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Background: MicroRNAs have been implicated in the pathogenesis of rheumatoid

arthritis (RA), obesity, and altered metabolism. Although RA is associated with both

obesity and altered metabolism, expression of RA-related microRNA in the setting

of these cardiometabolic comorbidities is unclear. Our objective was to determine

relationships between six RA-related microRNAs and RA disease activity, inflammation,

body composition, and metabolic function.

Methods: Expression of plasma miR-21, miR-23b, miR-27a, miR-143, miR-146a,

and miR-223 was measured in 48 persons with seropositive and/or erosive RA (mean

DAS-28-ESR 3.0, SD 1.4) and 23 age-, sex-, and BMI-matched healthy controls. Disease

activity in RA was assessed by DAS-28-ESR. Plasma cytokine concentrations were

determined by ELISA. Body composition was assessed using CT scan to determine

central and muscle adipose and thigh muscle tissue size and tissue density. Plasma

and skeletal muscle acylcarnitine, amino acid, and organic acid metabolites were

measured via mass-spectroscopy. Plasma lipoproteins were measured via nuclear

magnetic resonance (NMR) spectroscopy. Spearman correlations were used to assess

relationships for microRNA with inflammation and cardiometabolic measures. RA and

control associations were compared using Fisher transformations.

Results: Among RA subjects, plasma miR-143 was associated with plasma IL-6

and IL-8. No other RA microRNA was positively associated with disease activity or

inflammatory markers. In RA, microRNA expression was associated with adiposity, both

visceral adiposity (miR-146a, miR-21, miR-23b, and miR-27a) and thigh intra-muscular

adiposity (miR-146a and miR-223). RA miR-146a was associated with greater

concentrations of cardiometabolic risk markers (plasma short-chain dicarboxyl/hydroxyl

acylcarnitines, triglycerides, large VLDL particles, and small HDL particles) and lower

concentrations of muscle energy substrates (long-chain acylcarnitines and pyruvate).

Despite RA and controls having similar microRNA levels, RA, and controls differed in
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magnitude and direction for several associations with cytokines and plasma and skeletal

muscle metabolic intermediates.

Conclusion: Most microRNAs thought to be associated with RA disease activity and

inflammation were more reflective of RA adiposity and impaired metabolism. These

associations show that microRNAs in RA may serve as an epigenetic link between RA

inflammation and cardiometabolic comorbidities.

Keywords: rheumatoid arthritis, microRNA, metabolomics, skeletal muscle, obesity, lipoproteins, disease activity

INTRODUCTION

MicroRNAs (miRNAs) are small, non-coding RNAs, ∼22
nucleotides long, that regulate post-transcriptional gene
expression (1). miRNAs are synthesized by multiple cells and
tissues. While miRNA can be passively released upon injury,
active release of miRNA in vesicles or exosomes allows miRNA to
communicate in autocrine and paracrine fashions. Upon cellular
uptake, miRNAs repress protein synthesis by cleaving or blocking
translation of target mRNA (2). Individual miRNAs can have one
hundred or more mRNA targets across multiple cells and organs
systems, while individual mRNA can be bound and repressed
by many miRNAs (3). Altered miRNA expression is associated
with many disease states (4) and has been implicated in the
pathogenesis of autoimmune disease, including rheumatoid
arthritis (RA) (5, 6). Thus, miRNAs have been proposed as both
RA biomarkers and therapeutic targets (7, 8).

In addition to autoimmune disease, miRNA contribute to

the pathogenesis of sarcopenia (9) and obesity (10). However,
evaluation of miRNAs in co-morbid disease states, including

RA and its associated comorbidities, has received less attention.

Despite revolutionary progress in the management of RA
inflammation over the past few decades, patients with RA are
still at high risk for sarcopenic obesity—decreased skeletal muscle
mass with increased fat mass—which contributes to increased
risks of disability, cardiovascular disease (CVD), and mortality
(11, 12). RA development, severity, and poor treatment responses
are tied to obesity (13). Also, RA is associated with sarcopenia,
altered skeletal muscle remodeling, and impaired oxidative
metabolism (14, 15). While these metabolic impairments in RA
are likely driven in part by epigenetic dysregulation (16), it
is unclear whether RA-related miRNAs contribute to the RA
comorbidities of obesity and altered metabolism. Additionally,
it is unclear how complex associations between miRNAs, RA
inflammation, obesity, and metabolism impact the potential
for miRNAs to be used as biomarkers and therapeutic targets
in RA.

In the present study, we measured plasma expression of

six miRNAs proposed to be biomarkers of RA inflammation:
miR-21 (17), miR-23b (18), miR-27a (19), miR-143 (20), miR-
146a (21), and miR-223 (22). Here, we evaluated relationships

between miRNA expression and measures of inflammation,
adiposity, and altered metabolism. To better understand RA
miRNA specific effects, we then compared RA plasma expression
of each miRNA to age-, gender-, and race-matched healthy
controls. We hypothesized that some miRNAs would reflect RA

disease activity, while others would better reflect obesity and
metabolic alterations.

PATIENTS AND METHODS

Design and Participants
In a cross-sectional design, patients with RA and matched
controls were recruited to participate as previously reported (15).
RA subjects (n = 48) met American College of Rheumatology
1987 criteria (23); were seropositive (positive rheumatoid factor
and/or anti-cyclic citrullinated peptide antibody) or had evidence
of erosions on hand or foot imaging; had no medication
changes within 3 months of enrollment; and were using ≤5mg
prednisone daily. Healthy control subjects (n = 23) without
a previous diagnosis of inflammatory arthritis or current joint
pain were matched to RA subjects by gender, race, age within
3 years, and body mass index (BMI) within 3 kg/m2. Subjects
were excluded with pregnancy, type 2 diabetes mellitus, or
known coronary artery disease. This study complied with the
Helsinki Declaration and was approved by the Duke University
Institutional Review Board.

Outcome Measures
All subjects underwent assessments as previously reported and
described (15, 24), which included questionnaires, rheumatologic
physical exam, fasting phlebotomy, computed tomography (CT)
imaging of abdomen and thigh, and vastus lateralis muscle
biopsies. RA disease activity wasmeasured by theDisease Activity
Score in 28 joints (DAS28) with erythrocyte sedimentation
rate (ESR) (25). Plasma inflammatory marker and cytokine
concentrations were determined by immunoassay (24). CT
scan analyses were performed to determine central and muscle
adipose and thigh muscle tissue size and tissue density (greater
tissue density is indicative of less inter-muscular adipose tissue)
(24). Standard Bergstrom needle muscle biopsies were performed
on the vastus lateralis (26). All plasma and muscle tissue samples
were stored at−80◦C until analyses.

Analyses of plasma inflammatory markers, plasma, and
skeletal muscle metabolic intermediates (acylcarnitines, amino
acids, organic acids), and plasma lipoproteins were previously
described in detail as follows. Plasma concentrations of
inflammatory cytokines interleukin (IL)-1β, IL-6, IL-8, tumor
necrosis factor (TNF)-α were measured via enzyme-linked
immunosorbent assay (ELISA) (15). Plasma and skeletal muscle
acylcarnitines were measured via targeted mass-spectroscopy
(15, 27, 28). Skeletal muscle organic acids were measured
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via gas chromatography–mass spectrometry (GC/MS) (27,
29). Plasma lipoproteins were measured via nuclear magnetic
resonance (NMR) spectroscopy (30, 31), while total cholesterol,
triglycerides, LDL cholesterol, and HDL cholesterol were
measured using standard automated methods.

Plasma miRNA Expression
miRNA was extracted from plasma samples using the miRCURY
RNA Isolation kit—Biofluids from Exiqon (Denmark). Using
reverse transcription, cDNAswere generated frommiRNAs using
the Universal cDNA Synthesis kit from Exiqon (No.203301). The
miRNA PCR primer set, based on the SYBR Green miRCURY
locked nucleic acids (LNA) detection system from Exiqon, was
used according to the manufacturer’s instructions to profile
plasma expression of hsa-miR-21-5p (YP00204230), hsa-miR-
23b-3p (YP00204790), hsa-miR-27a-3p (YP00206038), hsa-miR-
143-3p (YP00205992), hsa-miR-146a-5p (YP00204688), and hsa-
miR-223-3p (YP00205986). Levels of miRNAs were normalized
to a reference hsa-miR-191-5p (YP00204306) and reported as
delta cycle threshold (1Ct), where higher values were equal to
more abundant expression.

Statistical Analysis
Participant characteristics (Table 1) and plasma miRNAs
(Figure 1) were compared in RA vs. control subjects using
two sample t-tests or Wilcoxon rank-sum tests dependent on
whether data conformed to a normal distribution. Analyses of the
metabolomic data of the combined RA and control subjects were
performed separately for plasma (Table 2) and skeletal muscle
(Table 3). Briefly, metabolic intermediates were standardized
and reduced using principal components analysis (PCA) with
varimax rotation to five factors, each with an eigenvalue >1.0.
For each factor, individual metabolites with a factor load
>0.4 were reported as factor components. Factor scores were
computed for each individual, and correlations between factor
scores and clinical assessments were evaluated using Spearman’s
rho. Strengths of associations for the two groups were compared
with Fisher r-to-z transformations (32). All statistical analyses,
besides Fisher transformations, were performed using SAS
9.4 (SAS, Cary, NC). Statistical significance was set at P-value
<0.05. Data are available from the corresponding author upon a
reasonable request.

RESULTS

Associations Between MicroRNAs and
Markers of RA Disease Activity,
Inflammation, Adiposity, and Altered
Metabolism in RA
In RA, plasma miR-143 was positively related to RA-related
systemic inflammation (plasma IL-6 and IL-8) (Table 4), however
no miRNA was significantly associated with disease activity
(DAS-28; range 0.6–6.4), ESR, or plasma high sensitivity c-
reactive protein. miR-21 was associated with less systemic
inflammation, greater adiposity, and an altered, pro-atherogenic
plasma lipoprotein profile. miR-146a was associated with greater

TABLE 1 | Participant characteristics.

Variable Rheumatoid

Arthritis

(n = 48)

Controls

(n = 23)

Age (years) 55.1 (13.1) 50.7 (13.4)

Gender

Female 33 (68.8%) 17 (73.9%)

Race

Caucasian 34 (70.8%) 17 (73.9%)

African American 13 (27.0%) 6 (26.1%)

Asian/Pacific Islander 1 (0.2%) 0

Disease duration (months) 144.3 (130.8) N/A

Rheumatoid factor positive 42/47 (89.4%) N/A

Anti-cyclic citrullinated antibody positive 21/22 (95.6%) N/A

Erosions present on radiographs 21/38 (55.2%) N/A

DAS-28 mean 3.0 (1.4) N/A

BMI (kg/m2) 30.3 (7.3) 27.8 (6.0)

Waist circumference (cm) 94.7 (16.5) 89.6 (15.0)

Data are presented as means (SD) for continuous variables and number (percentages) of

participants for dichotomous variables. No significant differences by statistical analyses

appeared for all Rheumatoid Arthritis vs. Control comparisons.

DAS-28, disease activity score in 28 joints; BMI, body mass index; N/A, not applicable.

FIGURE 1 | Plasma microRNA expression in rheumatoid arthritis compared to

controls. Results are graphically displayed in box plots as medians,

inter-quartile ranges (box), and upper and lower 25% of data values, excluding

outliers (whiskers) for plasma expression of miR-21, miR-23b, miR-27a,

miR-143, miR-146a, and miR-223 in rheumatoid arthritis (n = 48) and age-,

gender-, and BMI-matched control subjects (n = 23). Plasma microRNA

expression is reported as delta cycle threshold (1Ct), where higher values are

equal to higher expression. No significant group differences were seen in

plasma microRNA expression (P > 0.05 for all).
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TABLE 2 | Plasma metabolite principal component analysis.

Plasma

Factor

Name Individual components

1 Medium-chain

acylcarnitines

C10, C8, C12, C12:1, C14:1, C16:1,

C10:1, C6, C14, C5-DC, C16:2,

C14:2, Pro

2 Long-chain

hydroxyl/dicarboxyl

acylcarnitines

C18:1, C16, C20-OH/C18-DC,

C18:1-OH/C16:1-DC,

C16-OH/C14-DC, C20, C18:1-DC,

C18:2, C18,

C16:1-OH/C14:1-DC, C4-OH,

C14-OH/C12-DC, C14:1-OH,

C18:2-OH

3 Branched chain

amino acids

Met, Leu/Ile, Val, C3, Tyr, C5, Ser,

Orn, Phe, His,

C5-OH/C3-DC

4 Short-chain

dicarboxyl/hydroxyl

acylcarnitines

C6-DC/C8-OH, C4-DC/Ci4-DC,

C8:1, C10:3, C2, C4/Ci4, C0,

C10-OH/C8-DC, C8:1-OH/C6:1-DC,

C8:1-DC, C10:2

5 Non-branched

chain amino acids

Asx, C5:1, Ala, Arg, Gly, Cit

Results of principal component analysis from plasma metabolites in combined RA and

control groups are presented.

adiposity, pro-atherogenic lipoproteins, and altered plasma
(Table 2) and skeletal muscle metabolic intermediates (Table 3).
miR-23b and miR-27a were predominantly associated with
adiposity while miR-223 was predominantly associated with
increased thigh muscle fat, and altered plasma metabolic and
lipoproteins profiles, namely small HDL particles, plasma short,
and medium chain acylcarnitines and non-branched chain
amino acids.

MicroRNA Associations With Markers of
Inflammation and Altered Metabolism Are
Different in RA Compared to Controls
There were no differences in RA and control plasma miRNA
expression levels (Figure 1), but RA and controls differed
in miRNA associations. In controls, miR-143 was negatively
correlated with plasma IL-8 (Supplemental Table 1; r = −0.34),
which significantly differed from the positive association in
RA (r = 0.33; Fisher r-to-z P < 0.05). In controls, miR-
146a was positively correlated with plasma branched chain
amino acids (Table 2) (Supplemental Table 1; r = 0.45) and
skeletal muscle long-chain acylcarnitines and pyruvate (Table 3)
(Supplemental Table 1; r= 0.08), differing significantly from the
negative associations in RA (r = −0.09 and −0.42, respectively;
Fisher r-to-z P < 0.05 for both).

DISCUSSION

In this cohort of established RA, several plasma miRNAs showed
unique patterns of association with systemic pro-inflammatory
cytokines, adiposity, and impaired metabolism. Among six
miRNA selected based on prior associations with RA disease

TABLE 3 | Skeletal muscle metabolite principal component analysis.

Muscle

Factor

Name Individual components

1 Skeletal muscle

long-chain

acylcarinitines,

pyruvate

mC20:3, mC18:1, mC22:5, mC18:2,

mC22:4, mC20:4, mC20:2, mC18:3,

mC20-OH/C18-DC/C22:6, mC20:1,

mC16:1,

mC16:2-OH/C14:2-DC, mC16,

mC22:3, mC18, mPyruvate, mC20,

mC22:1

2 Skeletal muscle

medium-chain

hydroxyl/dicarboxyl

acylcarnitines

mC8, mC10, mC12:1, mC14:2,

mC14:1, mC10:1, mC6, mC14,

mC16:2, mC12, mC14:3,

mC14:2-OH/C12:2-DC, mC16:3,

mC12:1-OH/C10:1-DC,

mC14:1-OH/C12:1-DC,

mC4/Ci4, C6-DC/C8-OH:1,

mC12:2-OH/C10:2-DC, mC5

3 Skeletal muscle

long-chain

hydroxyl/dicarboxyl

acylcarnitines,

lactate, malate,

fumarate

mC16-OH/C14-DC,

mC18:1-OH/C16:1-DC,

mC18:2-OH/C16:2-DC,

mC18-OH/C16-DC,

mC18:3-OH/C16:3-DC,

mC12-OH/C10-DC,

mC14-OH/C12-DC,

mC16:1-OH/C14:1-DC,

mC10-OH/C8-DC,

mC20:3-OH/C18:3-DC,

mC16:3-OH/C14:3-DC, mC22,

mMalate,

mC20:1-OH/C18:1-DC, mLactate,

mC12:2, mFumarate

4 Skeletal muscle

amino acids

mMet, mVal, mPro, mPhe, mGly,

mLeu/Ile, mTyr, mHis, mAla, mSer,

mOrn, mC0, mArg, mCit, mC5:1,

mC3

5 Skeletal muscle

short-chain

acylcarinitines,

citrate, succinate

mC4-DC/Ci4-DC, mC8:1, mC7-DC,

mGlx,

mC8:1-OH/C6:1-DC, mC2,

mC8:1-DC, mC10:2, mCitrate,

mC10:3, mC3-DC, mSuccinate

Results of principal component analysis from skeletal muscle metabolites in combined RA

and control groups are presented.

m (skeletal muscle).

activity and/or inflammation, only miR-143 was reflective of RA
systemic inflammation. Rather, plasmamiRNAs in our RA cohort
associated with measures of adiposity and metabolic alteration.
These unique and unexpected associations, along with multiple
associations that significantly differed from those of matched
controls, highlight the complexity of miRNA functions, especially
as they contribute to RA and associated comorbidities.

In contrast to previous reports in the literature (7), we
did not find significant associations between inflammation
and miR-146a. Inflammation is expected to induce miR-146a
expression as part of a feedback mechanism to down-regulate the
inflammatory response, including acute inflammation as well as
Th1-mediated interferon responses (33–35).We hypothesize that
our findings reflect differences in the inflammatory signatures
of the RA patients with long-standing disease in our cohort
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TABLE 4 | Plasma microRNAs relationships in rheumatoid arthritis (n = 48).

Variable Plasma microRNAs (1Ct)

miR-21 miR-23b miR-27a miR-143 miR-146a miR-223

Age (years) 0.39* 0.39* 0.11 0.03 0.34* 0.37*

Gender (female) −0.16 0.01
†

−0.02 0.05 −0.03 0.16
†

Disease activity (DAS28) −0.04 0.01 −0.01 0.25 0.03 0.09

ESR (mm/hr) −0.12 0.01 0.08 0.24 0.06 0.07

Plasma hsCRP (mg/L) −0.19 0.00 0.08 0.08 0.10 0.05

Plasma IL-1β (pg/ml) –0.31* 0.04 −0.12 −0.19 −0.14 0.16

Plasma IL-6 (pg/ml) −0.07 −0.06 0.11 0.29* 0.10 0.14

Plasma IL-8 (pg/ml) 0.09 0.09 0.08 0.33*
†

−0.04 −0.20

Plasma TNF-α (pg/ml) −0.08 0.03 0.00 0.08 −0.08 −0.02

BMI (kg/m2) 0.19 0.23 0.12 0.14 0.41* 0.11

Waist circumference (cm) 0.29* 0.23 0.28 0.22 0.42* 0.07

Visceral adiposity (cm2) 0.31* 0.42* 0.40* 0.09 0.49* 0.22

Abdominal SQ adiposity (cm2) 0.05 0.07 0.03 0.08 0.26 0.00

Thigh IM adiposity (cm2) 0.16 0.07 0.00 0.12 0.30* 0.02

Thigh SQ adiposity (cm2) 0.02 0.03 0.07 0.13 0.28 −0.03

Thigh muscle area (cm2) 0.00 −0.07 −0.01 0.03 0.06 −0.09

Thigh muscle density (Hu) −0.26 −0.25 −0.12 −0.15 –0.35* –0.33*

Abdominal liver density (Hu) 0.00 −0.21 −0.23 −0.14 −0.17 −0.24

Plasma metabolite factor 1–

medium chain ACs

0.12 0.22 −0.13 0.09 0.22 0.31*

Plasma metabolite factor 2–

long chain OH/DC ACs

0.14 0.09 0.08 0.05 0.18 0.02

Plasma metabolite factor 3–

branched chain AAs

−0.01 −0.05 −0.04 0.04 −0.09
†

−0.19

Plasma metabolite factor 4–

short chain DC/OH ACs

0.11 0.23 −0.16 −0.09 0.32* 0.37*

Plasma metabolite factor 5–

non-branched chain AAs

0.12 0.34* 0.13 0.04 0.18 0.30*

Muscle metabolite factor 1–

long chain ACs, pyruvate

−0.28 −0.23 −0.27 −0.17 –0.42*
†

−0.18

Muscle metabolite factor 2–

medium chain OH/DC ACs

−0.10 −0.03 0.04 0.02 −0.01 −0.02

Muscle metabolite factor 3–

long chain OH/DC ACs, malate,

lactate, fumarate

−0.25 −0.18 −0.06 0.13 –0.33* −0.28

Muscle metabolite factor 4–

AAs

0.13 −0.03 0.08 −0.05 0.08 0.05

Muscle metabolite factor 5–

short chain ACs, citrate,

succinate

0.08 −0.08 −0.11 −0.02 −0.01 −0.16

Total cholesterol (mg/dl) 0.13 0.19 0.13 −0.06 0.26 0.12

LDL-cholesterol (mg/dl) −0.04 0.05 0.07 −0.03 0.14 −0.01

HDL-cholesterol (mg/dl) 0.05 0.06 0.16 −0.07 0.06 0.08

Triglycerides (mg/dl) 0.29* 0.28 0.18 0.11
†

0.34* 0.20

Plasma Large VLDL-P (nmol/L) 0.29* 0.24 0.22 0.06 0.39* 0.15

Plasma Small VLDL-P (nmol/L) −0.03 −0.03 −0.14 −0.05 −0.18 −0.07

Plasma Large LDL-P (nmol/L) 0.09 0.15 0.16 0.08 0.08 0.13

Plasma Small LDL-P (nmol/L) 0.12 0.06 −0.06 0.03 0.22 0.15

Plasma Large HDL-P (µmol/L) 0.06 −0.02 0.02 0.02 −0.05 0.03

Plasma Small HDL-P (µmol/L) 0.20 0.18 0.11 0.01 0.31* 0.36*

Data are shown as Spearman correlation coefficients. miR, microRNA; 1Ct, delta cycle threshold; DAS28, Disease Activity Score-28; ESR, erythrocyte sedimentation rate; hsCRP, high

sensitivity c-reactive protein; IL, interleukin; BMI, body mass index; SQ, subcutaneous; IM, intramuscular; Hu, Hounsfield units; ACs, acylcarnitines; OH, hydroxyl; DC, dicarboxyl; AAs,

amino acids; VLDL, very low density lipoprotein; LDL, low density lipoprotein; HDL, high density lipoprotein; P, particle.

*p < 0.05 for Spearman correlation.
†
p< 0.05 for Fisher r-to-z transformation two-tailed comparisons of RA vs. control (i.e., RA correlation coefficients with opposite directions of magnitude, positive vs. negative, compared

to controls).
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as opposed to those with early, acute inflammatory disease. In
our cohort of established RA, miR-146a was instead associated
with multiple measures of adiposity as well as plasma short-
chain dicarboxyl/hydroxyl acylcarnitines, strong markers of
myocardial infarction and coronary artery disease risk (36).
Plasma miR-146a was also differentially associated with plasma
amino acids, as well as skeletal muscle long-chain acylcarinitines
and pyruvate, both key substrates for muscle energy generation,
compared to control subjects. These findings are supportive
of miR-146a’s role in modulating systemic metabolic function,
which appears to be altered in RA.

miR-146a mechanistically downregulates TNF-α-induced
adipogenesis (37, 38) and oxidative metabolism (39). Our
findings suggest that miR-146a expression is appropriate (i.e.,
increased in response to limit adipogenesis), but is unable to
adequately regulate specific metabolic processes due to altered
interaction with target mRNAs. Consistent with this hypothesis,
miR-146a polymorphisms are not more common in RA (40, 41),
but rather RA susceptibility is associated with polymorphisms in
known target mRNA binding sites (41).

miRNA alterations likely occur in other RA miRNAs,
including miR-143 and miR-223. For example, miR-143
functions to induce inflammation through activation of NF-
κB, and other studies show cellular expression of miR-143 is
increased in RA synovial tissue (20, 42). In our cohort, miR-143
was positively associated with plasma inflammatory cytokines
IL-6 and IL-8 in RA but negatively associated with plasma IL-8
in controls, indicating in RA, the miR-143 pro-inflammatory
stimulating response is overactive. In contrast, while miR-223
down-regulates inflammation through multiple mechanisms
(43, 44), counterintuitively, in RA, miR-223 expression is
increased in multiple sites, including PBMCs, synovial tissue,
and plasma (7). In our RA cohort, plasma miR-223 expression
did not differ from controls or associate with RA disease activity
or inflammation.

miR-223 is also associated with obesity (45) and HDL
molecules, which transport miR-223 for lipid metabolic
regulatory functions (46). We found RAmiR-223 associated with
thigh intramuscular fat, small HDL particles, plasma short, and
medium chain acylcarnitines and non-branched chain amino
acids. Thus, miR-223 alterations may contribute to incomplete
systemic beta-oxidation and amino acid catabolism reflecting an
obesity-related mitochondrial lipid overload state (47). Further
study regarding the effects of these miRNAs on metabolic
pathways is warranted.

While this study helps to inform how miRNAs likely exert
effects on multiple biologic pathways crucial to RA-associated
autoimmunity and impaired metabolism, the findings should
be viewed in the context of a few key limitations. First,
we did not find any significant differences in expression of
candidate plasma miRNA between established RA and control
subjects; in contrast, in larger cross-sectional cohorts, there
was differential plasma expression of miR-146a and miR-233
between cohorts (7, 48). Whether these findings are the result
of the heterogeneity of the RA subjects participating at different
investigational sites, low overall RA disease activity, small sample
size, or a lack of younger, early RA subjects in our cohort is

unclear. Interestingly, previous research shows that epigenetic
signatures differ in early vs. longstanding RA (49). Second,
the focus of this exploratory study was to identify possible
associations between plasmamiRNAs and clinical, inflammatory,
and metabolic factors to guide further in-depth research; thus, no
direct causal pathways were evaluated. Third, we did not choose
miRNAs based on microarray studies and thus our analyses
were limited to individually measured miRNAs in this study.
Finally, we measured miRNA expression only in plasma, and
not tissue specific sites, such as immune cells, adipose tissue,
or skeletal muscle. We note that quantification of circulating
miRNAs may not accurately reflect expression in the tissue
(i.e., skeletal muscle) (50). We did not measure the mode of
miRNA packaging, either into microvesicles or exosomes, or
attached to lipoproteins or other circulating proteins. Knowing
the site of miRNA expression, mode of packaging, and target
tissue or cellular site of mRNA regulatory function may be
helpful in order to better understand these complex miRNA
effector pathways.

In conclusion, multiple miRNAs in RA were associated
with inflammatory and metabolic pathways in an opposite
direction of both expected function and comparative findings
in controls. In contrast to previous studies, we found that RA
and matched controls had similar amounts of plasma miR-21,
miR-23b, miR-27a, miR-143, miR-146a, and miR-223; and
only miR-143 was positivity associated with inflammation
in RA. Conversely, in RA, miR-146a and miR-223 were
prominently associated with age, obesity, plasma and muscle
metabolic intermediates, and plasma lipoproteins. Taken
together, these findings show in the context of RA, miRNAs
influence multiple inflammatory and metabolic pathways
across a variety of cells and organ systems. These RA miRNA
associations with adipose tissue and metabolic alterations may
provide insight into epigenetic connections whereby chronic
inflammation leads to common RA comorbidities of obesity
and altered metabolism. Further research is needed to clarify the
multitude of effects that miRNAs influence in order to utilize
miRNAs as diagnostic tools and disease modifying therapies
in RA.
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