BIC: Bayesian Information Criteria
EMBL: European Molecular Biology Laboratory
GO: Gene ontology
GRN: Gene regulatory network
KEGG: Kyoto Encyclopedia of Genes and Genomes
NAR: Nucleic Acids Research
NCBI: National Center for Biotechnology

Information
PCR: Polymerase chain reaction
PPI: Protein-protein interaction
SNP: Single-nucleotide polymorphism.

Glossary

Bayesian information
criterion (BIC): In statistics, it is a criterion for

model selection among a finite
set of models

Cis-regulatory motif: A nucleotide pattern that is
widespread and has a biological
significance for regulatory factor
binding

ChIP-seq: A technology that combines
chromotin immunoprecip-
itation (ChIP) with massive
sequencing to identify the
binding sites of DNA-associated
proteins on a genomic scale

Cross-validation: A technique for assessing how
the results of a statistical analysis
will generalize to an independ-
ent data set

Epistatic: In genetics, it is the
phenomenon where the effects
of one gene are modified by one
or several other genes

Gene ontology: A controlled vocabulary for
annotating genes and gene
products

Gene regulatory network: A network that summarizes
gene regulatory influences in a
biological process

In silico: ALatin expression used to mean
“performed on computer” or
“computer simulation”

Mesoderm: In all bilaterian animals, the
mesoderm is one of the three
primary germ cell layers in the
early embryo

Operon: In genetics, an operon is a
functioning unit of genomic
DNA containing a cluster of
genes under the control of a
single regulatory signal or
promoter

Phylogenetic profile: Also called phylogenetic tree, is a
branching diagram or “tree”
showing the inferred evolutionary
relationships among various
biological species or other entities
based upon similarities and
differences in their physical and/or
genetic characteristics

Schema: A representation of a plan, theory,
or data structure, normally
expressed as an outline or model

Semantic: Relating to meaning language or
logic; in a biological context, this
usually refers to the meaning of
specifically defined annotations,
concepts, or logical relationships
between biological entities

Wrapper: A computer program that
translates one format of data to
another or a computer program
that simplifies user interactions
with a more complex program.
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