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The rapid secretion of bioactive amines from chromaffin cells constitutes an important com-
ponent of the fight or flight response of mammals to stress. Platelets respond to stresses
within the vasculature by rapidly secreting cargo at sites of injury, inflammation, or infec-
tion. Although chromaffin cells derive from the neural crest and platelets from bone marrow
megakaryocytes, both have evolved a heterogeneous assemblage of granule types and a
mechanism for efficient release. This article will provide an overview of granule formation
and exocytosis in platelets with an emphasis on areas in which the study of chromaffin
cells has influenced that of platelets and on similarities between the two secretory sys-
tems. Commonalities include the use of transporters to concentrate bioactive amines and
other cargos into granules, the role of cytoskeletal remodeling in granule exocytosis, and
the use of granules to provide membrane for cytoplasmic projections. The SNAREs and
SNARE accessory proteins used by each cell type will also be considered. Finally, we will
discuss the newly appreciated role of dynamin family proteins in regulated fusion pore for-
mation. This evaluation of the comparative cell biology of regulated exocytosis in platelets
and chromaffin cells demonstrates a convergence of mechanisms between two disparate
cell types both tasked with responding rapidly to physiological stimuli.
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INTRODUCTION
Platelets are small, anucleate blood cells derived from bone mar-
row megakaryocytes. They are best known for their central role
in maintaining the integrity of the vasculature (hemostasis) and
for their pathological role in clotting arteries and veins (throm-
bosis) during myocardial infarction, stroke, peripheral vascular
disease, and deep vein thrombosis. In addition to their role in
hemostasis, platelets have also been proposed to function in
many other aspects of host defense. Stimulus-induced release of
platelet granules contributes to nearly all platelet functions includ-
ing hemostasis and thrombosis, inflammation, angiogenesis, and
anti-microbial activities (Blair and Flaumenhaft, 2009). Platelets
contain three granule types: α-granules, dense granules, and lyso-
somes (Figure 1; Table 1). Absence of dense granules, as observed
in inherited syndromes such as Hermansky–Pudlak syndrome or
Chediak–Higashi syndrome, results in a bleeding diathesis (Her-
mansky and Pudlak, 1959). Absence of α-granules, as observed
in gray platelet syndrome, also increases bleeding (Buchanan and
Handin, 1976; Costa et al., 1976). The bleeding phenotype associ-
ated with these disorders underscores the importance of platelet
granules in hemostasis.

Despite the functional importance of platelet granule secre-
tion in maintaining vascular integrity and promoting host defense,
the molecular basis of platelet granule secretion remained poorly
studied until the late 1990s, despite transformative advances in
secretion biology that had occurred over the preceding decade
(Rothman and Orci, 1992; Sollner et al., 1993). This knowledge
deficit was due in part to the fact that platelets are anucleate, com-
plicating the use of standard molecular biological approaches that

have been widely used to study regulated secretion in nucleated
cells. In addition, the small size (2–3 µm in diameter) and unusual
membrane system of the platelet prevented application of classic
electrophysical approaches such as patch-clamp studies. Earlier
studies evaluating the molecular mechanisms of platelet granule
secretion relied on applying knowledge derived from other systems
to the study of platelets. The chromaffin cell has been influential in
this regard. Although these two cell types have different embryonic
derivations and functions, both cells store bioactive amines and
peptides at high concentrations and release their cargos rapidly in
response to stress signals (Table 1). The study of platelet granule
secretion has matured considerably over the past decade, mak-
ing relevant a comparison of the mechanisms by which platelets
and chromaffin cells store and release their granule contents in
response to environmental signals.

PLATELET GRANULE TYPES
α-GRANULES
α-Granules are by far the most abundant platelet granule type
(Figure 1). There are ∼50–80 α-granules/platelet, ranging in size
from 200 to 500 nm. They comprise roughly 10% of the platelet
volume, 10-fold more than dense granules. α-Granules contain a
variety of membrane proteins and soluble cargo that give them
a distinct appearance when stained with osmium and viewed
by transmission electron microscopy (TEM). Proteomic analyses
indicate that these granules contain hundreds of different types of
proteins (Coppinger et al., 2004; Piersma et al., 2009). Protein car-
gos found in α-granules include neuroactive peptides that are more
typically associated with chromaffin cells, including tachykinins
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and enkephalins (Graham et al., 2004). Conversely, proteomic
studies suggest that chromaffin large dense-core vesicles (LDCVs)
contain several major constituents of α-granules that can act in
the vasculature, including platelet basic protein precursor, TGF-β,
collagen isoforms, and metalloproteases (Table 2) (Wegrzyn et al.,
2010). As with chromaffin cells, the mechanisms by which pro-
teins are packaged in platelet storage granules are incompletely
understood.

Platelet α-granule cargos can include coagulants and antico-
agulants, angiogenic and antiangiogenic factors, proteases and
proteases inhibitors, and proinflammatory and anti-inflammatory

FIGURE 1 | Schematic diagram of platelet. The platelet is a 2–3 µm
discoid cell that contains α-granules, dense granules, and lysosomes.
Platelets also contain mitochondria. Tunnel invaginations of the plasma
membrane forms a complex membrane network, termed the open
canalicular system, that courses throughout the platelet interior. Platelet
granule secretion is thought to occur through fusion of granules with either
the plasma membrane or the open canalicular system.

mediators. This observation has raised the question of how α-
granules are able to efficiently mediate their biological functions
when they contain so many proteins with opposing functions (Ital-
iano et al., 2008; Blair and Flaumenhaft, 2009). One possibility is
that there are different α-granule subpopulations that store dis-
tinct cargo. However, the number of discrete types of α-granule
is not known. Evidence that α-granules are heterogeneous comes
from several sources. Immunofluorescence microscopy demon-
strated that the two α-granule cargos von Willebrand factor and
fibrinogen do not localize to the same granule (Sehgal and Storrie,
2007). Subsequent studies showed that angiogenic factors localize
to distinct compartments and were differentially released by dif-
ferent agonists (Italiano et al., 2008). The molecular mechanisms
that mediate differential release are unclear. Differential distribu-
tion of SNAREs among subpopulations of α-granules may account
for differential release. For example, Peters et al. (2012) showed
that a population of granules containing vesicle-associated mem-
brane protein-7 (VAMP-7) physically separated from VAMP-3 and
VAMP-8-containing granules during spreading. However, the idea
of α-granule heterogeneity remains controversial and some inves-
tigators in the field believe that granule cargos are stochastically
distributed and that differential release either does not occur or is
controlled at the level of pore expansion.

Granule heterogeneity and differential release have also been
evaluated in chromaffin cells. Morphologic studies demonstrate
heterogeneity among both LDCVs and synaptic-like microvesi-
cles (SLMVs) (Koval et al., 2001). Studies using carbon-fiber
amperometry to measure catecholamine release from individual
granules indicated distinct granule populations on the basis of
release kinetics (Tang et al., 2005). Different SNAREs and SNARE
chaperones may associate with different granule populations and
facilitate differential release. For example, different synaptotagmin
isoforms associated with LDCVs and SLMVs and this observation
could account for their differential secretion in response to cal-
cium (Matsuoka et al., 2011). Other factors influencing chromaffin
granule release include pore expansion kinetics and degree. Basal
levels of catecholamine release may occur through a restricted
fusion pore, while in response to excitation dynamin and myosin-
mediated mechanisms may elicit fusion pore expansion (Chan
et al., 2010). In addition, large aggregates of chromogranin A
require complete fusion to facilitate release (Perrais et al., 2004;
Felmy, 2007).

Table 1 | Comparison of platelets and chromaffin cells.

Platelets Chromaffin cells

Distribution Intravascular Adrenal medulla

Size 2–3 µm ∼20 µm

Functions Hemostasis/thrombosis Blood pressure modulation

Inflammation Paracrine signaling

Angiogenesis Anti-microbial host defense

Anti-microbial host defense Immune regulation

Mitogenesis Analgesia

Granule types α-Granules, dense granules, and lysosomes Large dense-core vesicles (LDCVs) and synaptic-like microvesicles (SLMVs)
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Table 2 | Comparison of granule types contained in platelets and chromaffin cells.

α-Granules Dense granules LDCVs

Diameter 200–500 nm 150 nm 150–300 nm

Number 50–80 per platelet 3–8 per platelet ∼10,000 per cell

Percentage of cell volume 10 ∼1 13.5

Contents Integral membrane proteins (e.g., P-selectin,

αIIbβ3, GPIbα)

Cations (e.g., Ca2+, Mg2+)

Polyphosphates

Bioactive amines (e.g.,

serotonin, histamine)

Nucleotides (e.g., ADP, ATP)

Structural proteins (e.g., granins,

glycoproteins)

Coagulants/anticoagulants and fibrinolytic

proteins (e.g., factor V, factor IX,

plasminogen)

Adhesion proteins (e.g., fibrinogen, vWF)

Chemokines [e.g., CXCL4 (PF4), CXCL12

(SDF-1α)]

Growth factors (e.g., EGF, IGF)

Angiogenic factors/inhibitors (e.g., VEGF,

PDGF, angiostatins)

Immune mediators (e.g., IgG, complement

precursors)

Vasoregulators (e.g., catecholamines,

vasostatins, renin-angiotensin)

Paracrine signaling factors (e.g., guanylin,

neurotensin, chromogranin B)

Immune mediators (e.g., enkelytin,

ubiquitin)

Opioids (e.g., enkephalins, endorphins)

Ions (e.g., Ca2+, Na+, Cl−)

Nucleotides (e.g., AMP, GDP, UTP)

Nucleotides

Polyphosphates

DENSE GRANULES
Dense granules are a subtype of lysosome-related organelle (LRO).
There are ∼3–6 dense granules/platelet (Flaumenhaft, 2013).
These granules are so electron dense that they can be detected
by whole mount electron microscopy in the absence of staining.
They are highly osmophilic when viewed by TEM. Dense gran-
ules play a critical role in hemostasis and thrombosis, releasing
factors such as ADP and epinephrine that act in an autocrine and
paracrine manner to stimulate platelets at sites of vascular injury.
Dense granules also contain factors that are vasoconstrictive such
as serotonin (Flaumenhaft, 2013).

Dense granules and LDCVs have been compared based on their
unusually high concentrations of cations,polyphosphates, adenine
nucleotides, and bioactive amines such as serotonin and histamine
(Sigel and Corfu, 1996) (Figure 2; Table 2). In platelets, adenine
nucleotides are concentrated at ∼653 mM ADP and ∼436 mM
ATP (Holmsen and Weiss, 1979). Calcium is at 2.2 M. Chro-
maffin granules and platelet dense granules are among the few
mammalian granule types to contain polyphosphates (Aikawa
et al., 1971; Ruiz et al., 2004). Active transport mechanisms are
thought to contribute to efficient concentration of these con-
stituents in platelets (Figure 2). A vesicular H+-ATPase proton
pump maintains the dense-granule lumen at pH ∼5.4 (Dean
et al., 1984), similar to the pH of LDCVs. The multidrug trans-
porter MRP4, a multidrug resistance protein, is found on platelet
dense granules and is proposed to transport adenine nucleotides
into these granules (Jedlitschky et al., 2004). Uptake of serotonin
from platelet cytosol into dense granules is mediated by vesic-
ular monoamine transporter 2 (VMAT2). Transport is driven
by an electrochemical proton gradient across the granule mem-
brane. VMAT2 also appears to mediate histamine transport into
dense granules (Fukami et al., 1984). The primary nucleotide
transporter in chromaffin cells is Slc17A/VNUT (Sawada et al.,
2008). Whether or not platelets use Slc17 family transporters to

concentrate dense-granule cargo has yet to be evaluated. Like
platelets, chromaffin cells use VMAT2, in addition to VMAT1, to
pump monoamines from the cytosol into their granules.

LYSOSOMES
Platelets contain few primary and secondary lysosomes. These
lysosomes contain many acid hydrolases and cathepsins as cargo
and express CD63 and LAMP-2 in their membrane. Platelet lyso-
some function is not well-studied. They may serve a role in
endosomal digestion, as observed in nucleated cells (Flaumenhaft,
2013).

AN OVERVIEW OF PLATELET GRANULE RELEASE
Platelets are uniform discoid cells that circulate in a quiescent state
and undergo a dramatic morphological change when activated.
Their plasma membrane surface area is ∼19 µm2 and the total
surface area of their granules is ∼14 µm2. They have an unusual
membrane system, including an open canalicular system (OCS),
which is a system of tunneling invaginations of the plasma mem-
brane that is unique to platelets and is estimated to have a surface
area of ∼14 µm2 (Flaumenhaft, 2013). The OCS tracks through
the platelet, but is topologically similar to the plasma membrane in
that it possesses both an extracellular and a cytosolic face. Platelets
also have a dense tubular system (DTS), which is a membrane sys-
tem thought to be derived from the megakaryocytic endoplasmic
reticulum. The DTS serves as an intracellular calcium storage site,
but is not directly connected to either the plasma membrane or
the OCS (van Nispen tot Pannerden et al., 2010).

Ultrastructural studies have demonstrated several atypical fea-
tures of the platelet release reaction. In the resting state, platelet
α-granules and dense granules are distributed throughout the
platelet. With activation-induced shape change, granules become
localized in a central granulomere. As with chromaffin granules,
platelet granules may fuse with one another in a process termed
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FIGURE 2 | A comparison of platelet dense granules and chromaffin
LDCVs. (A) Several membrane pumps concentration granule contents in the
maturing granule. VMAT2 concentrates serotonin (green). An H+-ATPase
proton pump maintains the granule at pH ∼5.4 (yellow ). MRP4 (blue) is
thought to concentrate adenine nucleotides into dense granules. Dense
granules also express the tetraspanin CD63 (red ) and the lysosomal marker
LAMP-2 (purple). Dense granules contain a core of calcium chelated by
polyphosphate. (B) The chromaffin large dense-core vesicle (LDCV) express a

variety of membrane proteins including VMAT1 amine transporter (red ),
H+-ATPase (yellow ), Cytochrome b561 (orange), p65 (pink ), peptidyl
α-amidation monooxygenase (PAM) (blue), LAMP-1 (dark purple), and
VNUT/Slc17a nucleotide carrier (green). In addition, the following peripheral
proteins are associated with the LDCV membrane: endopeptidases PC1/PC2
(brown), GPIII/SGP2/clusterin (black ), carboxypeptidase H (lavender ), and
Dopamine β-hydroxylase (DβH) (turquoise). The LDCV core contains a large
number of different proteins and bioactive compounds.

homotypic fusion (Ginsberg et al., 1980). However, during exocy-
tosis platelet granules then fuse with the OCS (Stenberg et al., 1984;
Escolar and White, 1991). Granule contents are released into the
OCS and diffuse out into the extracellular environment (Escolar
and White,1991). Exocytosis via fusion directly with plasmalemma
has also been described (Morgenstern et al., 1987). SNAREs are
localized on platelet membranes in a manner to support fusion
of granules with OCS, plasma membrane, or other granules (Feng
et al., 2002). Despite the morphological differences between exo-
cytosis in platelets and chromaffin cells, similarities in the release
mechanism have enabled platelet biologists to use chromaffin cells
as a model in studying platelet granule release. For example, both
platelets and chromaffin cells require Ca2+ influx as a mediator
of exocytosis via different mechanisms. Upon platelet activation
by agonists, the concentration of cytosolic Ca2+ increases acti-
vating protein kinase c (PKC), which is important for granule
secretion (Knight et al., 1988; Flaumenhaft, 2013). Formation of
an action potential in chromaffin cells triggers Ca2+ influx via
Ca2+ channels thereby triggering exocytosis (Knight and Scrut-
ton, 1980; Knight et al., 1982; Knight and Baker, 1985; Penner and
Nicher, 1988; Cheek and Barry, 1993; Livett, 1993; Aunis, 1998;
Garcia et al., 2006).

THE CYTOSKELETAL AS BOTH BARRIER AND FACILITATOR IN
EXOCYTOSIS
The observation that platelet granule secretion occurs concur-
rently with a dramatic change in the shape of the platelet has
prompted investigators to evaluate the role of the cytoskeleton
in granule release. Platelets are rich in actin, which is the most
abundant platelet protein. The resting platelet contains 40% fila-
mentous actin (F-actin). Upon platelet activation, the percentage
of F-actin increases to 80%. Studies using cytochalasins (Cox,

1988), latrunculin A (Flaumenhaft et al., 2005), Ca2+-mediated
stimulation of the F-actin severing protein scinderin (Marcu et al.,
1996), and PKC-mediated stimulation of MARCKS (Trifaro et al.,
2002) demonstrate increased dense-granule release with inhibi-
tion of actin polymerization or with cleavage of F-actin. Inhibition
of actin polymerization also augments the kinetics and degree of
α-granule release (Flaumenhaft et al., 2005). These results suggest
that F-actin disassembly might actually be required for normal
granule secretion and that activation-mediated granule release is
related to actin.

In contrast to the barrier function that the cytoskeleton serves in
the resting state, de novo actin polymerization during platelet acti-
vation contributes to granule release as evidenced by the observa-
tion that high concentrations of inhibitors of actin polymerization
block α-granule release (Woronowicz et al., 2010). These studies
led to speculation that an actin barrier helps prevent inappropriate
α-granule exocytosis,but that some de novo actin polymerization is
required for α-granule release. Woronowicz et al. (2010) demon-
strated that the target membrane SNARE (t-SNARE) SNAP-23
associates with the actin cytoskeleton of resting and activated
platelets. In a cell-free platelet granule secretory system, inhibi-
tion of F-actin formation blocks release of SNARE-dependent
α-granule contents, whereas actin polymerization stimulates α-
granule release (Woronowicz et al., 2010). Yet the molecular mech-
anism by which the binding of SNAREs to the platelet cytoskeleton
facilitates granule release is unknown. Overall, actin polymeriza-
tion appears to serve a bipartite role in platelet granule secretion,
both as a barrier to prevent inadvertent loss of thrombogenic cargo
and as a facilitator of secretion.

Actin has been shown to serve a barrier function in chromaffin
cells. The most well-studied pathways for disrupting the cortical F-
actin barrier during chromaffin exocytosis include Ca2+-mediated
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stimulation of scinderin and PKC-mediated stimulation of MAR-
CKS (Trifaro et al., 2002). Scinderin also potentiates Ca2+-induced
granule secretion in a permeabilized platelet system and inhibitory
peptides directed at scinderin inhibited granule release in this same
assay (Marcu et al., 1996). MARCKS-derived inhibitory peptides
blocks phorbol ester-induced platelet granule release, invoking
MARCKS phosphorylation and deactivation in facilitating the dis-
ruption of F-actin required for granule release (Elzagallaai et al.,
2000, 2001).

SNARE FUNCTION IN PLATELET AND CHROMAFFIN
GRANULE EXOCYTOSIS
Soluble NSF attachment protein receptors, or SNAREs, assemble
into complexes to form a universal membrane fusion apparatus
(Jahn and Scheller, 2006). Although all cells use SNAREs for mem-
brane fusion, different cells possess different SNARE isoforms.
Neurons and neuroendocrine cells use a set of SNAREs that is dis-
tinct from those used in non-neuronal cells. In contrast, platelets
and chromaffin cells use many of the same chaperone proteins to
regulate SNARE-mediated secretion (Table 3).

VAMP-8 (endobrevin) is the primary and most abundant vesic-
ular SNARE (v-SNARE) in platelets (Ren et al., 2007; Graham
et al., 2009). It is required for activation-induced release of α-
granules, dense granules, and lysosomes (Ren et al., 2007) as
evidenced by studies using permeabilized human platelets exposed
to anti-VAMP-8 antibodies and by evaluation of secretion from
VAMP-8−/− platelets (Ren et al., 2007). Platelet-mediated throm-
bus formation relies on ADP and other factors released from
platelet granules. VAMP-8−/−mice demonstrate decreased throm-
bus formation upon vascular injury (Graham et al., 2009). Electron
microscopy indicates that platelet VAMPs localize primarily to
granule membranes (Feng et al., 2002). VAMP-2, -3, -5, and -
7 are also present in platelets. VAMPs 2 and 3 mediate granule
release in VAMP-8 deficiency (Ren et al., 2007). VAMP-7 contains
a profilin-like longin domain, has been shown to function in neu-
rite extension, and associates with F-actin during cell spreading
(Alberts et al., 2006). Granules expressing VAMP-7 move to the
periphery of the platelet during spreading and may represent a
distinct granule type that functions to provide membrane to cover
growing cytoskeletal structures following activation (Peters et al.,
2012). Future studies will evaluate the respective roles of VAMP-8
and VAMP-7 in mediating granule release during spreading and
identify the participating membrane compartments.

Synaptosomal-associated protein 23 (SNAP-23), a t-SNARE, is
required for release from all three types of granules in platelets
(Chen et al., 2000; Lemons et al., 2000). Nearly 2/3rds of SNAP-23
associates with the platelet plasma membrane, with the remaining
SNAP-23 distributed between the granule membrane and mem-
branes of the OCS (Feng et al., 2002). SNAP-23 contains five
palmitoylation sites in its membrane-binding domain. Cleavage
of palmitate by acyl-protein thioesterase 1 releases SNAP-23 from
platelet membranes demonstrating that SNAP-23 associates with
membranes via these palmitoylation sites (Sim et al., 2007). In
addition, SNAP-23 associates with the actin cytoskeleton in both
resting and activated platelets (Woronowicz et al., 2010). Anti-
bodies to SNAP-23 or addition of an inhibitory C-terminal pep-
tide against SNAP-23 both block dense-granule release in human

Table 3 | SNAREs and SM proteins in platelets and chromaffin cells.

Platelets Chromaffin cells

v-SNARES Vamp-2 VAMP-2

Vamp-3 VAMP-3

Vamp-4 VAMP-7 (TI-VAMP)

Vamp-5

Vamp-7 (TI-VAMP)

Vamp-8

t-SNARES SNAP-23 SNAP-23

SNAP-25 SNAP-25a

SNAP-29 SNAP-25b

Syntaxin-1 Syntaxin-1A

Syntaxin-2 Syntaxin-1B

Syntaxin-4 Syntaxin-2

Syntaxin-7 Syntaxin-3

Syntaxin-8 Syntaxin-4

Syntaxin-11

Syntaxin-12

Munc13 family Munc13-4 Munc13-1

Munc13-4

Munc18 family Munc18-1 Munc18-1

Munc18-2 Munc18-2

Munc18-3 Munc18-3

Essential components of the secretory machinery are highlighted.

Criteria: platelets: Vamp-8, murine knockout; SNAP-23, inhibitory antibodies,

inhibitory peptides, overexpression of dominant negative construct; syntaxin-11,

FLH4; Munc13-4, murine knockout, FLH3; Munc18-2, FLH5.

Chromaffin: VAMP-2, neurotoxin cleavage; SNAP-25, deletion of C terminus; Syn-

taxin 1, botulinum neurotoxin C1 and inhibitory antibodies; Munc18-1, murine

knockout.

platelets (Chen et al., 2000). In addition, overexpression of dom-
inant negative SNAP-23 inhibits dense-granule release in murine
platelets (Gillitzer et al., 2008).

Our understanding of the role of syntaxins, another family of t-
SNAREs, in platelet granule release has recently evolved. Platelets
express syntaxin-2, -4, -7, -8, -11, and -12. Whiteheart’s group
identified a patient with Familial Hemophagocytic Lymphohisti-
ocytosis type four (FHL-4) who was deficient in syntaxin-11 and
exhibited a significant granule secretion defect. An inhibitory anti-
body that this group had previously used to demonstrate a role
for syntaxin-2 in granule release was found to cross-react with
syntaxin-11, further suggesting a role for syntaxin-11 in platelet
exocytosis (Ye et al., 2012). They also demonstrated that syntaxin-
2−/− mice, syntaxin-4−/− mice, and double knockout mice all
demonstrated normal granule release. On the basis of these results,
syntaxin-11 appears to be the primary syntaxin involved in platelet
granule release.

In chromaffin cells, VAMP-2 is the primary v-SNARE and is
required for efficient, rapid release of granule constituents in
response to agonists (Table 3). Proteolytic cleavage of VAMP-2
by botulinum neurotoxins A through G or tetanus neurotoxin
results in decreased DCV secretion in chromaffin cells (Knight
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et al., 1985; Schiavo et al., 1992; Xu et al., 1998). VAMP-3 is less
efficient than and plays a subordinate role to VAMP-2, only func-
tioning in its absence (Borisovska et al., 2005). VAMP-7 serves a
central role in neurite outgrowth in chromaffin-like cells (Coco
et al., 1999; Martinez-Arca et al., 2000, 2001), analogous to its
putative role in providing membrane for platelet spreading (Peters
et al., 2012). Studies in PC12 cells indicate that the NH2-terminal
domain of VAMP-7 negatively regulates neurite outgrowth since
neurite outgrowth is blocked by overexpression of this domain and
enhanced by its deletion (Martinez-Arca et al., 2000, 2001). SNAP-
25a has established roles in both docking and priming of DCVs
and participates in agonist-dependent fusion of secretory vesi-
cles in complex with both VAMP-2 and syntaxin-1A. Deletion of
the C-terminal synaptotagmin-interacting residues of SNAP-25 in
PC12 cells results in decreased DCV secretion (Zhang et al., 2002).
Adrenal chromaffin cells express syntaxins-1A, -1B, -2, -3, and -4.
Viral infection with botulinum neurotoxin C1 cleaves syntaxin-
1A, 1B, 2, and 3 resulting in reduced DCV docking at the plasma
membrane (de Wit et al., 2006) and an inhibitory antibody to
syntaxin-1 decreases catecholamine release in bovine chromaffin
cells (Gutierrez et al., 1995).

SNARE CHAPERONE FUNCTION IN PLATELET AND
CHROMAFFIN GRANULE EXOCYTOSIS
Although not members of the exocytic core complex, another
important group of proteins involved in degranulation in secre-
tory cells are the Sec1/Munc18-like (SM) proteins which function
as SNARE chaperones (Carr and Rizo, 2010). Platelets and chro-
maffin cells possess a similar repertoire of SM proteins, including
members of the Munc13 and Munc18 families. These proteins
are SNARE regulators that have no apparent membrane-binding
domain, but bind syntaxin upon phosphorylation by PKC (Houng
et al., 2003; Schraw et al., 2003) and interact with the regulatory
N-terminal sequence of syntaxins (Ashery et al., 2000; Rosenmund
et al., 2002). Munc13 family members include Muncs13-1, -2, -3,
and 4. These proteins have two C2 (Ca2+-binding) and one C1
(DAG/phorbol ester-binding) domains (Figure 3). They interact
with SNARE proteins via two Munc13 (mammalian) homology
domains, MHDs 1 and 2 (Guan et al., 2008), which are involved

in dissociating Munc18 protein/syntaxin interactions (Sassa et al.,
1999), thereby promoting trans SNARE complex assembly.

Munc13-4 is the only Munc13 family member found in
platelets. It lacks the N-terminal C1 domain present in Munc13-1,
-2, and -3 and the MHD2 domain present in the other Munc13
family members, but has a central MHD1 domain and binds
directly to syntaxins in platelets via interaction with the syntaxin
H3 domain (Boswell et al., 2012). It is ubiquitously expressed, but
enriched in cells of the hematopoietic lineage (Song et al., 1998;
Feldmann et al., 2003). In platelets, the Munc13-4 interaction with
activated Rab27a/b is important for SNARE binding (via MHD1
interaction), granule formation and plasma membrane interac-
tion (Figure 3) (Song et al., 1998; Shirakawa et al., 2004; Ishii et al.,
2005; Boswell et al., 2012). Boswell et al. (2012) determined that
the C2A domain of Munc13-4 is required for Ca2+-dependent
SNARE interaction, whereas the C2B domain mediates Ca2+-
dependent membrane association. Mutation of Munc13-4 results
in another form of familial hemophagocytic lymphohistiocyto-
sis (FHL3) (Feldmann et al., 2003) and Munc13-4 deletion from
murine platelets results in complete ablation of dense-granule
release and impaired release from α-granules in vitro indicating
its importance in Ca2+ regulation of SNARE interactions with the
plasma membrane (Ren et al., 2010).

Munc13-4 is a rate-limiting protein for granule exocytosis
in both platelets and chromaffin cells. As with platelet granule
release, Munc13-4 triggers rapid and efficient release of cate-
cholamines from chromaffin-like PC12 cells (Boswell et al., 2012).
Munc13-4 promotes trans-exocytic core complex formation in a
Ca2+-dependent manner in both chromaffin cells and platelets.
In addition to Munc13-4, Munc13-1 serves a role in DCV secre-
tion in chromaffin cells. Overexpression of Munc13-1 results in
increased DCV secretion (Ashery et al., 2000; Stevens et al., 2005)
and its interaction with syntaxin-1 is important for DCV priming
(Stevens et al., 2005).

Platelets express three Munc18 isoforms: Munc18-1, 18-2 and
18-3. All three isoforms are associated with granule and OCS
membranes in resting platelets (Schraw et al., 2003). Al Hawas
et al. (2012) recently demonstrated that defects in the Munc18-2
gene result in familial hemophagocytic lymphohistiocytosis type

FIGURE 3 | Assemblage of SNAREs and SM proteins during
platelet granule exocytosis. Munc18b sequesters syntaxin in an
inactive state. Munc13-4 docks opposing membranes via interactions
with Rab27a, which also binds Slp1. Activation promotes a
conformational change in Munc18b that enables the coiled-coil

domain of syntaxin to form a four-helical bundle with SNAP-23 and
VAMP. Mutations in Munc13-4, as in familial hemophagocytic
lymphohistiocytosis (FHL)-3, syntaxin-11 (FHL-4), Munc18b (FHL-5), or
Rab27a (Griscelli syndrome) result in defective secretion (figure
adapted from Flaumenhaft, 2013).

Frontiers in Endocrinology | Neuroendocrine Science June 2013 | Volume 4 | Article 77 | 6

http://www.frontiersin.org/Neuroendocrine_Science
http://www.frontiersin.org/Neuroendocrine_Science/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fitch-Tewfik and Flaumenhaft Platelet versus chromaffin cell exocytosis

5 (FHL5). These patients demonstrate decreased α- and dense-
granule secretion and levels of both Munc18-2 and syntaxin-
11 were diminished, indicating that Munc18-2 plays a key role
in platelet exocytosis and, potentially, a regulatory role toward
syntaxin-11.

In chromaffin cells, Munc18-1 participates in granule dock-
ing/priming and SNARE engagement via its interaction with
syntaxin 1 (Hata et al., 1993; Pevsner et al., 1994). Munc18-1
knock out in embryonic cells results in decreased DCV dock-
ing at the plasma membrane (Voets et al., 2001; Gulyas-Kovacs
et al., 2007). In addition, syntaxin 1 expression is decreased
by 50% in Munc18-1 deficient neurons and chromaffin cells
(Voets et al., 2001; Gulyas-Kovacs et al., 2007). Munc18-1 inter-
action with the “closed” conformation of syntaxin 1 appears to
be important for docking of the secretory vesicle at the plasma
membrane (Dulubova et al., 1999; Yang et al., 2000; Schutz
et al., 2005; Gulyas-Kovacs et al., 2007). However, Munc18-1
interactions with the N-terminal peptide of syntaxin-1 (in the
“open” conformation) is required for membrane fusion to occur
(Khvotchev et al., 2007; Gerber et al., 2008; Rathore et al., 2010),
indicating that Munc18-1 is important in both early and late
stages of exocytosis. Munc18-2 also shows affinity for syntaxins-
1, -2, and -3 in chromaffin cells. While Munc18-2 rescued the
reduced docking phenotype in Munc18-1−/− animals, they con-
tinued to exhibit impaired vesicle priming (Gulyas-Kovacs et al.,
2007). Munc18-3 is ubiquitously expressed and has been impli-
cated in secretion in chromaffin cells. However, Munc18-3 only
partially rescued the Munc18-1−/− secretion defect in chromaf-
fin cells and deletion of Munc18-3 from chromaffin cells did
not cause defects in granule secretion (Gulyas-Kovacs et al.,
2007).

THE PLATELET FUSION PORE
Although there are many methods to evaluate platelet granule
release, platelet secretion assays are largely restricted to bulk
assays of cargo release (e.g., ADP, serotonin, platelet factor 4) or

granule membrane receptor surface expression (e.g., P-selectin,
CD63). These assays are inadequate for evaluation of the release
of single granules and unable to detect membrane fusion events
that occur in the millisecond time frame. Standard electrophys-
iology using patch-clamp techniques are difficult to apply to the
platelet because of their small size and atypical membrane system.
More recently, however, platelet investigators are applying some
of the same approaches used to evaluate fusion pore dynamics in
chromaffin cells. In particular, investigators are using single-cell
amperometry to evaluate the release kinetics of single granules
from platelets. Carbon-fiber microelectrode amperometry is being
used to detect serotonin release from platelets stimulated with
thrombin (Ge et al., 2008, 2009, 2010). Tracings indicate previously
unrecognized fusion events such as “kiss and run” fusion and foot
process formation (Wightman and Haynes, 2004) (Figure 4). This
approach has enabled an appreciation of nuances of membrane
fusion in platelets that have previously gone unrecognized and,
more importantly, have enabled investigators to begin to eval-
uate the molecular mechanisms of pore formation in platelets.
Amperometry has recently been used to evaluate the role of
dynamin family proteins in platelet and chromaffin cell granule
release.

Dynamins are a family of large GTPases that act as mechanoen-
zymes, demonstrating both oligomerization-dependent GTPase
and membrane modeling activities (Piersma et al., 2009).
Although originally described as mediators of membrane scis-
sion during vesicle endocytosis (Graham et al., 2004; Wegrzyn
et al., 2010), dynamin GTPases are now recognized to function
in exocytosis (Graham et al., 2002; Tsuboi et al., 2004; Fulop
et al., 2008; Anantharam et al., 2010, 2011; Gonzalez-Jamett et al.,
2010). In particular, dynamins act immediately upon membrane
fusion to regulate the release of granule content. Dynamin and
dynamin-related proteins are found in platelets. Dynamin 3 is
upregulated during megakaryopoiesis (Reems et al., 2008; Gieger
et al., 2011; Wang et al., 2011). Dynamin 2 and dynamin-related
protein 1 (Drp1) are present in platelets, but dynamin 1 is not.

FIGURE 4 | Single-cell amperometry to measure dense-granule
release from platelets. Amperometry demonstrates pore formation
progressing through a foot process (left panels) to full granule collapse

(upper panels) and pore formation reversing in a “kiss and run”
exocytotic event (lower panels) (figure adapted from Koseoglu et al.,
2013).

www.frontiersin.org June 2013 | Volume 4 | Article 77 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Neuroendocrine_Science/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fitch-Tewfik and Flaumenhaft Platelet versus chromaffin cell exocytosis

Drp1 is phosphorylated upon platelet activation (Koseoglu et al.,
2013). Inhibition of platelets using dynasore or MiTMAB, which
inhibit the activity of dynamin family proteins, block agonist-
induced platelet granule secretion (Koseoglu et al., 2013). The
Drp1 inhibitor, mdivi-1, also blocks platelet granule exocytosis.
Studies using single-cell amperometry demonstrate that mdivi-
1 exposure results in fusion pore instability as evidenced by
decreased foot process formation and inefficient pore expan-
sion as evidenced by an increased T1/2 (Koseoglu et al., 2013).
These observations implicate dynamin and dynamin-related pro-
teins in platelet fusion pore dynamics. However, the mecha-
nism by which Drp1, which is typically associated with mito-
chondrial fission, impacts platelet granule release remains to be
determined.

Dynamin-mediated pore expansion in chromaffin has been
evaluated using total internal reflection fluorescence microscopy
and amperometry. In chromaffin cells overexpressing a dynamin
I mutant with low GTPase activity, deformations in the mem-
brane associated with fusion are long-lived, indicating defective
pore expansion (Anantharam et al., 2011). Chromaffin cells over-
expressing a dynamin I mutant with enhanced GTPase activity
demonstrate increased pore expansion. These observations have
led to a model in which dynamin restricts fusion pore expan-
sion until GTPase activity is stimulated. The higher the GTPase
activity, the faster the expansion of the fusion pore (Gerber
et al., 2008). Dynamins appear to associate with actin, SNAREs,
and synaptotagmin family proteins to participate in fusion pore
expansion (Chan et al., 2010; Gu et al., 2010; Anantharam et al.,
2012). However, the importance of these associations is poorly
understood.

CONCLUSION
Some characteristics of regulated secretion shared between
platelets and chromaffin cells are common to all secretory sys-
tems. However, these secretory systems also share some unusual
features that, if not unique to these cells, are not universally
observed among secretory systems. These special commonali-
ties may provide avenues for researchers investigating these cells
types to further define these secretory systems. For example, the
unusual density of LDCVs and platelet dense granules and their
ability to concentrate nucleotides, bioactive amines, and polyphos-
phates raises the possibility that may use similar transporters.
Some similarities in transporters such as VMAT2 have already
been described. Further probing could reveal further overlap (e.g.,
Scl17A transporters in platelet dense granules, multidrug resis-
tance transporters in chromaffin cells, or yet undiscovered trans-
porters that are common to both cells). The ability of chromaffin-
like PC12 cells to use VAMP-7 for neurite outgrowth and platelets
to use VAMP-7 during spreading speaks to potential underlying
similarities between the molecular mechanisms of membrane uti-
lization during shape change. The role of dynamin family proteins
in exocytosis is an emerging area of interest in secretion biology
and further studies of these two cell types may reveal how they use
these mechanoenzymes to regulate fusion pore formation dur-
ing exocytosis. Historically, the study of the chromaffin cell has
advanced more quickly than that of the platelet and has helped
direct how platelet biologists have approached the study of granule
exocytosis. As the study of platelet exocytosis progresses, under-
standing this secretory system may help chromaffin cell biologists
better understand elements of granule formation and exocytosis
in neuroendocrine cells.
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