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Abstract

Background: Adolescence is a significant period for the gender-dependent development of lung function. Prior
studies have shown that DNA methylation (DNA-M) is associated with lung function and DNA-M at some cytosine-
phosphate-guanine dinucleotide sites (CpGs) changes over time. This study examined whether changes of DNA-M
at lung-function-related CpGs are associated with changes in lung function during adolescence for each gender,
and if so, the biological significance of the detected CpGs.

Methods: Genome-scale DNA-M was measured in peripheral blood samples at ages 10 (n = 330) and 18 years (n =
476) from the Isle of Wight (IOW) birth cohort in United Kingdom, using Illumina Infinium arrays (450 K and EPIC).
Spirometry was conducted at both ages. A training and testing method was used to screen 402,714 CpGs for their
potential associations with lung function. Linear regressions were applied to assess the association of changes in
lung function with changes of DNA-M at those CpGs potentially related to lung function. Adolescence-related and
personal and family-related confounders were included in the model. The analyses were stratified by gender.
Multiple testing was adjusted by controlling false discovery rate of 0.05. Findings were further examined in two
independent birth cohorts, the Avon Longitudinal Study of Children and Parents (ALSPAC) and the Children,
Allergy, Milieu, Stockholm, Epidemiology (BAMSE) cohort. Pathway analyses were performed on genes to which the
identified CpGs were mapped.

Results: For females, 42 CpGs showed statistically significant associations with change in FEV1/FVC, but none for
change in FEV1 or FVC. No CpGs were identified for males. In replication analyses, 16 and 21 of the 42 CpGs
showed the same direction of associations among the females in the ALSPAC and BAMSE cohorts, respectively,
with 11 CpGs overlapping across all the three cohorts. Through pathway analyses, significant biological processes
were identified that have previously been related to lung function development.

Conclusions: The detected 11 CpGs in all three cohorts have the potential to serve as the candidate epigenetic
markers for changes in lung function during adolescence in females.
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Background
The period from childhood to adolescence is associated
with rapid somatic growth and incorporates a range of
gender-dependent physiological and behavioral changes,
including hormonal, height and body mass index (BMI)
changes, possible use of oral contraceptives, and possible
initiation of nicotine use [1, 2]. This period is also sig-
nificant for the development of lung function as it repre-
sents a phase of dramatic growth from childhood to
adolescence to reach a maximal level of lung function in
early adulthood [3–5]. Lung function growth is gender-
dependent and such dependence is attributable to
multiple biological determinants, including dimensional/
anatomical (e.g., airway size, somatic growth, lung
growth, adolescence growth spurts), immunological, and
hormonal determinants such as different phases of the
menstrual cycle and common hormonal and metabolic
conditions [6–9].
DNA methylation (DNA-M), as a potential marker of

past exposure or significant changes in life such as
pubertal onset, is an epigenetic mechanism and has been
shown to play an important role in human development
and health. DNA-M refers to methylation of the 5′ pos-
ition of the cytosine base of cytosine-phosphate-guanine
dinucleotide sites (CpG sites or CpGs) in the DNA [10].
It regulates gene function through the modulation of
gene expression. Imboden et al. 2019 [11] and others
have demonstrated that DNA-M in whole blood is
associated with lung function [12–16], risk of asthma
[17], and chronic obstructive pulmonary disease (COPD)
[12, 13, 15, 16]. When assessing the association of DNA-
M with lung function, most previous studies have been
cross-sectional with both lung function and DNA-M
measured at single time points [12–16], although DNA-
M at some CpGs changes over time [18–22]. In our
recent genome-wide study, we identified more than 10 K
CpGs where DNA-M significantly changes over the ado-
lescence period, and at some CpGs, such changes were
gender-dependent [23].
To our knowledge, at CpGs which are potentially asso-

ciated with lung function parameters such as forced ex-
piratory volume in one second (FEV1) and forced vital
capacity (FVC), no studies have examined whether and
how changes in DNA-M at those CpGs are associated
with changes in lung function during adolescence. Such
an investigation will improve our understanding of epi-
genetic mechanisms in lung function development. In
addition, DNA-M changes at CpGs shown to be associ-
ated with changes in lung function have the potential to
predict future lung function changes, which, in the long
run, may lead to strategies for the prevention of pulmon-
ary disease. Taken together, we hypothesized that during
adolescence, changes of DNA-M at some CpGs are asso-
ciated with changes in lung function. Given that changes

during adolescence are gender-dependent, we examined
this hypothesis separately in males and females. The
study was carried out in a birth cohort located on the
Isle of Wight (IOW) in the United Kingdom. To assess
generalizability, the findings were further examined in
two independent birth cohorts, Avon Longitudinal Study
of Children and Parents Cohort (ALSPAC) in the United
Kingdom and Children, Allergy, Milieu, Stockholm,
Epidemiology (BAMSE) in Sweden.

Methods
Discovery cohort - IOW cohort
Study participants
The IOW cohort is a population-based birth cohort
and was established in 1989 on the IOW, United
Kingdom. The study was approved by the IOW Local
Research Ethics Committee at recruitment initial
assessments and further assessments were approved
by the National Research Ethics Service, Committee
South Central – Southampton B (06/Q1701/34).
Informed written consent was obtained from partici-
pants or their parents before participating. The study
enrolled 1456 eligible children of 1536 born between
January 1989 and February 1990 (after exclusion of
adoptions, infant deaths, and denial). Details of the
birth cohort of 1989 have been described elsewhere
[24]. Longitudinal monitoring of diseases and assess-
ments of environmental exposures in this cohort was
conducted at birth, and ages 1, 2, 4, 10, 18, and 26
years. In the present study, we focused on data col-
lected at ages 10 (n = 1373) and 18 (n = 1313) years.
In total 320 and 453 participants had both DNA-M
and lung function data available at ages 10 and 18
years, respectively, including 301 participants that had
data at both time points.

Lung function
Spirometric measurements, specifically, FVC and FEV1

at ages 10 (n = 980) and 18 (n = 838) years were con-
ducted using a Koko spirometer and software with a
portable desktop device (both PDS Instrumentation,
Louisville, KY, USA) and the ratio of FEV1 over FVC
(FEV1/FVC) was calculated. Spirometry was conducted
and evaluated according to the American Thoracic Soci-
ety (ATS) guidelines [25, 26]. Participants were required
to be free of respiratory infection and had not taken oral
steroids for two weeks. In addition, participants were
instructed to abstain from any β-agonist medication for
six hours and caffeine intake for at least 4 h.

Measuring DNA methylation (DNA-M)
Peripheral blood samples collected at ages 10 (n = 330)
and 18 (n = 476) years from randomly selected subjects
were used for DNA extraction via a standard salting out
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procedure [27]. DNA concentration was estimated by
Qubit quantitation. For each sample, one microgram
DNA was bisulfite-treated for cytosine to thymine con-
version using the EZ 96-DNA methylation kit (Zymo Re-
search, Irvine, CA, USA), following the manufacturer’s
protocol. DNA-M was measured using HumanMethyla-
tion450K or HumanMethylationEPIC BeadChips (Illu-
mina, Inc., SanDiego, CA, USA). Arrays were processed
using a standard protocol as described elsewhere [28],
with multiple identical control samples assigned to each
bisulfite conversion batch to assess assay variability.
DNA samples were randomly distributed on microarrays
to control against batch effects. Intensities of methylated
and unmethylated sites were measured.

Preprocessing
Probes not reaching a detection p-value of 10− 16 in at
least 95% of samples were excluded. CpGs on sex chro-
mosomes were also excluded to avoid potential bias in
DNA-M as there are the parent of origin differences in
methylation of paternally and maternally inherited X
chromosomes [29]. DNA-M data were pre-processed
using the “CPACOR” pipeline for data from both plat-
forms [30]. DNA-M intensities were quantile normalized
using the R computing package, minfi [31]. DNA-M β
values for each CpG was calculated as a ratio of methyl-
ated (M) over the sum of methylated and unmethylated
(U) probes (β =M/[c +M+U]) interpreted as the per-
centage of methylation [32], where c is used as a con-
stant to prevent zero in the denominator. Principal
components (PCs) inferred based on control probes
were used to represent latent variables due to chip-to-
chip and technical (batch) variation. Since DNA-M data
were from two different platforms (450 K and EPIC), we
determined the PCs based on DNA-M at shared control
probes between the two platforms. The 450 K BeadChips
contained 220 control probes and the EPIC BeadChips
contained 204 control probes, of which 195 overlapped
between the two platforms. These 195 shared probes
were then used to calculate the control probe PCs, top
15 of which were used to represent latent batch factors
[30].
After pre-processing, a total of 473,864 and 847,155

CpGs were available in the 450K and EPIC methylation
array data, respectively, and 439,635 overlappings CpGs
were identified between the two platforms. CpGs with a
single nucleotide polymorphisms (SNP) overlapping the
detection probe with minor allele frequency ≥ 0.7% in
Caucasians (corresponding to at least 10 subjects in the
IOW cohort with n = 1456) within 10 base pairs of the
targeted CpGs were excluded due to potential bias that
those SNPs brought to the measurement of DNA-M.
After excluding probe SNPs, 402,714 CpGs were in-
cluded in the statistical analyses.

Confounders
Variables potentially associated with lung function
change in addition to DNA-M change in adolescents are
considered to be confounders, including changes in
height and BMI, age of puberty onset, smoking status,
socioeconomic status (SES), exposure to pets, exposure
to air pollution, education status, farm exposure, para-
cetamol (acetaminophen) use, and non-steroidal anti-
inflammatory drugs (NSAIDs) use [33–36].
Gender information was collected by questionnaire at

each follow-up. Height was measured at 10 and 18 years
of age before spirometric assessment. BMI was calcu-
lated from height and weight at age 10 and 18 years.
Then changes of the height and BMI were calculated
from age 10 to 18 years. The minimum age of puberty
onset was estimated based on the following questions
about the age of initiation of different pubertal changes:
growth spurt of male or female, body hair growth of
male or female, skin changes of male or female, deepen-
ing voice of male, facial hair of male, breast development
of female, and initiation of menstruation of female.
Smoking status was defined by the questions of current
and past personal smoking status at age 18 years. A
composite “SES-cluster” variable that accounts for SES
broadly defined was used [37]. In order to correctly clas-
sify them, family SES were clustered using: (a) British
socioeconomic classes (1-6) derived from parental occu-
pation reported at birth; (b) number of children in the
index child’s bedroom (collected at age 4 years); and (c)
family income at age 10 years [37]. This composite vari-
able captures the family social class across the entire
study period. Information on exposure to cats, dogs, and
other animals was collected at both ages 10 and 18 years
via questionnaire. Information on whether the subjects
are still in education (yes/no), farm exposure (yes/no),
how often health is affected by exposing to air pollution
(never/ every day/ once a month/ once a week/ once a
year), paracetamol use (frequency of taking paracetamol
in a month) and use of NSAIDs (frequency of taking
NSAIDs in a month) were collected by questionnaire at
age 18 years.

Replication cohort – the ALSPAC cohort
The Avon Longitudinal Study of Children and Parents
(ALSPAC) is a population-based birth cohort study
established in 1991 in Avon, United Kingdom, approxi-
mately 75 miles from the IOW. Details of the cohort
were described elsewhere [38, 39]. Women residing in
the South West of England who were pregnant and
expecting to deliver between April 1, 1991 and Decem-
ber 31, 1992 were eligible to be recruited. In total, 14,
541 pregnant women were eligible for the study, of those
13,761 were included with 10,321 providing DNA from
blood samples. Participants were given questionnaires to
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gauge information regarding the mother. Written in-
formed consent was obtained for all ALSPAC partici-
pants. Ethical approval for the study was obtained from
the ALSPAC Ethics and Law Committee and the Local
Research Ethics Committees. Information on environ-
ment, lifestyle, and health of the child and family was
collected through annual questionnaires since the child’s
birth. From age 7 years, all participants were invited to
an annual research clinic, and thus exposure and other
demographic data were available annually from 7 to 17
years. The follow-up cohort was composed of 13,988
children including multiple children from one family. In
the replication study, we focused on ages 7 to 8 (7/8)
and 15 years. Spirometry (Vitalograph 2120; Vitalograph,
Maids Moreton, United Kingdom) was performed at 8
and 15 years of age according to ATS standards [26, 36],
the same method as that applied in the IOW cohort.
Please note that the study website contains details of all
the data that is available through a fully searchable data
dictionary and variable search tool (http://www.bristol.ac.
uk/alspac/researchers/our-data/).
DNA-M in peripheral blood was assessed using the

Infinium HumanMethylation450K BeadChip. The pro-
cedure for DNA sample preparation was comparable to
that applied in the IOW cohort. DNA-M data of chil-
dren at ages 7 (n = 966) and 15 (n = 966) years were
available (twin participants were excluded). The pre-
processing of DNA-M was performed by adjusting
the batch effect, excluding CpGs with detection p-value
≥0.01, and excluding samples that were flagged a sex-
mismatch based on X-chromosome methylation [40].
CpGs on sex chromosomes were not included in the
analyses. Only fully characterized subjects with DNA-M
and lung function at both ages (7/8 years and 15 years)
were included in the replication study, which resulted in
691 paired samples.

Replication cohort – the BAMSE cohort
The Swedish Children, Allergy, Milieu, Stockholm,
Epidemiology (BAMSE) cohort is an unselected,
population-based cohort study of children from
Stockholm, Sweden. During 1994–1996, a total of 4089
children were recruited at birth from four municipalities
in Stockholm County and followed during childhood.
The Regional Ethical Review Board, Karolinska Institute
in Stockholm, Sweden, approved the baseline study with
its follow-up. A thorough description of the cohort, in-
clusion and enrollment criteria, and procedure of data
collection have been described elsewhere [41]. Follow-up
questionnaires focusing on the children’s respiratory
health, allergic diseases and on various exposure factors
were collected at 1, 2, 4, 8, and 16 years old after obtain-
ing informed consent from the parents of all participat-
ing children. At ages 8 (n = 1838) and 16 (n = 2063)

years, lung function testing was conducted [42]. Max-
imal expiratory flow volume (MEFV) tests were
performed at 8 and 16 years of age using the 2200 Pul-
monary Function Laboratory (Sensormedics, Anaheim,
CA, USA) and Jaeger MasterScreen-IOS system (Carefu-
sion Technologies, San Diego, CA), respectively [42, 43].
All children performed several MEFV measurements
and the maximal values of FVC and FEV1 were extracted
for the analyses. The MEFV curve that passed visual
quality inspection, and the two highest FEV1 and FVC
readings were reproducible according to ATS/ European
Respiratory Society criteria [26]. FEV1/FVC ratios were
calculated. Height was measured before lung function
testing for each participant.
DNA extracted from peripheral blood samples at ages

8 and 16 years of follow up was used to measure DNA-
M [44]. For each sample, 500 ng DNA underwent bisul-
fite treatment for cytosine to thymine conversion using
the EZ 96-DNA methylation kit (Shallow; Zymo Re-
search Corporation, Irvine, CA, USA). DNA-M was
assessed using the Illumina Infinium HumanMethyla-
tion450K BeadChip (Illumina, Inc.). After data prepro-
cessing and quality control following the standard
criteria [45], DNA-M data of 464 and 267 participants
were available at ages 8 and 16 years, respectively.

Statistical analyses in the IOW cohort
To evaluate whether subjects included in the study rea-
sonably represented those in the complete study cohort,
we focused on the assessment of lung function at each
age for both genders together and for each gender separ-
ately. To compare with the complete cohort, for con-
tinuous variables, including lung function, height, and
BMI, one-sample t-tests were applied, and for categorical
variables, including gender and smoking status, one-
sample proportion tests were implemented.
Due to heteroscedasticity of DNA-M measured by β

values [32], β values were logit-transformed to M values
using log2 (β value/(1- β value)) [46]. Lung function
measurements (FVC, FEV1, and FEV1/FVC) at each age
were adjusted by height and gender by regressing lung
functions on these two variables using SAS 9.4 proced-
ure PROC GLM (SAS, Gary, N.C., USA).
In this study, we focused on lung-function-related

CpGs. To achieve this goal, we first excluded CpGs
which were not potentially associated with lung function.
A screening package, ttScreening (training and testing
screening, R package 3.3.2 version) [47, 48] was applied
for this purpose. This method utilizes training and test-
ing data in robust linear regressions with surrogate vari-
ables included in the regressions to adjust for unknown
effects. For each lung function measure (FVC, FEV1, and
FEV1/FVC), we performed the screening for each gender
(males and females) at each age (10 and 18 years).
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DNA-M measured in peripheral blood might be po-
tentially influenced by cellular composition of blood
samples, different batches for DNA-M measurement,
and technical variation in the process of analyzing DNA
samples. To adjust the impact of these factors on DNA-
M, linear regressions were applied with DNA-M as the
outcome variable, and cell type proportions, batch infor-
mation, and top 15 principal components of the control
probes were included as independent variables for age
10 and 18 years. Cell type proportions (CD4+ T cells,
CD8+ T cells, natural killer cells, B cells, monocytes,
neutrophils, and eosinophils) were inferred from methy-
lation data for each sample using the R computing pack-
age minfi [31, 49]. After estimating the adjusted DNA-M
for each age (10 and 18 years), differences in the adjusted
DNA-M between ages 10 and 18 were calculated (DNA-
M at age 18 – DNA-M at age 10) and included in subse-
quent analyses.
Finally, to explore whether the changes of DNA-M

over the adolescence period from ages 10 to 18 years
were associated with the change in lung function, a lin-
ear regression model was fitted for each lung function
measure, stratified by gender. Changes in height- and
gender-adjusted lung function from 10 to 18 years of age
were treated as the outcome variable, and changes of the
adjusted DNA-M at each CpG that passed screening
were used as an independent variable and potential con-
founders as described above were included in the model.
In all analyses, p-values were considered significant at a
level of 0.05.

Replication analyses
CpGs identified in the IOW cohort were further tested
in both the ALSPAC and BAMSE cohorts. Comparable
analytical methods were applied except for the availabil-
ity of some covariates. In ALSPAC, pet exposure, expos-
ure to pollution, paracetamol use, and non-steroidal
anti-inflammatory drugs use were not available, and in
BAMSE, minimum age of puberty onset, pet exposure,
exposure to pollution, and paracetamol use were not in-
cluded in the final model.

Pathway analysis
For CpGs that showed consistent directions of associ-
ation in the ALSPAC and BAMSE cohorts, the nearest
gene was identified based on Illumina array manifest file
and SNIPPER (https://csg.sph.umich.edu/ boehnke/snip-
per/) version 1.2. Bioinformatic assessment of the genes
was conducted using the online bioinformatics tool
ToppFun, available in the ToppGene Suite [50]. Multiple
testing was adjusted by controlling the false discovery
rate (FDR) of 0.05.

Results
Results from the IOW cohort
In total, 320 participants at age 10 years and 453 at age
18 years were included in the analyses for screening in
the IOW cohort with available DNA-M and lung func-
tion data (Table 1). The mean values of FVC, FEV1,
FEV1/FVC, height, and BMI for subjects in the present
study were not significantly different from participants
of the whole cohort with lung function at ages 10 (n =
980) and 18 (n = 838) years (Table 1) and for males and
females separately with lung function at ages 10 (males =
488, females = 492) and 18 (males = 395, females = 443)
(Table 2). Proportions of subjects who smoke or
formerly smoked were also comparable to those in the
complete cohort (Tables 1 and 2). One exception is that
at age 10 years, a higher proportion of males were in-
cluded in the present study compared to the whole
cohort (Table 1).
To identify candidate CpGs potentially associated with

lung function at ages 10 and 18 years, we applied ttScre-
ening to the 402,714 CpGs in each gender. Three lung
function parameters were considered in the screening
process, FVC, FEV1, and FEV1/FVC. At age 10 years,
across all the three lung function parameters, in total
361 distinct CpGs passed screening (157 CpGs for males
and 204 CpGs for females), and at age 18 years, 530 dis-
tinct CpGs passed screening (274 CpGs for males and
256 CpGs for females). The break-down of the numbers
of CpGs that passed screening for each lung function
parameter was given in Fig. 1. Combining the CpGs that
passed the screening at either time point for each gender
and each lung function measurement, in males 431 dis-
tinct CpGs (178 CpGs for FVC, 151 for FEV1, and 122
for FEV1/FVC) and in females 460 distinct CpGs (174
CpGs for FVC, 158 for FEV1, and 161 FEV1/FVC) were
included in the subsequent analyses. There were no
common CpGs between the 431 and 460 CpGs identi-
fied in males and females.
Linear regression models were applied to assess the

association of change in DNA-M at each of the screened
CpG with the change of each lung function parameter
(FVC, FEV1, and FEV1/FVC) for males (n = 169) and
females (n = 132) separately. For females, after adjusting
for multiple testing by controlling the FDR of 0.05, 42
CpGs showed statistically significant association with
FEV1/FVC change, but for FEV1 and FVC, we did not
identify any statistically significant CpGs. At these 42
CpGs, a larger increase in DNA-M was associated with
a larger decrease in FEV1/FVC in females. From child-
hood to adolescence, generally FEV1/FVC is constant or
falls linearly with age because FVC has a proportionately
greater increase than FEV1 [51], which supports our
findings. For males, no CpG survived multiple testing
for any of the three lung function parameters. The 42
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CpGs identified in females in the IOW cohort were
further tested in the ALSPAC and BAMSE cohorts.

Results from the ALSPAC cohort
In total, 345 female (n = 935) participants in the
ALSPAC had FEV1/FVC measurements and DNA-M
measurements at both 7/8 years and 15 years old. Of the
42 CpGs examined, DNA-M changes at 16 CpGs
(Table 3) showed consistent associations with FEV1/FVC
changes (in terms of regression coefficients) compared
to those observed in the IOW cohort (Fig. 2, Table 3),
although not statistically significant at the 0.05 level.
These 16 CpGs were noted as IOW-ALSPAC consistent
CpGs. The complete results of this analysis were in-
cluded in Additional file 1: Table S1.

Results from the BAMSE cohort
In the BAMSE cohort, 48 female participants had lung
function and DNA-M data at ages 8 and 16 years, and
DNA-M at 41 of the 42 CpGs were available in these 48
females. At 22 of the 41 CpGs, the associations of DNA-
M changes with changes in FEV1/FVC were consistent
with the findings in the IOW cohort, with one CpG
showing statistical significance at 0.05 level
(cg14552568) and two CpGs approached significance
(cg01082111 and cg10027934, p-value < 0.1). These 22
CpGs were noted as IOW-BAMSE consistent CpGs, of

which 11 of these IOW-BAMSE consistent CpGs were
among the 16 IOW-ALSPAC consistent CpGs. These 11
CpGs were further noted as IOW-ALSPAC-BAMSE
consistent CpGs.

Findings of the biological pathway analysis
Genes to which CpGs showed consistent results in either
of the two cohorts (ALSPAC and BAMSE) in terms of
the direction of associations mapped to were included in
the pathway analyses. The 16 IOW-ALSPAC consistent
CpGs were mapped to 16 genes, and 22 genes were
identified for the 22 IOW-BAMSE consistent CpGs
(Table 3). The selected 16 and 22 genes were further in-
vestigated to discover the functional enrichment in the
biological process by using the bioinformatics tool
ToppFun.
In total, eight biological processes were identified from

the FDR adjusted p-value of 0.05 (Table 4). Eight genes,
CELF4, INSIG1, PTCH1, RPS6KA4, ZNF304, RARA,
IKBKB, and BANP to which the IOW-ALSPAC consist-
ent CpGs were mapped, were involved in most of the
eight biological processes. The same biological processes
were found that involved genes CELF4, INSIG1, PTCH1,
RPS6KA4, ZNF304, DLX5, WWOX, and ASH1L corre-
sponding to the IOW-BAMSE consistent CpGs, al-
though they did not survive multiple testing.

Table 1 Characteristics of subjects with available methylation data with their lung function of the IOW cohort

IOW cohort

Sub cohort at age 10:
Participants with
lung function
Mean ± SD

Study sample at age 10:
Participants with lung function
and DNA-M Mean ± SD

P- values Sub cohort at age 18:
Participants with lung
function Mean ± SD

Study sample at age 18:
Participants with lung function
and DNA-M Mean ± SD

P-values

Factors n = 980 n = 320 n = 838 453

Lung Function parameters

FEV1 (L) 2.03 ± 0.30 2.04 ± 0.30 0.456 4.01 ± 0.78 4.05 ± 0.76 0.226

FVC (L) 2.30 ± 0.34 2.30 ± 0.34 0.694 4.61 ± 0.93 4.66 ± 0.91 0.283

FEV1 /FVC 0.89 ± 0.06 0.89 ± 0.05 0.162 0.87 ± 0.07 0.87 ± 0.07 0.269

Height (cm) 138.92 ± 6.18 138.06 ± 6.22 0.685 170.88 ± 9.17 170.92 ± 9.08 0.925

BMI 18.16 ± 3.01 18.08 ± 2.99 0.649 23.21 ± 4.33 23.30 ± 4.26 0.639

n (%) n (%) n (%) n (%)

Gender

Male 488 (49.8) 183 (57.19) 0.010 395 (47.14) 212 (46.80) 0.932

Female 492 (50.2) 137 (42.81) 443 (52.86) 241 (53.20)

Smokinga

Non- smoker – – – 462 (55.13) 248 (54.75) 0.913

Current smoker – – 204 (24.34) 107 (23.62)

Past smoker – – 159 (18.97) 93 (20.53)

Missing – – 13 (1.55) 5 (1.10)
aActive smoking at age 10 years in the IOW Cohort was not identified
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Discussion
Limited studies have focused on longitudinal lung func-
tion and DNA-M measurements during adolescence, an
important period of life that significantly contributes to
lung function development [36, 43]. The present study is
the first genome-scale exploration of the association of
changes of DNA-M with changes in lung function dur-
ing adolescence, stratified by gender. We showed that
DNA-M changes in 11 CpGs were associated with
changes in FEV1/FVC in females in adolescence, based
on findings from the IOW cohort and two independent
cohorts. Such associations were not identified in males.
It is important to mention that, the final results focused
on the direction of associations rather than statistical
significance as non-equivalence of statistical significance

and clinical significance has been recognized [52, 53].
We suggest that in replication studies agreement in clin-
ical significance should be more important than statis-
tical significance, although it will be most desirable
when an agreement is reached in clinical significance
accompanied by statistical significance.
Among the genes involved in the identified biological

processes based on the findings in both ALSPAC and
BAMSE cohorts, genes INSIG1, PTCH1, and PTPRN2
have been shown in a range of studies for their involve-
ment in lung development, lung function, and inflamma-
tory airway diseases such as asthma and COPD [54–60],
although most findings were not specifically linked to
adolescence. Gene INSIG1 allied with cg15575249 en-
codes the protein, insulin induced gene 1, which plays a

Table 2 Characteristics of subjects with methylation data and lung function of IOW cohort, stratified by gender

IOW cohort

Sub cohort at age 10:
Participants with
lung function
Mean ± SD

Study sample at age 10:
Participants with lung
function and DNA-M Mean ± SD

P-
values

Sub cohort at age 18:
Participants with lung
function Mean ± SD

Study sample at age 18:
Participants with lung function
and DNA-M Mean ± SD

P-
values

Factors n = 488 n = 183 n = 395 n = 212

Males

FEV1 (L) 2.05 ± 0.30 2.06 ± 0.29 0.477 4.62 ± 0.62 4.64 ± 0.62 0.621

FVC (L) 2.35 ± 0.34 2.36 ± 0.33 0.813 5.35 ± 0.72 5.35 ± 0.73 0.930

FEV1/FVC 0.88 ± 0.06 0.88 ± 0.06 0.651 0.87 ± 0.07 0.87 ± 0.07 0.904

Height (cm) 139.00 ± 5.90 138.94 ± 5.95 0.893 177.83 ± 6.65 177.56 ± 6.87 0.568

BMI 17.57 ± 2.52 17.65 ± 2.54 0.665 22.51 ± 3.72 22.64 ± 3.72 0.609

n (%) n (%) n (%) n (%)

Smokinga

Non-
smoker

– – – 222 (56.20) 119 (56.13) 0.813

Current
smoker

– – 93 (23.54) 46 (21.70)

Past smoker – – 72 (18.23) 44 (20.75)

Missing – – 8 (2.03) 3 (1.42)

Females n = 492 n = 137 n = 443 n = 241

FEV1 (L) 2.00 ± 0.29 2.01 ± 0.29 0.832 3.51 ± 0.45 3.53 ± 0.43 0.340

FVC (L) 2.23 ± 0.33 2.24 ± 0.34 0.657 4.03 ± 0.53 4.04 ± 0.51 0.737

FEV1/FVC 0.90 ± 0.06 0.90 ± 0.05 0.337 0.88 ± 0.07 0.87 ± 0.07 0.563

Height (cm) 139.02 ± 6.43 139.22 ± 6.58 0.719 164.68 ± 6.17 165.08 ± 6.37 0.331

BMI 18.74 ± 3.34 18.66 ± 3.41 0.789 23.84 ± 4.72 23.89 ± 4.61 0.870

n (%) n (%) n (%) n (%)

Smokinga

Non- smoker – – – 240 (54.18) 129 (53.53) 0.979

Current
smoker

– – 111 (25.06) 61 (25.31)

Past smoker – – 87 (19.64) 49 (20.33)

Missing – – 5 (1.13) 2 (0.83)
aActive smoking at age 10 years in the IOW Cohort was not identified
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significant role in regulating lipogenesis in alveolar types
2 cells consistent with the roles of sterol regulatory
element-binding protein (SREBP)/ sterol cleavage-
activating protein in lung lipid synthetic pathways [54].
INSIG1 is primarily involved in epithelial development
and surfactant physiology during the perinatal period
[55]. The findings in our study further emphasize its im-
portance in the change of lung function in adolescence.
Gene PTCH1 allied with cg14319249 encodes a mem-

ber of the patched family of proteins that functions as a
receptor and a component of the hedgehog (Hh) signal-
ing pathway [56–58]. The Hh signaling pathway is cru-
cial in embryonic lung development processes, including

the morphogenesis of lung and regulating the interaction
between epithelial and mesenchymal cell populations in
the airway and alveolar compartments [56–58]. Sonic
Hh (one type of Hh signaling) is active in adult lung
function [57, 58], but to our knowledge, its relation to
lung function changes in adolescence has not been ex-
amined before. The link of PTCH1 with FEV1/FVC was
also established in a genome-wide association study
meta-analysis by the CHARGE consortium [59]. CpGs
cg21584493 is mapped to gene PTPRN2. In a recent
study, differentially methylated region (DMR) annotated
to PTPRN2 genes was identified for the association with
lung function and asthma in children [60]. Findings in

Fig. 1 Flow chart of statistical analyses and the number of CpGs after each analysis. Note: 1) *Number of significant CpGs were mentioned in an
order for FVC, FEV1, and FEV1/ FVC changes respectively. 2) **At age 10 years, for males, between FVC and FEV1, and between FEV1 and FEV1/ FVC,
8 and 3 CpGs are overlapped, respectively; for females, between FVC and FEV1, 21 CpGs are overlapped in the screening. 3) At age 18 years, for
males, between FVC and FEV1, and between FEV1 and FEV1 / FVC, 8 and 1 CpGs are overlapped, respectively; for females, between FVC and FEV1,
between FEV1 and FEV1/ FVC, and between FVC and FEV1/ FVC, 9, 1, and 2 CpGs are overlapped, respectively, in the screening
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our study on these genes (INSIG1, PTCH1, and
PTPRN2) further emphasizes their epigenetic contribu-
tion to the changes in lung function in adolescence.
CpGs cg11316510 and cg09573852 on genes RARA

(retinoic acid receptor alpha) and IKBKB (Inhibitor of
Nuclear Factor Kappa B Kinase), respectively, were
among the IOW-ALSPAC consistent CpGs but not
on the list of IOW-BAMSE consistent CpGs. Their
significant involvement in lung function, as well as
lung function development and pulmonary diseases
such as asthma and COPD indicated the potential im-
portance of these two CpGs and their mapped genes
[11, 61–71]. RARA is the predominant isotype of the
retinoic acid receptor (RAR) identified in alveolar type
II epithelial cells and components of the retinoic acid

signaling pathway [63–68]. The retinoic acid signaling
pathway plays important roles in lung development
and alveolarization, and to regulate surfactant protein
B gene expression in pulmonary epithelial cells. Ado-
lescence is a period accompanied by significant lung
function development and the functionality of this
pathway supports the findings in our study. One of
our recent studies also showed an epigenetic associ-
ation of RARA with FEV1/FVC [11].
IKBKB is an enzyme complex that forms part of the

nuclear factor-kappa B signaling pathway, which has
been considered the master regulator of immune
responses and demonstrated to play a cardinal role in
allergic airways diseases [69–71]. In addition, gene
IKBKB was required for the IL17-dependent signaling

Table 3 CpGs showing consistent associations in females between the IOW and replication cohorts, ALSPAC and BAMSE

CpG Name Chr. Gene
name

Location IOW cohort ALSPAC-cohort BAMSE cohort

Coeff. PRaw-value PFDR -value Coeff. P-value Coeff. P-value

cg08095278 1 ASH1L TSS1500 −0.008 0.0031 0.0218 – – −0.031 0.339

cg13342625 1 WDR65 TSS200 −0.009 0.0016 0.0187 – – −0.021 0.663

cg02288301 2 TMEFF2 TSS1500 −0.011 0.0021 0.0201 – – −0.020 0.549

cg08366885 2 RAPH1 5’UTR −0.006 0.0092 0.0381 −0.001 0.889 −0.005 0.758

cg16710348 3 SLC15A2 3’UTR −0.008 0.0114 0.0436 −0.0002 0.975 −0.001 0.980

cg09839318 4 GAK Body −0.007 0.0084 0.0364 −0.002 0.762 −0.035 0.163

cg00930455 7 DLX5 TSS1500 −0.010 0.0055 0.0299 – – −0.0003 0.990

cg04132649 7 TECPR1 Body −0.008 0.0071 0.0345 −0.003 0.573 −0.008 0.770

cg14552568 7 HTR5A Intergenic −0.011 0.0012 0.0187 – – −0.091 0.006

cg15575249 7 INSIG1 Intergenic −0.008 0.0014 0.0187 −0.005 0.523 −0.007 0.826

cg21584493 7 PTPRN2 Body −0.024 0.0033 0.0218 −0.008 0.287 −0.044 0.369

cg09573852 8 IKBKB Body −0.006 0.0054 0.0299 −0.005 0.399 – –

cg23188819 8 FAM160B2 Body −0.007 0.0030 0.0218 −0.009 0.422 – –

cg14319249 9 PTCH1 TSS200 −0.008 0.0021 0.0201 −0.0002 0.987 −0.012 0.684

cg09033333 10 JAKMIP3 Intergenic −0.007 0.0035 0.0223 −0.0002 0.977 – –

cg01082111 11 RPS6KA4 Intergenic −0.016 0.0002 0.0092 −0.005 0.551 −0.058 0.051

cg07427606 12 MMP17 Body −0.007 0.0031 0.0218 – – −0.022 0.412

cg05312779 15 ANPEP 3’UTR −0.010 0.0062 0.0315 – – −0.037 0.220

cg04575609* 16 BANP Body −0.007 0.0021 0.0201 −0.001 0.884 – –

cg04933438 16 WWOX Body −0.012 0.0002 0.0092 – – −0.006 0.849

cg11316510 17 RARA Body −0.006 0.0100 0.0403 −0.012 0.290 – –

cg11493223 17 TMC6 TSS200 −0.008 0.0027 0.0217 −0.005 0.703 −0.039 0.186

cg13206530 18 CELF4 Intergenic −0.011 0.0026 0.0217 −0.0004 0.961 −0.016 0.621

cg00850039 19 ZNF442 TSS200 −0.007 0.0056 0.0299 – – −0.013 0.710

cg10157975 19 ZNF304 TSS1500 −0.006 0.0063 0.0315 −0.020 0.256 −0.003 0.909

cg10027934 22 MAP 3K7IP1 Body −0.014 0.0012 0.0187 – – −0.051 0.081

cg27652464 22 FAM19A5 Body −0.008 0.0022 0.0201 – – −0.028 0.219

Note: 1) Regression coefficients were for the associations of changes in DNA-M with FEV1/FVC changes in females
2) CpGs with the genes’ names in bold font were overlapped across all the three cohorts (IOW-ALSPAC-BAMSE consistent CpGs)
3) In BAMSE cohort, DNA-M of *cg04575609 was excluded at the time of quality control and was not available for the replication analysis
4) Chr. chromosome number, Coeff. coefficients
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that was associated with neutrophilia and pulmonary
inflammation [72].
It is worth noting that the genes discussed above were

based on the findings in females in our study. For CpGs
located on those genes, no statistically significant associ-
ations were shown in males. The identified unique 11
CpGs in three population-based cohorts thus have the
potential to serve as epigenetic markers related to lung
function development during adolescence in females,
but not in males. The absence of such epigenetic associ-
ations in males led us to postulate the possibility of ei-
ther different underlying epigenetic mechanisms in each
gender in the regulation of gene activity, or that these
CpGs are biomarkers of female physiology and/or expo-
sures that influence lung function growth in adoles-
cence. Thus, our findings may help to explain the

various gender-associated health conditions related to
lung function development in adolescence, such as gen-
der reversal of asthma incidence in males and females.
There are some limitations of this study. Firstly, DNA-

M measurements were made in peripheral blood leuko-
cytes and provide no insight into epigenetic changes in
structural cells of the airway. Secondly, concurrent in-
stead of time-lagged modeling was applied to assess the
association of DNA-M changes with lung function
changes for each gender. In this context, we were not
able to examine the potential of changes in DNA-M at
the identified CpGs to predict lung function changes. In
the IOW cohort, the analyses were based on data
collected at ages 10 and 18 years representing pre- and
post-adolescence. In the two replication cohorts, how-
ever, the corresponding ages were 7–8 years and 15 years

Fig. 2 Barplots of coefficients of IOW-ALSPAC and IOW-BAMSE consistent CpGs with their mapped genes in females. Note: The coefficients were
shown for the association of DNA-M changes with changes in lung function (FEV1/FVC) in females adolescence. Mapped genes of the CpGs
showing consistent associations between the IOW and ALSPAC cohorts (left panels) and between the IOW and BAMSE cohorts (right panels)
were included. Gene names overlapped among the three cohorts were given in red font
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for ALSPAC and 8 and 16 years for BAMSE. It is
likely that many participants at age 15/16 years were
still in the transition period or even just started
puberty. This possibility accompanied by potentially
significant changes in DNA-M during adolescence
[23] might explain the non-replication of some CpGs
identified in the IOW cohort. Other potential
contributors to this non-replication may include some
covariates being unavailable in the replication cohorts
as well as variable characteristics unique to each
cohort. On the other hand, the 11 CpGs showing
consistent associations across all the three cohorts
certainly deserve further assessment of their
generalizability, as well as on the potential of predict-
ing lung function changes.

Conclusions
This epigenetic study represents an integrated strategy
to understand lung function changes in males and
females during adolescence. We identified 11 CpGs as
potential markers for lung function development, which
are applicable to females only. Findings from the study
provide insight into the role of epigenetics in gender-
dependent lung function development during this crit-
ical period of life and thus providing a strong foundation
to evaluate gender reversal of asthma from male to
female in adolescence period. In subsequent studies, the
detected 11 CpGs could serve as candidate epigenetic
markers to predict changes in lung function during
adolescence.
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