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Abstract

Feeding represents 50–70% of the cost of production in salmon farming, higher than

any other animal farm. The improvement of this percentage is challenging as the food

is thrown into the fish tank, there is no quantification of the amount of food that is con-

sumedby the fish. In consequence, it is difficult to adjust the foodcompositionmaking it

more nutritive or promoting food consumption by fish. In this study, to investigate food

consumption, bio-distribution and food residues, leucine containing 15N (a stable iso-

tope of nitrogen) was used to label the fish food. Atlantic salmon (Salmo salar) weighing

100–120gweremaintained in30L tanks at a density of 14kg/m3. Fisheswere feddaily

at 1% of the fish weight with pellet labelled with 15N-leucine. The 15N incorporation

was determined 14 hours after the feeding in all the fish organs. Results showed that

14 hours after the administration of a single dose of labelled food to Atlantic salmon

enables the detection of the tracer in the whole organism allowing determining the

food consumption. Through the analysis of nitrogen use efficiency (NUE), we showed

that the trunk, pyloric caeca andhead incorporate the highest level of themarker (72.7,

8.7 and5.7%, respectively). Thismethodologywould permitmonitoring feeding tomin-

imize food loss, improve administration methodologies or select the preferred foods

for the fish, among others to reduce production costs.
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1 INTRODUCTION

The human population is overgrowing and is predicted that in 2060, it

will exceed nine billion inhabitants. In this scenario, aquaculture devel-

opment in coherence with an environmentally sustainable, socially fair

manner to provide healthy and safe products, is visualized as an ideal

solution. Despite that, there are still severe limitations on fish produc-
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tion tomake it accurate. Although the aquaculture has been developed

faster than any other sector of the food industry of animal origin, one

of the weaknesses is that 50–70% of the cost of fish production is

feeding, beyond any other animal products. Additionally, it is difficult

to determine the amount of food administered that is consumed by

fish, avoiding diminishing this cost of production (Asche & Oglend,

2016).
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Currently, the feed efficiency is determined by calculating a feed

conversion ratio (FCR) that establishes the relation between the quan-

tity of food administered and the fattening of the fish. Nevertheless,

the feeding of fish is variable depending on the development and san-

itary status of fish, temperature, population density, oxygenation, gas-

trointestinal microbiota and salinity of the medium (Bett et al., 2016;

Bou et al., 2017; Furey et al., 2016) causing that FCR is different for

each fish farming centre.

To improve the FCR of the salmon, it is required to adjust (i) the

nutrients composition of the food, optimizing the feeding efficiency,

and/or (ii) the food consumption, related to the feeding method, and

characteristics of the food (palatability, time of flotation, among oth-

ers) (Hasan& Soto, 2017; Kamunde et al., 2019; Rosenlund et al., 2016;

Weihe et al., 2018l). It is required to determine the food intake for opti-

mizing both strategies.

Actually, some methodologies have been used to trace food and

to study intestinal transit utilizing inert, non-metabolizable and non-

absorbable markers not interfering with absorption, digestion or

intestinal transit, such as chromium oxide, 141Cerium, crystal beads,

titanium oxide, iron particles, radio-opaque glass beads or radioactive

elements like131Iodine. The digestibility of the food is determined by

quantifying the marker in the food and in faeces (Abowei & Ekubo,

2011; Degani et al., 1997; Kause et al., 2006). These methodologies do

not track consumed food, limiting them to the determination of appar-

ent consumption of food.

In particular, themeasure of protein digestibility is frequently corre-

lated with the nitrogen (N) in the food and the N excreted for the fish.

However, the N excreted also comes from the metabolism of the fish,

and for this quantification, a protein-free diet as a control is required;

however, this diet alters the nutrition of the fish and the results (Carter

et al., 1998; Carter & Hauler, 2000; Kaushik & De Oliva Teles, 1985;

Kaushik et al., 1983).

On the other hand, the distribution of proteins in living organisms

has been estimated by monitoring 15N as a common tracer element

based on that 15N represents around 0.366% of the total element

abundance (Faust & Sebastianelli, 1987). In fact, taking advantage of

that, 15N has been externally added to nutrients, fertilizers or growth

media in plants (Nario et al., 2003), bacteria (reviewed in (Gtari et al.,

2012) and mammals (discussed in [Duggleby & Waterlow, 2005]) to

determine bio-distribution and clearance of nutrients and metabolites

in the organism labelled with 15N (Bos et al., 1999, De Preter et al.,

2004; Moughan et al., 1998; Nario et al., 2003; Weijs et al., 1996).

In particular, in aquaculture, proteins labelled with 15N protein have

been administered to gilthead seabream (Sparus aurata) (Felip et al.,

2012), Atlantic halibut (Hippoglossus hippoglossus) (Fraser et al., 1998)

and rainbow trout (Oncorhynchus mykiss) (Beltrán et al., 2009) to eval-

uate protein bio-distribution. Besides, diets enriched with 15N have

been used to study protein synthesis in fish (Carter et al., 1994).

In this work, we propose to use the essential amino acid leucine

enriched with15N as a marker in the diet to investigate the intake,

absorption, bio-distribution and evacuation of administered food

(Bogatyreva et al., 2006). 15N-leucine will be digested and absorbed by

TABLE 1 Diet composition

Ingredients Content(%)

Crude protein 48

Lipids 20.5

Humidity 11

Cenizas 11

Crude Fibre 2.5

Ingredients used in the food formula: Fish meal, fish oil, vegetable oil,

soy lecithin, corn protein concentrate, soy protein concentrate, soy and/or

derivatives, blood meal/hemoglobin, wheat gluten, sunflower meal, poul-

try by-products, wheat and/or derivatives, binders, betaine, inorganic phos-

phate, corn derivative, full vitamin premix, mineral premix, methionine,

lysine, antioxidants, astaxanthin, vitamin C monophosphate and pea or pea

derivative

the fish, allowing them to trace it and quantify itsmetabolism in tissues

and organs in time.

2 MATERIALS AND METHODS

2.1 Fish maintenance

The experiments were performed in Atlantic salmon (Salmo salar)

weighing 100–120 g (20–23 cm). Fishes were kept in freshwater tanks

of 30 L at a density of 14 kg/m3, a temperature of 15◦C, and an oxygen

rate of 8–9.5 mg/L (Rivas-Aravena et al., 2015). Fishes were fed man-

ually at 13:00 hours. During the acclimatization period, it will reach a

feeding regime of 1% of the fish weight.

2.2 Labelling food

The food was mixed with 0.5 mL of a solution of 0.18 M 15N-leucine

(Sigma-Aldrich) and 0.3 mL of vegetable oil per gram of a commercial

pellet (size 50, Ewos, for composition, see Table 1). The 15N-leucine

foodwas dried for 24 hours at 30◦C.

2.3 Feeding

Previous studies of the food digestion in salmonids and other teleost

indicate that the stomach is filled about 5 hours after feeding and

remained empty about 14 hours after feeding. The intestine content

peaked between 12 and 14 hours after feeding. These parameters

depend on the amount and composition of the diet, the absorption

of nutrients, and environmental conditions such as temperature (Aas

et al., 2017;Bravoet al., 2018;Magnuson, 1969; Sveier et al., 1999).We

choose to perform the analysis at 14 hours after feeding to ensure that

the food had left the stomach and the nutrients have been absorbed in

the intestine.
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To set the time of food digestion, fisheswere fed for 1 or 5 dayswith
15N-leucine-labeled food in a proportion of 1% of the fish weight (two

fishesper group).No consumed foodwas collected30minafter feeding

and faeces were collected daily using a fish net. Fourteen hours after

the last feeding, fishes were sacrificed by immersing them in an excess

of Benzocaine.

Once it was known, the proper time formarker detection on fish tis-

sues, fishes (n = 4) were fed once, and 14 hours later they were sacri-

ficed for the analysis.

2.4 Sampling

The fish was dissected in gills, fins (including dorsal, caudal, pectoral,

anal and ventral fins), mouth, head, brain, spleen, heart, liver, kidney,

oesophagus, pyloric caeca, stomach, gut + anus and trunk. The trunk

corresponds to the muscular tissue from the operculum until the cau-

dal fin including the skin, vertebral column, vertebral arches and ribs.

2.5 Total nitrogen and 15N determination

Total nitrogen (Nt = 14N + 15N) was quantified in the samples by the

Kjeldahl method (Kjeldahl, 1883) and 15N was quantified by optical

spectroscopy emission (Faust & Sebastianelli, 1987), with an emission

spectrometer 15N analyser NOI-6 PC as has been described (Nario

et al., 2003). The content of 15Nwas reported in units of 15N atom per-

cent excess (atom % excess 15N). In this methodology, all 15N enriched

is quantified over the background, not requiring a negative control.

2.6 Calculation

Nitrogen Use Efficiency (NUE) was determined as has been described

(Zapata, 1990).

NUE = 100 × Nddf (mg) in tissue∕Nt in administered food

where

Nddf =

(
atom% excess 15N in tissue

)
∕
(
atom% excess 15N in labelled food

)
.

An example of the calculation of NUE is shown in the Supporting

information.

2.7 Statistics

Statistical analysis of NUE result was performed with Kruskal–Wallis

One-way ANOVA on rank tests followed by post-hoc Dunn’s multiple

comparison tests. Differenceswith a p-value lower than0.05were con-

sidered significant. All the statistical analysis was conducted on Prism

software.

3 RESULTS

3.1 Evaluation of 15N incorporation in fish tissues
on time

To establish the experimental conditions to perform the analysis of

food intake, a first experiment was planned for determining when the

marker was incorporated and detected in the fish’s gastrointestinal

tract, for studying afterwards the bio-distribution of the marker on

the whole fish. For this, only two fishes, Atlantic salmon (100 g) were

fed once a day for 1 or 5 days with 15N-leucine- labelled food and the

absorption of 15N-leucine in the gastrointestinal tract was analyzed

after 14 hours from the last feeding. This analysis was performed with

two fishes per treatment for timely detection of the tracer into the

organism required to evaluate its bio-distribution in subsequent stud-

ies.Nt contentwasdetermined in the gastrointestinal tract: gut, pyloric

caeca, oesophagus, stomach and liver. Additionally, Nt was quantified

in intestinal contents and excreted faeces. In Figure 1, it is observed

that the liver, gut and stomach contain more Nt than oesophagus and

pyloric caeca, and the content of Nt in tissues from the gastrointestinal

tract and the intestinal contents remain constant between the first to

the fifth day.

Detection of 15N in the gastrointestinal tract shows that there

was no difference in 15N incorporation in fish between days 1 and 5

(Table 2). On day 5, the content of 15N varied between both fishes,

the higher content in fish 4 is in agreement with a higher consump-

tion of food, in fact, the gut of fish 4 was filled with food, while fish

3′s intestine was empty. These results show that 15N was mainly

accumulated in the pyloric caeca and stomach, followed by liver and

intestine; 15N was detected in intestinal contents but not in excreted

faeces, indicating that 15N was utterly absorbed by the fish (data not

shown).

These results indicate that it is possible to detect the tracer in the

gastrointestinal tract after 14 hours of feeding with labelled food, indi-

cating that thebio-distributionof the tracer in the fish canbe evaluated

only after one feeding dose. Then, 14 hours after the fishes were fed

once, the marker bio-distribution was analyzed in all their tissues and

NUEwas determined.

3.2 Analysis of NUE in fish organs after 14 hours
of feeding labelled food

Fisheswere fedoncewith 15N-leucine labelled foodanddissectedafter

14 hours, quantifyingN content in gills, fins, mouth, head, brain, spleen,

heart, liver, kidney, oesophagus, pyloric caeca, stomach, gut+ anus and

trunk.
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F IGURE 1 Total nitrogen content in tissues from the gastrointestinal tract and intestinal contents. Fish fed 15N-leucine food for 1 or 5 days.
Total nitrogen content was quantified in pyloric caeca, oesophagus, stomach, liver, gut and intestinal contents by the Kjeldahl method (n= 2)

TABLE 2 15N content on the gastrointestinal tract and intestinal contents of fish

Day 1 Day 5

Atom% excess 15N Fish 1 Fish 2 Fish 3 Fish 4

Pyloric caeca 0.041 0.062 0.073 0.225

Oesophagus 0.039 0.056 0.039 0.053

Stomach 0.057 0.055 0.046 0.176

Intestinal contents 0.035 0.071 0.058 0.163

Liver 0.036 0.056 0.066 0.158

Gut 0.020 0.036 0.047 0.154

Fish fed 15N-leucine foodduring1or5days. Fishesweredissected in pyloric caeca, oesophagus, stomach, liver andgut. Intestinal contentswere also analyzed.
15Nwas determined by optical spectroscopy emission and reported as atom% excess 15N (n= 2).

The Nt content in the spleen, heart, stomach, kidney, trunk, gut +

anus, liver and oesophagus are the highest, while pyloric caeca had the

lowest content of Nt (Figure 2).

The quantification of 15N atom in excess (%) in each tissue is shown

in Table 3. It is noteworthy that 15N above natural abundance was

found in all tissues of the fish after 14 hours of feeding. The percentage

of the 15N from the total Nwas higher in the first portion of the intesti-

nal tract (stomach, pyloric caeca, oesophagus) followed by the liver and

kidney. 15N was detected in a minor proportion in gills, mouth, spleen,

heart, brain, head, fins and trunk, and gut+ anus shows the lowest 15N

content.

The 15N atom excess (%) does not allow estimating the 15N-leucine-

food bio-distribution in the fish by itself. It is required to relate the 15N

atomexcess (%)with the total N content and the tissueweight to calcu-

late the NUE (Zapata, 1990), which is based on the mass balance prin-

ciple (EU-Nitrogen Expert Panel, EU Nitrogen Expert Panel, 2015). An

example of the calculation of NUE is shown in Supporting information.

TheNUE values show the distribution of 15N acquired from the food in

each tissue. The summation of the NUE of each organ permits to calcu-

late total NUE, representing the percentage of food consumed by the

fish. Total NUE was similar for each fish (fish 1: 67.1 %; fish 2: 57.3 %;

fish3: 63.5%and fish4: 61.4%)with anaverageof62.5%of 15N-leucine

food consumption.

The distribution of 15N was similar in tissues for every fish. From

total 15N consumed for fish, the trunk accumulated an average of

72.7% (Figure 3). In the gastrointestinal tract, 8.7 % of 15N is accu-

mulated mostly in pyloric caeca, mouth and stomach, and to a lesser

extent in gut + anus. Also, the NUE in the oesophageal, stomach, and

intestinal content and the faeces was 0.2, 0.9, 1 and 0%, respectively

(Table 4). This result indicates that all 15Npresent in foodwas absorbed

in the gastrointestinal tract, validating the efficiency of 15N-leucine as

amarker of food consumption and absorption in fish.
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F IGURE 2 Quantification of total nitrogen in fish 14 hours after feeding 15N-leucine food. Total nitrogen content was quantified by the
Kjeldahl method in each tissue from fish. Standard deviation is shown (n= 4)

F IGURE 3 Nitrogen use efficiency on each tissue from fish. NUE (15N yields per 15N-leucine food consumed) was determined in each tissue
14 hours after feeding 15N-leucine food (columns). The average NUE and the standard deviation are shown (n= 4). Statistical analysis was
performedwith Kruskal–Wallis One-way ANOVA on rank tests followed by post-hoc Dunn’s multiple comparison tests. *p< 0.01was considered a
significant change

Apart of the intestinal tract, 15N mostly accumulates on the head

(5.7 %), fins (3.7%), gills (2.4%), liver (1.8%) and kidney (1.4%), and in a

less proportion, 15N is detected in heart (0.3%), brain (0.3%) and spleen

(0.2%) (Figure 3, Table 4). This result shows that it is possible to deter-

mine the bio-distribution andmetabolization of 15N-leucine in fish.

All these results demonstrate that 15N isotope can be used to quan-

tify the intakeof food in fish and thebio-distributionof a labelled amino

acid in different tissues in the fish after only one dose of feed.

4 DISCUSSION

In this research, 15N-leucine-labeled food was used to feed fish to

quantify food consumption, and incorporation and bio-distribution of

labelled amino acid. The results showed that this methodology allows

analysing the food intake after only one administration of food. Indeed,

the gastrointestinal tract distribution of 15N is almost the same on day

1 or 5 after feeding.
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TABLE 3 Atom% excess 15N present on every tissue from fish

Atom% excess 15N± SD

Gills 0.039± 0.011

Fins 0.026± 0.005

Spleen 0.038± 0.009

Mouth 0.034± 0.020

Head 0.027± 0.006

Brain 0.031± 0.006

Pyloric caeca 0.063± 0.010

Heart 0.047± 0.011

Oesophagus 0.048± 0.002

Stomach 0.071± 0.023

Liver 0.055± 0.005

Gut+Anus 0.024± 0.004

Kidney 0.053± 0.007

Trunk 0.021± 0.002

Quantification of 15N in fish 14 hours after feeding 15N-leucine food, by

optical spectroscopy emission. Standard deviation is shown (n= 4).

TABLE 4 Nitrogen use efficiency for every tissue from fish

Nitrogen use efficiency

Gills 2.360± 0.857

Fins 3.639± 0.975

Spleen 0.152± 0.036

Mouth 2.695± 1.396

Head 5.671± 1.207

Brain 0.164± 0.0460

Pyloric caeca 4.663± 1.880

Heart 0.265± 0.048

Oesophagus 0.7709± 0.067

Stomach 1.324± 0.444

Liver 1.830± 0.152

Gut+Anus 0.180± 0.020

Kidney 1.436± 0.125

Trunk 72.707± 5.718

NUE was determined according to supplementary information. Standard

deviation is shown (n= 4)

Nt was quantified in each organ and tissue, responding to the pro-

tein content in the tissue and its function. For example, the pyloric

caeca, brain and head showed the lower Nt content in agreement with

the high proportion of fat in these tissues. Trunk comprises the higher

quantity of Nt because it is constituted mainly of muscular tissue. Sim-

ilarly, the high amount of Nt in the heart, spleen, kidney and stomach

correlates with its high content of themuscular and connective tissue.

Elevated levels of 15N were present in all tissues of the fish.

This detection indicates that 15N-leucine was rapidly absorbed after

food consumption. Indeed, it was achieved that all 15N-leucine was

adsorbed in the gastrointestinal tract, and not in excreted faeces.

NUE relates the 15N content in each tissue with its total N and

weight; consequently, NUE value denotes (i) the 15N uptake efficiency,

which is the ability of fish to take up 15N from food, and (ii) the use effi-

ciency of the absorbed 15N, that is the efficiency of each tissue to use

the absorbed 15N (Bos et al., 1999; Cantalapiedra-Hijar et al., 2018;

Congreves et al., 2021; De Preter et al., 2004; Moughan et al., 1998;

Nario et al., 2003;Weijs et al., 1996; Zapata, 1990). Regarding the 15N

uptake efficiency, NUE shows an average of 62.5% 15N incorporated in

the fish, indicating that 62.5% of foodwas consumed.

Concerning the use efficiency of the absorbed 15N, organs contain-

ing a high proportion of Nt and weight will have higher NUE values

compared with organs of low weight and Nt, regardless of their atom

% excess 15N, thus, 15N is distributed in decreasing order on the trunk,

head, pyloric caeca, fins, mouth, gills, liver, kidney, stomach, oesoph-

agus, heart, gut + anus, brain and spleen. The detection of 15N on

the first portion of the gastrointestinal tract (mouth, pyloric caeca and

stomach) denotes a rapid absorption of 15N-leucine after the consump-

tion before the alimentary bolus arrived at the oesophagus. On the

other hand, the high NUE value in the pyloric caeca could be because

this organ has a broad absorption surface.

The absorbed 15N-leucine gets into the bloodstream, where they

can be taken up by all cells of the body. The branched-chain Leu enters

into the cell mediated by transporters (Brosnan & Brosnan, 2006).

Once inside the organs and tissues, the 15N-leucine can follow an

anabolic pathway forming a part of new proteins or a catabolic path-

way to generate energy. In ammoniotelic teleost, amino acid catabolism

occurs in the liver, kidney, muscles and gills. The first product of amino

acid degradation is ammonium,which is excreted through the branchial

epithelium (Kaushik et al., 1983). These antecedents are congruent

with that of liver, kidney, muscles, and gills show high NUE values, the

trunk being the area of highest deposition of 15N-leucine.

Leucine passes through the blood–brain barrier to participate in the

production of brain neurotransmitters. In the cell to produce gluta-

mate, the leucineNH3 group is transferred to alpha-ketoglutarate (Ere-

cińska & Nelson, 1990; Yudkoff, 1997). Consequently, 15N detection

in the brain agrees with its high leucine and glutamate content. Also,

ammonia can be accumulated in the brain of ammoniotelic fish, con-

tributing to the detection of 15N in the fish brain (reviewed in Chew

et al., 2005; Ip et al., 2004).

Since the measurement was made at early feeding times, the

branchial and urinary excretion of ammonia was not achieved. How-

ever, the gills show an NUE value higher than other organs. This could

be explained by the detection of the beginning of ammonia excretion

following the 15N-leu metabolism (reviewed in Wilkie, 2002), since

some reports show that 40–60% of the nitrogen intake from food is

excreted within 24 hours (Ip et al., 2004; Lim et al., 2001).

The use of 15N to determine the ileal endogenous amino acid

digestibility has some limitations in birds and pigs. In birds, it has

been shown that results of using 15N delivered by intravenous infusion

depend on various factors such as the intake of anti-nutritional agents,

age, the diet itself, the administrationway, among others (Soomro et al.,
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2017). In pigs, the 15N-leucine infusion technique may overestimate

the ileal endogenous nitrogen losses (Leterme et al., 1998). Neverthe-

less, the information provided for quantifying food consumption in fish

will be valuable for testing food preference, developing strategies for

minimizing food losses and improving administration methodology. In

this way, the aquaculture companies will be able to reduce their food

expenses, improvingmanagement techniques,while themanufacturing

companies will be able to optimize the food, generate more palatable

food for the fish or adjusting the nutrients. In particular, information on

the changes in the intake of food in different conditions during produc-

tion would improve the flattering in the fish production.

Moreover, the use of 15N is not restricted to the quantification of

food but any oral treatment applied on aquaculture and for any aquatic

organism that could be farmed. This versatile tool will allow improving

many areas of aquaculture production, making this industry more sus-

tainable.

5 CONCLUSIONS

In conclusion, our results show that to trace the food in fish, 15N can be

used as a tool to evaluate the oral intake of food in fish, quantifying the

effective ingestion andabsorptionby the fish. Itwasdemonstrated that

food labelled with 15N-leucine is absorbed as soon as 14 hours after

feeding, and that bio-distribution shows that the tracer accumulates in

the trunk, head, pyloric caeca, fins, mouth, gills, liver, kidney, stomach,

oesophagus, heart, gut+ anus, brain and spleen.
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