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Independent evolution for sex determination and differentiation
in the DMRT family in animals
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ABSTRACT
Some DMRT family genes including arthropod dsx, nematodemab-3,
and vertebrate dmrt1 are involved in sex determination and/or
differentiation in bilaterian animals. Although there have been some
reports about evolutionary analyses of the family by using its
phylogenetic trees, it is still undecided as to whether these three sex
determination-related genes share orthologous relationships or not. To
clarify this question, we analyzed evolutional relationships among the
family members in various bilaterians by using not only phylogenetic
tree analysis, but also synteny analysis.We found that only four genes,
dmrt2a/2b, dmrt3, dmrt4/5 and dmrt93B were commonly present in
invertebrate bilateria. The syntenies of dmrt2a/2b-dmrt3 and dmrt4/5-
dmrt93B are conserved before and after two rounds of whole genome
duplication in the ancestral vertebrate. Importantly, this indicates that
dmrt1 must have appeared in the common vertebrate ancestor. In
addition, dmrt1, dsx, or mab-3 formed each different cluster at a
distance in our phylogenetic tree. From these findings, we concluded
that the three sex determination-related genes, dmrt1, dsx, andmab-3
have no orthologous relationships, and suggested independent
evolution for sex determination and differentiation in the DMRT gene
family. Our results may supply clues about why sex-determining
systems have diverged during animal evolution.
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INTRODUCTION
The doublesex andmab-3 related transcription factor (DMRT) family
is well-conserved in bilaterian animals and is characterized by a
DNA-binding region called the DM domain (Matson and Zarkower,
2012). The domain was named from Drosophila melanogaster Dsx
and Caenorhabditis elegans Mab-3 proteins, both of which play
important roles in sex differentiation (Matson and Zarkower, 2012).
Most animals have multiple DMRT genes. In mammals, there are
eight DMRT genes, DMRT1-DMRT8 (Veith et al., 2006; Bellefroid
et al., 2013). Veith et al. previously suggested that DMRT7 and
DMRT8 are mammalian-specific DMRT genes (Veith et al., 2006).
Most of the DMRT proteins play roles in various developmental
processes including myogenesis, somitogenesis, neurogenesis and

gametogenesis (O’Day, 2010; Bellefroid et al., 2013; Zhang et al.,
2014a; Yu et al., 2015).

Some DMRT genes are well-studied in sexual determination and
differentiation in somatic cells of the gonads. DMRT1 is a regulator
of testicular formation and/or male determination in gonadal
somatic cells in various vertebrate species (Yoshimoto and Ito,
2011; Zhao et al., 2015). Dmrt1 is necessary for somatic-cell
masculinization in mice (Raymond et al., 2000). In chickens, the
Z-linked dmrt1 induces male sex determination by its gene dosage
(Smith et al., 2009). The dmrt1 paralogs, the Y-linked dmy/dmrt1by
in teleost fish (Oryzias latipes) and theW-linked dmw in the African
clawed frog (Xenopus laevis) are sex-determining genes (Matsuda
et al., 2002; Nanda et al., 2002; Yoshimoto et al., 2008;
Mawaribuchi et al., 2012). On the other hand, in germ cells of the
gonads, Dmrt1, Dmrt6, Dmrt7 and Dmrt11E are involved in
spermatogenesis in some bilaterian species (Kawamata and
Nishimori, 2006; Matson et al., 2010; Zhang et al., 2014a,b; Yu
et al., 2015). Dmrt1 and Dmrt4 play roles in oogenesis and
folliculogenesis, respectively, in female mice (Balciuniene et al.,
2006; Krentz et al., 2011). Moreover, many DMRT genes are
implicated in non-gonadal development. Dmrt2 participates in
myogenesis and somitogenesis in some vertebrates (Meng et al.,
1999; Seo et al., 2006; Sato et al., 2010). Dmrt3, Dmrt4, Dmrt5,
Dmd-5 and Dmrt93B engage in neurogenesis in some bilaterian
species (Huang et al., 2005; O’Day, 2010; Andersson et al., 2012;
Saulnier et al., 2013; De Clercq et al., 2016; Oren-Suissa et al.,
2016). The molecular function of DMRT8 is not yet known.
Importantly, only the three types of the DMRT family genes – that
is, dmrt1 homologs, dsx and mab-3 – are known to function in sex
determination and/or somatic sex differentiation to date.

Some researchers suggested that DMRT1 may be a vertebrate
equivalent of dsx, that is, dsx ortholog (Ottolenghi et al., 2002; Kato
et al., 2011; Clough et al., 2014). Other researchers discussed that
they could not yet conclude that dmrt1 is the mammalian ortholog of
dsx and mab-3 from their sequence comparisons (Raymond et al.,
2000). Moreover, the phylogenetic trees of DMRT family proteins
showed that two clusters consisting of dmrt1 and dsx do or do not
form a sister group (Toyota et al., 2013; Wexler et al., 2014). In
addition, the synteny analysis of DMRT family genes has not been
reported in invertebrates. Collectively, it is still an undecided
question as to whether these sex determination-related genes, dmrt1,
dsx, and mab-3 are orthologous or not. Interestingly, our recent
report indicated that the ancestral gene of vertebrate dmrt1 might
have emerged not for sex determination but for germ-cell
development (Mawaribuchi et al., 2017a), suggesting that dmrt1
might not be a functional ortholog of dsx and mab-3.

The divergence of the DMRT family genes for gonadal and non-
gonadal functions remains unclear. In addition, the synteny analysis
of these genes in invertebrates is rarely performed. In this study, the
evolutionary relationships of the DMRT genes in bilateria were
examined by not only phylogenetic tree, but also synteny analysis.Received 22 January 2019; Accepted 23 July 2019
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We found that four DMRT genes, dmrt2a/2b, dmrt3, dmrt4/5 and
dmrt93B were commonly present in invertebrate bilateria. The
syntenies of dmrt2a/2b-dmrt3 and dmrt4/5-dmrt93B are conserved
before and after 2R-WGD in the ancestral vertebrate. As for the sex
determination-related DMRT genes, the evolutionary analyses
revealed that dmrt1 might have appeared in the common
vertebrate ancestor, and that there are independent and different
clusters for dmrt1, dsx and mab-3 in our phylogenetic tree. These
results suggested that the three sex determination-related genes,
dmrt1, dsx and mab-3 might emerge independently in each taxon
and obtain new functions for sex determination and/or primary sex
differentiation.

RESULTS AND DISCUSSION
A common ancestor of bilateria must have possessed three
DMRT family genes, dmrt2a/2b, dmrt4/5 and dmrt93B
The syntenic relationships of the DMRT family genes in
invertebrates have not been investigated in detail. To perform the
synteny analyses of the family genes between invertebrate and
vertebrate bilateria, we obtained the sequences from the GenBank or
various genomes by BLAST search (Table S1). In mammals, there
are eight DMRT genes, DMRT1-DMRT8 (Veith et al., 2006;
Bellefroid et al., 2013). Johnsen and Andersen reported that dmrt2
(dmrt2a) and dmrt2b or dmrt4 and dmrt5 might emerge from their
ancestral genes, respectively, through the two rounds of whole
genome duplication (2R-WGD) (Johnsen and Andersen, 2012).
This supports the finding that Dmrt4 and Dmrt5 may possess
redundant roles during neurogenesis (Parlier et al., 2013).
Interestingly, we could obtain no dmrt2b sequences in tetrapod
genome databases (Table S1). In contrast, Kato et al. indicated the
close relationship between dmrt11E and dmrt2 or dmrt99B and
dmrt4/5 from their sequence similarity (Kato et al., 2008). Based on
these findings, the DMRT gene families could be classified into
eight major subsets, DMRT1, DMRT2a/2b (dmrt2, dmrt2a and
dmrt2b),DMRT3,DMRT4/5 (dmrt4, dmrt5 and dmrt99B),DMRT6,
DMRT7, DMRT8 and DMRT93B. The dmrt93B orthologs
belonging to the eighth DMRT family were newly identified in
not only invertebrates, but also some vertebrate species (Table S1,
see details below). Importantly, the BLAST search revealed that
only four genes, dmrt2a/2b, dmrt3, dmrt4/5 and dmrt93B were
commonly present in invertebrate bilateria (Table S1).
Then we performed synteny analyses of the DMRT genes in

invertebrate bilateria including four deuterostome species
(Chordata, Cephalochordata, Branchiostoma floridae; Chordata,
Urochordata, Ciona intestinalis; Hemichordata, Saccoglossus
kowalevskii; Echinodermata, Strongylocentrotus purpuratus)
and four protostome species (Mollusca, Aplysia californica;
Mollusca, Lottia gigantea; Nematoda, C. elegans; Arthropoda,
D. melanogaster) (Fig. 1). A synteny analysis of dmrt2a/2b in these
eight species indicated the presence of the dmrt3 gene in close
proximity to the dmrt2a/2b locus in deuterostomia (Fig. 1A). In
deuterostomia, three genes, dmrt2a/2b, dmrt3 and ndufawere found
to be syntenic between B. floridae and S. kowalevskii, suggesting
that dmrt3 could have emerged through a gene duplication event of
dmrt2a/2b during deuterostome evolution (Fig. 1A). In addition, we
found that the dmrt4/5 (dmrt99B) and dmrt93B genes were located
adjacent to each other in two deuterostomes (B. floridae and
S. kowalevskii) and two protostomes (A. californica and
L. gigantea) (Fig. 1B). These two genes were present on the same
chromosome in D. melanogaster (Fig. 1B). CG7985 (lips-8) and sr
(egrh-1) appeared to be located near dmrt93B (dmd-4) in
D. melanogaster and C. elegans (Fig. 1B). Taken together, these

results suggested that a common ancestor before the divergence of
deuterostomes and protostomes possessed three subsets of the
DMRT gene family, dmrt2a/2b, dmrt4/5 and dmrt93B.

The syntenies of dmrt2a/2b-dmrt3 and dmrt4/5-dmrt93B are
conserved before and after two rounds of whole genome
duplication (2R-WGD) in a common ancestor of vertebrates
From the above results, we found that dmrt2a/2b, dmrt3, dmrt4/5
and dmrt93B might be present in a common vertebrate ancestor. It
is believed that 2R-WGD occurred in the common ancestor of
vertebrates. Based on this premise, we next examined synteny
relationships of the DMRT family genes between invertebrates and
vertebrates (Fig. 2). In the spotted gar Lepisosteus oculatus, which
belongs to the Holostei infraclass in the Actinopterygii class, the
two dmrt clusters dmrt1-dmrt3-dmrt2a and dmrt6-dmr2b were
localized to the region encompassing the hook, pde4, dock, foxd,
pgm, kank and glis family members in linkage groups (LG) 2 and
10, respectively (Fig. 2A). In addition, dmrt4 or dmrt5was localized
to the region encompassing the ttc39, elavl and cdkn2 family
members in LG4 or LG10, respectively. Two sets of faf, foxd, glis,
keap1, smarca and pgm, three sets of cdkn2, dock and hook, or four
sets of elavl, kank and pde paralogues were observed in the linkage
groups in close proximity to the dmrt family members, indicating
the presence of traces of 2R-WGD (Fig. 2A). A gene corresponding
to the ancestral gene of the elavl family was localized in the vicinity
of dmrt2a/2b and dmrt3 on scaffold 69 in B. floridae (Fig. 1A). The
ancestral cdkn2- and faf-related genes or ancestral ttc39-related
gene were found near dmrt4/5 or dmrt93B on scaffold 203 in
S. kowalevskii and scaffold 57 in A. californica, respectively
(Fig. 1B). The hook-related gene was found in the vicinity of
dmrt4/5 on scaffold 10416 in S. purpuratus. Moreover, srek1 on
scaffold 69 and spef2 on scaffold 13 in B. floridae and A. californica,
respectively, near dmrt2a/2b corresponded to the regions around
dmrt1-dmrt3-dmrt2a cluster on LG2 inL. oculatus (Figs 1A and 2A).
rad54 near dmrt4/5 on chromosome 5 in C. intestinalis, lrrc40 near
dmrt4/5 on scaffold 10416 in S. purpuratus, andwls near dmrt93B on
scaffold 22986 in S. purpuratus corresponded to the regions on LG
10 in L. oculatus (Figs 1B and 2A). Interestingly, no dmrt genes were
identified on LG6 or LG19 (Fig. 2A).

We next performed synteny analysis ofDMRT family genes using
six species of vertebrates, mammalian Homo sapiens, amphibian
X. laevis, sarcopterygian Latimeria chalumnae, actinopterygian
O. latipes and L. oculatus, and chondrichthyan Callorhinchus milii
(Fig. 2B,C). The synteny of the DMRT1-DMRT3-DMRT2 cluster
was well-conserved in all of the vertebrate species examined
(Fig. 2B). However, the dmrt6-dmr2b cluster was only conserved
in the spotted gar (L. oculatus) and coelacanth (L. chalumnae)
(Fig. 2C). The tandem arrays of dmrt4 and dmrt93Bwere conserved
in the elephant shark (C. milii) and coelacanth (L. chalumnae)
(Fig. 2B) and in some invertebrate species (Fig. 1B). Namely, the
syntenies of dmrt2a/2b-dmrt3 and dmrt4/5-dmrt93B are conserved
before and after the 2R-WGD. dmrt2a and dmrt2b or dmrt4 and
dmrt5 must have evolved from dmrt2a/2b or dmrt4/5, respectively,
through the 2R-WGD.

DMRT1 and DMRT6 are vertebrate-specific genes
DMRT2a/2b, DMRT3, DMRT4/5 and DMRT93B were commonly
present in invertebrate bilateria (Figs 1, 2; Table S1). The synteny
analyses also indicated that DMRT7 or DMRT8 are specific in
mammalian and reptilian or mammalian species, respectively (Fig.
S1). Our recent study reported that lamprey dmrt1 is primarily
expressed in germ cells, suggesting that the ancestral vertebrate
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Fig. 1. Synteny analysis of DMRT genes in
invertebrates. (A) Synteny of dmrt2a/b (dmrt11E) and
dmrt3. (B) Synteny of dmrt4/5 (dmrt99B) and dmrt93B. The
synteny analysis was performed in eight species of
invertebrate bilateria (B. floridae; C. intestinalis;
S. kowalevskii; S. purpuratus; A. californica; L. gigantea;
C. elegans; D. melanogaster). Triangles indicate genes and
their tips correspond to their 3′-ends. White and black
triangles represent DMRT genes and surrounding genes,
respectively. Gray triangles represent genes that have been
found in the areas surrounding DMRT genes in both
vertebrates and invertebrates (Fig. 2). Spotted triangles
represent genes showing synteny between invertebrates.
Chr., chromosome; (−), reverse relationship.
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Fig. 2. See next page for legend.
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dmrt1 might have emerged for germ-cell development
(Mawaribuchi et al., 2017a). We also found that dmrt6 was
pseudogenized in chondrichthyes, Leucoraja erinacea (Table S1).
To clarify when dmrt1 and dmrt6 emerged, we constructed Bayesian
and maximum likelihood phylogenetic trees of DMRT family
members without mammalian- and reptilian-specific DMRT7 and
mammalian-specific DMRT8. We analyzed the members in 19
species representing eight different phyla in bilaterians; Brachiopoda,
Mollusca, Priapulida, Nematoda, Arthropoda, Hemichordata,
Echinodermata and Chordata (Fig. 3; Fig. S2, and Table S1).
Chordata included nine species from various taxa including
Urochordata, Cephalochordata Chondrichthyes, Actinopterygii,
Sarcopterygii, Amphibia and Mammalia. The DM domain regions,

which are the only conserved regions among the family members in
bilaterian animals, were used for the phylogenetic constructions. The
DMRT1 cluster contained Dmrt1 orthologues and the paralogues
encoded by the O. latipes and X. laevis sex-determining genes dmy/
dmrt1by and dmw, respectively (Fig. 3; Fig. S2) (Matsuda et al.,
2002; Nanda et al., 2002; Yoshimoto et al., 2008). As expected, there
were no invertebrate genes in theDMRT1 cluster (Fig. 3). In addition,
the phylogenetic trees indicate the following viewpoints. The
DMRT2a/2b cluster included vertebrate Dmrt2 (Dmrt2a) and
Dmrt2b, and invertebrate bilateria Dmrt2a/2b and arthropoda
Dmrt11E. The DMRT3 cluster consisted of DMRT3 orthologues
in deuterostomes. The DMRT4/5 cluster consisted of the vertebrata
Dmrt4 and Dmrt5, invertebrate bilateria Dmrt4/5, arthropoda
Dmrt99B and nematoda Dmd-5. The DMRT93B cluster consisted
of Dmrt93B from most invertebrate bilateria, nematoda Dmd-4, and
Dmrt93B from some fishes, suggesting that dmrt93B may have been
lost during tetrapoda evolution. The DMRT6 cluster was comprised of
only vertebrate DMRT6 orthologues. The Dsx and Mab-3 clusters
consisted of arthropods and nematodes, respectively. These results
indicated that DMRT1 and DMRT6 are vertebrate-specific genes.
Accordingly, dmrt1 and dmrt6 genes might emerge through gene
duplication during vertebrate evolution.

Fig. 2. Synteny analysis of DMRT genes in vertebrates. (A) Synteny of
DMRT family genes in L. oculatus. This synteny shows a trace of 2R-WGD.
(B) Synteny of DMRT1, DMRT2, DMRT3, DMRT4 and dmrt93B.
(C) Synteny of dmrt2b, DMRT5 and DMRT6. The synteny analyses were
performed in six species of vertebrates (H. sapiens, X. laevis, L. chalumnae,
O. latipes, L. oculatus and C. milii). Triangles indicate genes and their tips
correspond to their 3′-ends. White and black triangles represent DMRT
genes and the surrounding genes, respectively. Chr., chromosome; LG,
linkage group; (−), reverse relationship.

Fig. 3. Bayesian tree of bilaterian DMRT family genes. The tree was constructed by MrBayes5D using the protein sequences of the DM domains from 19
species representing eight different phyla in bilateria (see Fig. S3). Brachiopoda, Lingula anatina (La); Mollusca, Aplysia californica (Ac); Mollusca,
L. gigantea (Lg); Priapulida, Priapulus caudatus (Pc); Nematoda, C. elegans (Ce); Nematoda, Caenorhabditis remanei (Cr); Arthropoda, Anopheles gambiae
(Ag); Arthropoda, D. melanogaster (Dm); Hemichordata, Saccoglossus kowalevskii (Sk); Echinodermata, Strongylocentrotus purpuratus (Sp); Chordata,
Urochordata, Ciona intestinalis (Ci); Chordata, Cephalochordata, Branchiostoma floridae (Bf); Chordata, Vertebrata, Chondrichthyes, C. milii (Cm); Chordata,
Vertebrata, Chondrichthyes, L. erinacea (Le); Chordata, Vertebrata, Actinopterygii, L. oculatus (Lo); Chordata, Vertebrata, Actinopterygii, O. latipes (Ol);
Chordata, Vertebrata, Sarcopterygii, L. chalumnae (Lc); Chordata, Vertebrata, Amphibia, X. laevis (Xl); Chordata, Vertebrata, Mammalia, H. sapiens (Hs).
Model test was performed by Aminosan (rtREV+F_Gamma). Blue and red circles represent Deuterostomia and Protostomia, respectively. * and ** indicate
DM domain regions on 5′ and 3′ sides, respectively. The numbers indicate posterior probability. The values less than 50% were collapsed.
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Fig. 4. See next page for legend.
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Interestingly, some dmrt genes including arthropod Dsx and
nematode Mab-3 did not belong to the eight major subsets of
DMRT in bilaterians. These diverged genes mediated through gene
duplication might have evolved for taxa diversity. Especially,
C. elegans and C. remanei possess many DMRT family members,
which might have been derived from the high rate of spontaneous
gene duplication in nematodes (Lipinski et al., 2011).

DMRT1 is a homolog but not an ortholog of arthropod dsx
and nematode mab-3
Asmentioned in the Introduction section, there is no clear conclusion
to the question whether dmrt1, dsx and mab-3 are orthologous to one
another or not. However, our recent report indicated that the ancestral
vertebrate dmrt1 gene might have emerged not for sex determination
but for germ-cell development (Mawaribuchi et al., 2017a). Our
syntenic and phylogenetic analyses in this study showed that a
common ancestor of vertebrata must have possessed only fourDMRT
family genes, dmrt2a/2b, dmrt3, dmrt4/5 and dmrt93B (Figs 1, 2, 3;
Fig. S2). The syntenies of dmrt2a/2b-dmrt3 and dmrt4/5-dmrt93B
are conserved before and after 2R-WGD in a common ancestor of
vertebrates (Figs 1 and 2). In addition, dmrt1 and dmrt6might emerge
in the primitive vertebrate lineage (Fig. 3; Fig. S2). Importantly, the
dsx and mab-3 genes have been found only in the subphylum
Hexapoda among Arthropoda and the phylum Nematoda,
respectively (Fig. 3; Fig. S2, and Table S1) (Price et al., 2015).
These findings suggested thatDMRT1 is not orthologous to arthropod
dsx and nematode mab-3. We then summarized molecular evolution
of the DMRT gene family in bilateria (Fig. 4). dsx, mab-3 and Dmrt1
play important roles in sex determination and/or sex differentiation
(Raymond et al., 2000; Smith et al., 2009; Matson and Zarkower,
2012). Oryzias latipes and X. laevis sex-determining genes, dmy/
dmrt1by and dmw, independently evolved from duplication of dmrt1
during the species diversity in each taxon (Matsuda et al., 2002;
Nanda et al., 2002; Kondo et al., 2004; Bewick et al., 2011;
Mawaribuchi et al., 2017b). OtherDMRT genes have not been known
to be involved in sex determination and sex differentiation to date.
Then, we propose the independent evolution of dmrt1 homologs, dsx
and mab-3 for sex determination and primary sex differentiation in
the DMRT gene family.

MATERIALS AND METHODS
Sequence analysis
The DMRT gene sequences were obtained from the GenBank or various
databases and genomes by BLAST (Table S1). Synteny analyses were also
performed by BLAST using the obtained sequences and various genome
sequences (Table S1). The protein sequences were aligned using MUSCLE

(https://www.megasoftware.net), and gaps (insertions/deletions) were
removed (Fig. S3). A best-fit protein substitution model was selected by
Aminosan (https://www.fifthdimension.jp). Maximum likelihood and
Bayesian phylogenetic analyses were performed using MEGA7 and
MrBayes5D, respectively, with an rtREV+F+G model (https://www.
megasoftware.net, https://www.fifthdimension.jp).
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