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A B S T R A C T   

Interest in brown adipose tissue remains high a decade after it was determined to be present outside of the 
neonatal period. In vivo imaging, however, has remained a challenge due to the lack of a imaging modality 
suitable for large healthy-volunteer studies, post-prandial investigations and vulnerable groups, such as children. 
Infrared thermography is increasingly accepted as a valid, non-invasive and flexible alternative but there is a 
wide approach to analysis between different groups. Defining the region of interest with anatomical borders 
rather than using a simple polygon may have advantages in terms of consistency but makes image analysis 
slower, limiting some applications. Our novel semi-automated method, using a custom-built graphical user 
interface, allows an 86% improvement in speed of image analysis (54.9 (38.3–71.4) seconds/image) without 
increases in variation between analysers or with repeated analysis. The improved efficiency demonstrated makes 
feasible larger studies, longer imaging periods or increased image acquisition frequency, providing an oppor-
tunity to study novel features of brown adipose tissue function.   

1. Introduction 

Brown adipose tissue (BAT) is a heat-generating tissue which oxi-
dises glucose and fatty acids through mitochondrial respiration without 
the usual resultant production of adenosine triphosphate. This is due to 
the presence of a unique protein, uncoupling protein (UCP)-1, in the 
mitochondrial membrane (Cannon and Nedergaard, 2004). The last 
decade has seen a renewed interest in BAT following the demonstration 
of its presence outside of the neonatal period, hinting at a potentially 
novel mechanism to aid weight management by increasing calorie 
expenditure, beyond the usual increase in voluntary physical activity 
(Celi, 2009; Virtanen et al., 2009; Cypess et al., 2009; van Marken 
Lichtenbelt et al., 2009). 

Measuring BAT activity remains challenging with the gold standard 
method of PET-CT, using either glucose (18F-fluorodeoxyglucose) or 
fatty acid (e.g. 18F-fluro-6-thiaheptadecanoic acid or 11C-acetate) iso-
topes (Labbé et al., 2016; Ouellet et al., 2012). PET-CT provides a static 
measurement of what is a dynamic tissue and, also, cannot be used to 

look at the effects of meals due to the rapid uptake of the isotope into 
muscle in the postprandial period (Hankir et al., 2017). In addition, the 
high dose of ionising radiation makes PET-CT unsuitable for use in large 
studies of healthy volunteers and in groups such as children. 

Due to the heat-generating property of BAT, infrared thermography 
is a natural alternative to PET-CT for measuring BAT activity, especially 
given the relatively superficial location of the supraclavicular depot 
which is the largest BAT depot in humans (Leitner et al., 2017). Infrared 
thermography measures infrared radiation emitted by an object and 
converts infrared data to temperature which is then presented as a 
false-colour image using a user-defined colour-map. Images can then be 
analysed to determine temperature properties of all, or part of, the 
image. By measuring the heat signature of the supraclavicular region 
before and during the introduction of a suitable stimulus, such as cold, 
the response of the supraclavicular BAT to the stimulus can be ascer-
tained (Law et al., 2019; Ang et al., 2017; Lee et al., 2011; Haq et al., 
2017). Infrared thermography has been validated as an alternative to, 
and shows a strong correlation with, PET-CT (Law et al., 2018c; Lee 
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et al., 2016; Boon et al., 2014; Jang et al., 2014; Haq et al., 2017). 
A variety of image analysis methods have been used by groups with 

some opting to define the contour of the region of interest (ROI) using 
simple regular shapes and others utilising anatomical borders (Robinson 
et al., 2014, 2016). The latter has advantages in terms of reproducibility 
and accuracy but was time-consuming and exerted a practical limit on 
the number of images that could be analysed. 

We, therefore, custom-built an image analysis application (using the 
same ROI, defined by anatomical borders, as the original method and the 
same underlying process for determining the output) to streamline the 
analysis process (Law et a., 2018c). We present here a comparison of the 
efficiency and variability of the original, manual method and the 
semi-automated method. 

2. Methods 

A pragmatic retrospective evaluation was undertaken. All thermal 
images were acquired on a FLIR B425 camera (FLIR Systems AB, Dan-
deryd, Sweden) using standard settings (emissivity 0.98) as previously 
described (Law et al., 2018c, 2019; Robinson et al., 2014, 2016). 
Members of the research group were trained in two methods of image 
analysis, a manual method using FLIR’s proprietary software, 
ResearchIR version 4 (FLIR Systems) (Robinson et al., 2014, 2016), and 
a semi-automated method using a custom-designed graphical user 
interface (GUI) within the MATLAB (MathWorks, Natick, MA, USA) 
programming environment (Law et al., 2018c, 2019). Training on both 
methods was delivered consistently by a single individual to all re-
searchers. Analysers practised analysing training images until they were 
confident in both techniques and then analysed further sets of images to 
demonstrate competence and consistency. Each analyser analysed two 
sets of 31 images using both methods and then reanalysed a subset of 
eight images from each set a further two times. Ethical permission was 
granted for the acquisition of the images for each of the original studies 
(Nottingham-2 NHS Research Ethics Committee reference 13/EM/0102; 
University of Nottingham Faculty of Medicine and Health Sciences 
Research Ethics Committee reference 26/299/05/2017) which included 
consent for storage and future use. No additional ethical approval was 
required. 

2.1. Images 

Each analyser was asked to analyse two sets of images (Set A and Set 
B) on three occasions (Visit 1, Visit 2 and Visit 3). On the first visit, an 

extended set of 31 images were analysed in each set (62 images in total). 
On the subsequent two visits, a subset of eight images was analysed from 
each set (16 images in total). Set A comprised a set of images where the 
participant had moved a moderate amount between frames; set B 
comprised a set of images where the subject had moved very little be-
tween frames. On the first visit, analysers were randomly assigned to 
analyse images using the manual (M) or the semi-automated (SA) 
method first and then alternated the methods used first at the second and 
third visit. The order of images was kept constant throughout. 

2.2. Manual (M) Method 

Thermal images of the supraclavicular region were acquired and 
saved in the proprietary FLIR JPEG format, as previously described 
(Robinson et al., 2014). This format saves the infrared data in the file 
metadata along with the values of variables required to calculate the 
temperature of the object in the image (Tattersall, 2015). The image was 
opened in ResearchIR which displayed the temperature data in an 
alterable and processable format. 

The inbuilt polygon tool was used to define a contour around a re-
gion of interest (ROI). Two ROIs were drawn: one around the left 
supraclavicular region and one around the right (Fig. 1A). The region 
was defined as (a) a straight line from the contour of the next adjacent to 
the acromoclavicular process to the sternal notch, (b) a straight line 
from the sternal notch to the intersection of the sternocleidomastoid 
muscle with the contour of the neck and (c) the contour of the neck from 
the acromoclavicular point to the intersection of the sternocleidomas-
toid muscle. Once the ROIs had been defined, the temperature data of 
the pixels within each was exported as a comma-separated value (.csv) 
file which was given a file name indicating the image it related to and 
whether it was the left or right side. Finally, a FLIR session file (.irs) was 
saved. The session file saved the workspace, including the polygon (and 
any other measurement tools), and a link to the image being viewed to 
allow the analysis to be reproduced later. If errors were later found to 
have been made during the ROI-saving process, the session file allowed 
the workspace to be reopened and the ROI saved using the analyser’s 
original polygon. 

The process was then repeated for the next image. The polygon 
defining the ROI was maintained by the software when the next image 
was selected. The analyser chose to adapt the previous polygon (by 
translation along the x- and y-axes and by the movement of points) to fit 
the ROIs on the new image or delete it and define a new one. Where the 
image was similar, small changes to the original polygon were quicker 

Fig. 1. (A) Example of analysis using FLIR ResearcherIR software. The borders of the contour (cyan line) were a straight line approximating the sternocleidomastoid 
muscle, from the point where it intersects the contour of the neck to the suprasternal notch; a straight line approximating the clavicle, from the suprasternal notch to 
the acromioclavicular process; and the contour of the neck between the preceding two lines, manually approximated by the research by a series of short straight lines. 
(B) Example of analysis from MATLAB app showing apices (white stars) identified by analyser. 
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and acceptable but tended to become increasingly less appropriate with 
each subsequent image and worked poorly if there was more movement 
between images. 

Once all the images in the set had been analysed, the analyser opened 
each comma-separated value file in Microsoft Excel. Each cell of the 
spreadsheet corresponded to a pixel in the original image. The analyser 
was then required to process the data using a short succession of key-
strokes to run a custom-built macro. The macro ranked the cells from 
warmest to coolest and then identified the output required (Symonds 
et al., 2012), namely 95th percentile (Law et al., 2018c). The analysers 
than saved the file output as a new file. 

An automated checking process was developed using R: A Language 
and Environment for Statistical Computing (R Foundation for Statistical 
Computing, Vienna, Austria) to confirm that all the expected filenames 
were present and that the file labelled as containing the data from the 
left ROI was different to the one labelled as containing data from the 
right ROI (i.e. that the same ROI had not been exported twice) (Law, 
2021). Other errors, such as cross-labelling images would not have been 
detected and cannot be excluded. 

2.3. Semi-automated (SA) Method 

As previously published (Law et al., 2018a, 2018c), thermal images, 
saved in FLIR’s proprietary JPEG format, were converted into an open, 
portable network graphic (PNG) format with the raw radiometric data 
stored as a greyscale image and the variables required for conversion to 
thermal data stored in the metadata. 

Using the MATLAB GUI (Fig. 1B), the analyser identified the five 
apices of the region of interest (i.e. the sternal notch, the acromiocla-
vicular processes, and the intersections of the sternocleidomastoid 
muscles with the contour of the neck) on each image. The “threshold” 
temperature was set to a default of 30◦C to distinguish the person in the 
image (temperature above the threshold) from the background (tem-
perature below the threshold) and could be adjusted by the researcher if 
required. 

The points from the previous image remained in position when the 
next image was displayed and could be adjusted by either dragging or 
clicking with the mouse. 

Once the apices had been identified for all images in the set, the ROI 
was automatically defined and processed, and the output saved as a 
single comma-separated file with each row corresponding to an image 
and outputs in columns. In our case, an output of the 95th percentile of 
the ROI was used (Law et al., 2018c) but the code can be easily adapted 
to produce any output(s) required. 

2.4. Statistics 

As above, the BAT “hotspot” was defined as the pixels with tem-
perature values in the upper decile within each ROI and the output value 
(TSCV) was the median value of the hotspot, equivalent to the 95th 
percentile of the region (Law et al., 2018c). 

On the first visit, analysers noted how long it had taken them to 
analyse each complete set of 31 images for each method to determine 
the mean length of time to analyse each image using the different 
methods and whether movement of the imaged participant affected the 
analysis rate. To determine the effect of Method (M or SA) and Set (A: 
moderate movement or B: little movement) on analysis speed (seconds 
per image), a 2-way repeated-measures ANOVA was undertaken. 

The intra-analyser variability for each researcher and the inter- 
analyser variability for each image was determined for both methods. 
Use of the co-efficient of variation was not appropriate as temperature 
(unless measured in Kelvin) is not measured using a ratio scale. Since, in 
this context, the mean temperatures are very similar, the population 

standard deviation, σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
(X− μ)2

n

√

, of the repeated measures was used 
as the measure of consistency. 

The intra-analyser variability was calculated as the standard devia-
tion of TSCV for the three repeated measures of the eight images in Set A 
and the eight images in Set B. Two 3-way repeated-measures ANOVAs 
were undertaken, one for the left ROI and one for the right, to determine 
the effect of Method, Set and Analyser. To check the robustness of the 
results, 2-way repeated measures ANOVA were then undertaken for 
each combination of Set A and Set B and of the left ROI and right ROI to 
review the effect of Method and Analyser. 

Similarly, the inter-analyser variability, defined as the population 
standard deviation of TSCV from the third visit of the seven researchers, 
was calculated for each method for the sixteen images (8 in Set A and 8 
in Set B). Two 3-way repeated-measures ANOVAs were undertaken, one 
for each ROI, to determine the effect of Method, Set and Image. The 
robustness of the results was checked via the same four 2-way repeated 
measure ANOVAs as above, to review the effect of Method and Image. 

For each analysis, a full factorial model was initially fitted with the 
equivalent main effect model used subsequently if the interaction term 
(s) was/were not statistically significant (p > 0.05). Tukey’s post-hoc 
comparison test was used to determine which levels were statistically 
significantly different and the direction of the difference. 

Statistics were performed using R: A language and environment for 
statistical computing and saved to a publicly-accessible repository (Law, 
2021). 

3. Results 

Seven analysers – all post-graduate research students affiliated with 
the Division of Child Health, Obstetrics and Gynaecology of the Uni-
versity of Nottingham Medical School – completed all three visits. 

3.1. Speed and errors 

The interaction between Method and Set in the 2-way repeated 
measures ANOVA full factorial model was not significant (p = 0.28). The 
subsequent main effects model showed Method was highly significant 
(p < 0.0001) and Set tended towards significance (p = 0.08) (Fig. 2). 

Fig. 2. Mean time taken per image for each researcher to analyse 31 images 
using the manual (filled) and semi-automated (open) methods for two sets of 
images. Set A (circles) had a moderate amount of movement of the participant 
between images; Set B (triangles) had very little movement. Lines indicate 
mean ± SD. 
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Post-hoc analysis showed SA was significantly faster than M (SA: 8.6 s/ 
image; M: 63.5 s/image; difference 54.9 (38.3–71.4) sec/image; p <
0.0001) and that the set of images with movement (Set B) trended to-
wards being significantly faster than the set with more movement be-
tween images (Set A: 45.5 s/image; Set B: 30.8 s/image; difference 15 s/ 
image (− 2 to 32); p = 0.08). 

In addition, errors were commonly made by analysers when using M. 
Errors included missing files (in four sets), the same region of interest 
saved as both the left and right file (in eight sets), and files being 
duplicated (in two sets). In total, 12 out of 42 (29%) sets of images 
analysed using M had errors identified. One error was identified for the 
sets analysed using SA, where the threshold temperature had not been 
set correctly. 

3.2. Intra-analyser variation 

The initial 3-way repeated measures ANOVA full factorial models 
showed significant interactions between all combinations of Method, 
Analyser and Set (p < 0.0001) for both the left and right ROIs. Method 
(p < 0.0001), Set (p = 0.007) and Analyser (p < 0.0001) were all 
independently highly significant for the left ROI and Method (p <
0.0001) and Analyser (p < 0.0001), but not Set (p = 0.733), were highly 
significant for the right ROI. All four 2-way repeated measures ANOVA 
full factorial models (Set A: left ROI and right ROI; Set B: left ROI and 
right ROI) confirmed a significant interaction between Method and 
Analyser (p < 0.0001), i.e. that the effect of Method was different for 
different analysers, and that Method and Analyser were independently 
highly significant for both sets and both ROIs (Set A: left ROI p = 0.040, 
right ROI p = 0.0001; Set B: left & right ROI p < 0.0001). 

Post-hoc analysis, as well as simple observation (Fig. 3), demon-
strated one analyser was a significant outlier and had performed poorly 
with M (interactions between the outlier and other analysers: p <
0.0001; all other interactions: p > 0.1). To test the robustness of the 
results, the analysis was rerun with that data excluded. A further two 
analysers had high variability in one and two images using M and a third 
analyser had high variability in one image using SA (Table 1) which 
were not excluded. 

Repeat analysis of the 3-way full factorial model, with the outlier 
excluded, showed no significant effect of Method for either ROI (right: p 
= 0.377; left: p = 0.596). Set was significant for the right (Set A: σ =
0.019; Set B: σ = 0.007; difference: 0.012 (0.007–0.017); p < 0.0001), 
but not left (p = 0.125), ROI. Analyser trended towards significance on 
the right ROI (p = 0.055) and was significant on the left (p = 0.021). 
Only Set & Analyser showed a significant interaction on the right (p =
0.021) but all interactions were significant for the left except Method & 
Set (Supplementary Material). Two-way ANOVAs confirmed that the 
interaction between Method & Analyser was not significant for the right 

ROI (Set A: p = 0.779; Set B: p = 0.939) but was on the left for Set A (p =
0.005) and trended toward significance for Set B (p = 0.088). Two-way 
ANOVAs were, therefore, run both with and without the interaction 
term and the results consistently showed there was no effect of Method 
on intra-analyser variation but there was an effect of Analyser, except on 
the left for Set A (Supplementary Material). 

3.3. Inter-analyser variation 

The initial 3-way repeated measures ANOVA full factorial models for 
both the left and right ROIs showed a significant effect of Method (p <
0.0001) and Set (p < 0.0001) but not Image (p > 0.2) and a significant 
interaction only between Method & Set (p < 0.0001) (Fig. 4A & C). After 
removal of the outlier, as above, there remained a significant effect of 
Set on both the right (set A: σ = 0.035; set B: σ = 0.012; difference 0.023 
(0.009–0.037); p = 0.003) and left (set A: σ = 0.048; set B: σ = 0.016; 
difference 0.032 (0.012–0.051); p = 0.003) but not of Method (p > 0.4) 
(Fig. 4B & D) and there were no significant interactions (Supplementary 
Material). Therefore, the main effects model was calculated with 
consistent results. Similarly, no effect of Method, Image or the interac-
tion term was seen when 2-way full factorial models were calculated for 
the left and right ROIs for each set separately nor for Method or Image in 
the 2-way main effects model. 

After removal of the outlier analyser, one image had high variability 
(Table 2). 

4. Discussion 

SA showed an 86% increase in speed compared to M with no loss of 
consistency either between analysers or on repeated analysis by the 
same researcher. Images with more movement between them increased 
inter and intra-analyser variability and trended towards slower analysis. 
The relevance of the increase in efficiency is not limited to making it 
easier for analysers, but rather makes practical the analysis of larger sets 
of images. This makes longer imaging sessions, studies with more par-
ticipants and, perhaps most excitingly, studies with increased image 

Fig. 3. Boxplot of variation (population standard deviation) in repeated measures of the same image by the each researcher on three occasions (intra-analyser 
variation) comparing the manual (M) and semi-automated (SA) methods for two sets of images (Set A: minimal movement between images; Set B: moderate 
movement between images). (A) right region of interest and (B) left region of interest. Column shading represents individual researchers. 

Table 1 
Images where intra-analyser variation (population standard deviation) was 
greater than 0.1.  

Analyser Image Method Set Variation (right 
ROI) 

Variation (left 
ROI) 

1 4 M A 0.141 0.189 
1 7 M A 0.043 0.141 
2 7 M A <0.001 0.141 
5 5 SA A 0.073 0.108 

M: manual method; SA: semi-automated method; ROI: region of interest. 
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acquisition frequency a realistic prospect. The latter has the potential to 
include analysis of thermal videos. Both MRI and CT acquire high- 
resolution images by averaging the raw pixel data of rapidly repeated 
images to improve the signal-to-noise ratio. In doing so, the noise can be 
reduced enhancing the detection of subtler signals and there is the po-
tential to achieve similar benefits in the field of thermal imaging uti-
lising the increased efficiency in image analysis presented here. Smaller 
temperature changes and cyclical patterns within the overall trend may 
then be able to be detected, presenting opportunities to detect hitherto 
undetectable responses. Further work will develop the automated 
analysis to create a fully automated system, capable of analysing hun-
dreds of frames per minute. As well as the efficiency savings, the fully 
automated system will precisely track the anatomical position of the 
apices image-by-image, where the human user must decide whether the 
point has moved from the previous image and whether an adjustment is 
required. 

Despite training prior to analysing these sets of images, one of the 
seven analysers had a distinctively higher variability when using M and 
a further two analysers had higher variability (σ > 0.1) in one or more 
images. In contrast, only one analyser had a high variability for a single 
image analysed using SA. Even after removal of the outlier analyser, one 
image analysed with M had a high inter-analyser variation, but none 
analysed using SA did. There is, therefore, an indication of fewer outliers 
being generated when using SA. Although the difference in favour of SA 
was lost when the outlying analyser was excluded, there was no evi-
dence of any increase in either in inter or intra-analyser variability, 
accepting that the possibility of a false-negative conclusion must be 

considered due to the pragmatic nature of the analysis. 
There were some significant differences between the findings for the 

left and right ROI, particularly in the interaction terms. The pragmatic 
retrospective design and size mean it is not possible to draw conclusions 
about the causes for the differences between the sides and, due to the 
small sample size, there should be caution determining that an inter-
action is not significant due to a non-significant p-value, hence both full 
and main effects models were compared for robustness. However, the 
intra-analyser interaction between Set & Analyser was significant for 
both sides, suggesting how well each analyser performed was variable 
depending on whether they were analysing images where the partici-
pant moved a little or a moderate amount. Indeed, Set was frequently 
found to be significant with both more inter/intra-analyser variability 
and slower analysis when the participant was moving between images. 
This emphasises the importance of optimising image quality and con-
sistency during the acquisition process as results can be degraded in an 
unpredictable manner and may be one of the factors differentiating 
groups who are able to consistently utilise thermal imaging successfully. 
Furthermore, Analyser was significant in all intra-analyser 2-way 
ANOVAs, except the left ROI for set A, indicating that Analysers ten-
ded to be consistent in the amount of variability between repeated an-
alyses. Further work could examine whether analysers with higher 
variability could improve their results with further training but, again, 
this highlights a further source of variability which may affect results. A 
further limitation is that analysers self-reported the time taken to un-
dertake the image analysis and could have over or under-reported their 
analysis time. However, approximate times calculated by the file created 
and modified details were consistent with the times reported and would 
not have altered the overall findings. Although analysers were not 
blinded and were able to view the output of their analysis, they had no 
indication of where their outcome would lie within the range of other 
analysers. In addition, the nature of the analysis makes it impractical to 
try and manipulate the output by adjusting the boundary of the ROI. 

Thermal imaging is increasingly used in a wide range of medical and 
physiological applications, both in humans (Law et al., 2018b) and an-
imals, for instance to monitor stress and welfare remotely in a 

Fig. 4. Boxplot of variation (population standard deviation) in measures of the same image by multiple analysers (inter-analyser variation) comparing the manual 
method (filled bars) and semi-automated method (open bars) for two sets of images (Set A: minimal movement between images; Set B: moderate movement between 
images). (A) right region of interest including all analysers and (B) exlcuding outlier; (C) left region of interest from all analysers and (D) excluding outlier. 

Table 2 
Images where inter-analyser variation (population standard deviation) was 
greater than 0.1.  

Image Method Set Variation (right ROI) Variation (left ROI) 

7 M A 0.037 0.141 

M: manual method; SA: semi-automated method; ROI: region of interest. 
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non-invasive manner (McManus et al., 2016). There remains the po-
tential to adapt the method presented here to enable it to be applied in 
alternative-use scenarios. 

Further work will consider the options to reduce variability further. 
On some images, body habitus can make it difficult to identify the 
anatomical landmarks retrospectively. We have, therefore, developed 
thermally opaque skin markers which can be placed on the participant 
prior to the start of image acquisition. We expect this to increase the 
accuracy and consistency of the choice of apical placement by analysers 
at a cost of slowing down analysis if analysers make multiple small 
adjustments to markers because all little movements between images are 
more evident. We are, therefore, developing a fully automated method 
capable of detecting marker placement. 

In conclusion, our novel semi-automated method drastically im-
proves the speed of image analysis and reduces the risk of errors without 
increasing variability and should, therefore, be used in preference to 
manually defined complex polygons. Use of this method allows larger 
studies, longer imaging periods and increased image acquisition fre-
quency which will allow novel study designs to further understand BAT 
function. 
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