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Abstract: Pharmaceutical grade bentonite, containing a high amount of montmorillonite, enriched
with zinc (Zn) or copper (Cu) (ZnBent and CuBent, respectively) was used as the main component for
the creation of formulations for cutaneous use and tested for their antimicrobial capacity. Bentonite
(Bent) with added phenoxyethanol (PH) as a preservative and unmodified bentonite were used as
control groups. The mineralogical composition, structural state, and physical or chemical properties,
before and after the modification of the samples, were characterized utilizing X-ray Diffraction
Analysis (XRD), Fourier-Transform Infrared Spectroscopy (FTIR) and X-ray Fluorescence (XRF)
techniques, and Scanning Electron Microscope-Energy Dispersive Spectroscopy (SEM, SEM-EDS)
analyses. In addition, the profile of zinc and copper concentration from two types of surfaces ZnBent
and CuBent, and into Phosphate-Buffered Saline (PBS) are discussed. Finally, the formulations in
the form of basic pastes were challenged against bacteria, molds, and yeasts, and their performance
was evaluated based on the European Pharmacopeia criteria. The Cu-modified bentonite performed
excellently against bacteria and yeasts, while the Zn-modified bentonite only showed great results
against yeasts. Therefore, Cu-modified bentonite formulations could offer antimicrobial protection
without the use of preservatives.

Keywords: antimicrobial protection; bentonite; copper; topical formulation; zinc

1. Introduction

Clay minerals offer a great alternative for a vast variety of applications due to their
unique physical (small particle size and shape, high specific surface area, color, and texture),
chemical (low or null toxicity) [1], and physicochemical properties (high ion exchange
capacity, sorptive capacity) [2–4]. Specifically, they are used as topical semi-solid products
in the form of paste and poultices in the pharmaceutical and cosmetic industries. Before
considering their use for pharmaceutical—cosmetic preparations, certain pharmaceutical
tests (challenge test) should be performed, the results of which must meet the strict chemi-
cal, physical and toxicological standards laid down by the European Pharmacopoeia or the
United States Pharmacopoeia [4,5]. Many of the chemicals (parabens) used intensively in
pharmaceuticals and cosmetics preparations can be durable, bioactive, have a potential for
accumulation in the organism, as well as causing endocrine disorders [6–9]. Although the
acute toxicity of these chemicals is considered low, some of them cause serious environ-
mental impacts [10]. In cosmetology, clay minerals are used as protection from sunlight, in
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creams, powders, and emulsions [11]. The use of clay minerals in medicine is due to their as-
tringent and hemostatic action as well as the treatment of skin diseases [1,12]. In the field of
dermatology and cosmetics, their use is equally important and due to the ingredients they
contain, they prove to be beneficial against skin lesions in various parts of the body [1,13].
In addition, they act locally as antiseptics [14], disinfectants [14] anti-inflammatory [14–16],
as dermatological protections [14,15,17], as well as local anesthetics [13,18,19]. They have
been used as carriers and have great interest, especially when they are combined with
metals known for their antimicrobial and antibacterial properties [19–21]. Bentonites are
vastly used in the pharmaceutical and cosmetics industry, due to their healing and cosmetic
properties [4]. They are generally used in pharmaceutical and cosmetic applications for
their indirect antibacterial activity, controlled mainly by their very high cation exchange
capacity, high surface area, high swelling capacity, high water dispersibility, high absorp-
tion capacity, and non-toxic properties [13,22–24]. Bentonite consists chiefly of crystalline
clay minerals belonging to the smectite group [25]. The structure of the smectites is 2:1 and
consists of a central octahedral sheet of aluminum located between two tetrahedral sheets
of silicon dioxide. They have an oily appearance, odorless, soft texture, small particle size
(0.2–2 µm), high plasticity and viscosity, similar to skin pH, high swelling capacity high
exchange capacity cations (100–200 meq/100 g) [4,26–39] and color ranging from yellow,
pink, and gray [4,40].

Systemic antimicrobials are widely used to treat the vast majority of skin infections [40]
with the potential for systemic side-effects such as diarrhea and abdominal cramping,
while also increasing the antimicrobial resistance within intestinal microflora [41]. The
use of topical agents neglects such risks and adds certain advantages such as providing
a higher concentration of antibiotics to the affected area and lowering the quantity of
active ingredients needed [40]. Copper and zinc, are metals that have been used to create
alginate fibers [42,43] or other cosmetic and pharmaceutical formulations [44–47] and
are known for their anti-microbial and inhibitory action on microorganisms, and their
help in tissue regeneration without causing cytotoxicity problems in the human body.
Various studies have been performed to examine the antimicrobial activities of bentonite or
silver-modified bentonite [48–50]. However, due to the high cost of silver [50,51], its high
cytotoxicity [52–54], and the problem of 'argyria' after continuous use of silver [55], new
metals may be considered. Recently, Cu-loaded kaolinite showed excellent preservation
activity against bacteria and adequate population reduction for molds, while Zn-loaded talc
demonstrated significant antimicrobial protection on yeasts [56]. Modified bentonite with
metals like zinc or copper, which do not display the above-mentioned negative properties
of silver, has not been tested until now for the evaluation of antimicrobial protection in
topical use. The combined antimicrobial properties of bentonites and metals (zinc, copper),
the low risk of using them, as well as and the abundance of such materials in the markets
motivate our research team to conduct this research. The purpose was to determine the
suitability of using pharmaceutical-grade bentonites in topical administration in paste
form by enriching them with copper and zinc to develop the best possible antimicrobial
properties (Supplementary Materials).

2. Material and Methods
2.1. Materials

Pharmaceutical-grade bentonite was purchased from CHEMCO by Syndesmos S.A.
(Athens, Greece). The zinc (ZnCl2) and copper (CuCl2) precursors were purchased from
Chem-Lab (Zedelgem, Belgium).

2.2. Samples Preparation

To load the clay particles with Zn or Cu ions, the samples were saturated with 1 M
ZnCl2 and CuCl2 solutions respectively. The solutions were prepared by mixing the molar
mass of the chlorides with 1 L of distilled water [57].
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The bentonite sample and the solution were mixed (ratio of 10 g/150 mL), stirred for 10
min, and then the mixture was centrifuged. The separated chloride solution was disposed
of and refilled with the chloride solutions. This procedure was repeated five times [57]
and the samples were washed with distilled water to remove excess chloride. Finally, each
sample was dried and pulverized to powder. The samples obtained were labeled as CuBent
(Cu-bentonite) and ZnBent (Zn-bentonite). Also, the unmodified bentonite was labeled
as Bent.

The preparation of the pastes included the mixing of clay powders (25% w/w), with
starch (25% w/w), glycerin (5% w/w), and deionized water (45% w/w) and then stirring
until total homogeneity. Consequently, pastes containing unmodified bentonite powder
(Bentp), modified-clay powders (ZnBentp, CuBentp), and unmodified bentonite with
added phenoxyethanol (PHBentp) were created. The PHBentp sample was created by
replacing 1% w/w of water with 1% w/w phenoxyethanol that served as the preservative.
Each paste weighed 120 g [58–61].

2.3. Characterization
2.3.1. X-ray Diffraction Analysis

The X-ray diffraction technique was used to determine the mineralogical composition
of the samples. A Bruker D8 advance diffractometer (Bruker, Billerica, MA, USA) with
nickel-filtered copper Kα radiation was used complemented by DIFFRAC plus EVA12®

software (Bruker-AXS) [62] based on ICDD (International Centre for Diffraction Data)
Powder Diffraction File of PDF-2 2006. The XRD patterns were obtained between 2o and
60◦ at a scanning rate of 2◦/min. The samples were prepared by the dropper method.
Semi-quantitative analyses were performed by TOPAS 3.0® software (TOPAS MC Inc.,
Oakland, CA, USA), based on the Rietveld method refinement routine as well as by the
peak area method using the DIFFRAC plus EVA12® software and its “Area” tool. The
errors of each phase were estimated under 1%.

2.3.2. Scanning Electron Microscope-Energy Dispersive Spectroscopy

Images revealing the surface morphology of the clay particles were obtained by using
a scanning electron microscope SEM JEOL 6300 (JEOL, Tokyo, Japan) operating at 30 kV
with an energy dispersive spectrometer (EDS). By utilizing energy dispersive spectroscopy,
microelemental analysis was conducted and the presence of the metals was represented
by pseudocolorization. Carbon coating under vacuum on all samples was used for the
best efficiency.

2.3.3. Fourier-Transform Infrared Spectroscopy

Any structural change after the chemical modification was investigated using infrared
spectra obtained on a Nicolet 6700 Fourier Transform Infrared (FTIR) spectrometer from
Thermo Scientific™, (Thermo Scientific, Waltham, MA, USA) while IR source (wolfram
wire), KBr beamsplitter, and DTGS detector were used for measurement in the middle
IR region (MIR 4000–400 cm−1). The KBr pellet press technique (0.5–1 mg of sample
homogenized with 200 mg KBr) was also used to collect MIR transmission spectra. The
minimization of adsorbed water was achieved by heating the pellets overnight at 140 ◦C.
For each sample, 128 scans with a resolution of 4 cm−1 were recorded.

2.3.4. X-ray Fluorescence

The elemental analysis of the samples was conducted by X-ray fluorescence (XRF)
diffusion using a ZSX PRIMUS II, from Rigaku (Tokyo, Japan), with an elemental range of
Be to U.

2.3.5. Profile of Metals Concentration

In addition, zinc and copper profile concentrations for both types of surfaces Zn-
Bent and CuBent into PBS from Sigma-Aldrich (Darmstadt, Germany) were determined.
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Four different times were examined (t0 = 5 min, t1 = 30 min, t2 = 60 min, and t3 = 120 min),
while 5 mL of phosphate-buffered saline (PBS) was added each time. Phosphate-buffered
saline (PBS) is a buffer that is often used in biological research and studies because its
concentrations of ions and osmotic molecules match those of microorganisms. It is a saline
isotonic solution containing sodium phosphate, sodium chloride, and in some cases potas-
sium chloride and potassium phosphate. Specifically, one PBS buffer tablet was dissolved
in 200 mL of deionized water to give 0.01 M phosphate buffer, 0.0027 M potassium chloride,
and 0.137 M sodium chloride, pH 7.4, at 25 ◦C (Sigma-Aldrich, Merck KGaA, Darmstadt,
Germany). Specifically, four different falcons were made for each surface tested (ZnBent or
CuBent), each falcon containing 0.25 g of material. 5 mL of phosphate-buffered saline (PBS)
was then added to each of the eight falcons. PBS was in contact with the material for four
different reaction times (t0 = 5 min, t1 = 30 min, t2 = 60 min, and t3 = 120 min), with one
falcon of each material corresponding to one contact time. The samples for homogenization
were then stirred with the Vortex laboratory stirrer for 30 seconds and then centrifuged at
3000 rpm and then the solid was separated from the supernatant (liquid) by a pipette and
collected in falcons. The procedure for each surface was repeated three times (triplicate) to
create zinc and copper release curves of ZnBent and CuBent samples.

Subsequently, a specific quantity of samples ZnBent and CuBent were withdrawn in 5,
30, 60, and 120 min while nitric acid (2%) was used for metal dissolution and stabilization
for ICP-MS analysis. Zinc and copper concentrations were determined using the Optima
8000ICP-OES (Perkin Elmer, Inc., Waltham, MA, USA) instrument that specializes in the
determination of metals and trace elements. Argon was used with the ICP-OES system
while nitrogen for the optical purge gas. The wavelength used for Zn and Cu was 213.855
and 324.747 nm, respectively, while the plasma view for the metals was axial for both metals.
The experimental conditions used were: Plasma gas flow: 15 L/min, Auxiliary gas flow:
0.2 L/min, Nebulizer gas flow: 0.55 L/min, RF power: 1300 Watts, Purge flow: Normal,
Peristaltic pump flow rate: 1.5 mL/min. The average values and standard deviations
were estimated by three independent experiments Axis X: Exposure time (min), Axis Y:
Concentration (Cu/Zn mg L−1).

2.4. Statistical Analysis

The experimental sets were conducted in triplicate and the results were expressed as
mean ± standard deviation (SD) of measurements. Mean values were obtained from three
samples taken from three independent bioreactors characterized by the same operating
conditions. Statistically significant differences between data were evaluated using Student’s
t-test (Microsoft Office Excel 2007, Redmond, WA, USA) confidence interval for 95%
probability, and a value of p ≤ 5% was considered statistically significant.

2.5. Evaluation of Antimicrobial Protection

The Preservation Efficacy Test (PET), also known as the Challenge test, has been used
for the determination of each formula’s antimicrobial effectiveness. PET is a reference
method, primarily designed for multiuse water-soluble or water-miscible products, during
which, the formulation is challenged by several specified micro-organisms (i.e., bacteria,
yeasts, and molds), to evaluate if the formulation is adequately preserved. More specifically,
the test consists of challenging the preparation under test, with a prescribed inoculum of
suitable micro-organisms, storing the inoculated preparation at 20–25 ◦C, avoiding sunlight,
withdrawing samples from the container at specified intervals of time, and counting the
micro-organisms in the samples so removed. The preservative properties of the preparation
are adequate if, in the conditions of the test, there is a significant fall or no increase, as
appropriate, in the number of micro-organisms in the inoculated preparation after 2, 7, 14,
and 28 days. Results are expressed in log reduction values.
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3. Results and Discussion
3.1. X-ray Diffraction Analysis (XRD)

Figure 1 illustrates the XRD patterns of the unmodified bentonite, Zn modified ben-
tonite, and Cu modified bentonite. The main component of the samples is montmorillonite
with its characteristic peaks appearing at 14.48 Å and 4.44 Å, while quartz presence is
indicated slightly above detection limits as its two main peaks are slightly visible. Some
new peaks are revealed after the modification at 7.8 Å for ZnBent and 5.5 Å for CuBent.
This implies that new phases were synthesized during the modification process, possibly
salt compounds in the form of oxides in low amounts of 4% (PDF card numbers: 7-155
& 18-0439 for ZnBent and CuBent samples, respectively) as indicated by their relatively
low reflections. The absence of other impurities corresponds to the purity expected in
pharmaceutical clay.
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Figure 1. X-ray diffraction patterns of Unmodified Bentonite (Bent), Zinc Modified Bentonite (Zn-
Bent), and Copper Modified Bentonite (CuBent). (Legend: Mt: Montmorillonite, Zn Phase: Si-
monkolleite syn, Cu Phase: Copper chloride hydroxide).

3.2. Fourier-Transform Infrared Spectroscopy (FTIR)

The MIR spectra of bentonite were measured to obtain information on the composition
of initial (Bent) and modified (ZnBent, CuBent) samples. The spectra showed bands
characteristic for the dioctahedral smectite with low iron content (Figure 2). The stretching
region shows the typically broad band at 3623 cm−1 assigned to the vibrations of the
OH groups coordinated to octahedral cations (Al2OH, AlMgOH, and AlFe3+OH) [63].
The complex band in the 1100–1030 cm−1 region corresponded to the in-plane Si–O–Si
stretching vibrations of montmorillonite at 1035 cm−1, stretching vibrations of quartz
at 1090 cm−1 and from 2nd derivation of spectra (not shown) was observed weak band
assigned to Si-O perpendicular vibrations of montmorillonite at 1100 cm−1. In the bending
region, two peaks at 916 cm−1 and 844 cm−1 are related to δ (Al2OH) and δ (AlMgOH). The
Al–O–Si bending band appeared at 520 cm−1 and Si–O–Si bending at 466 cm−1 [63]. The
peak at 625 cm−1 was assigned to coupled Al–O out-of-plane and Si–O bending vibrations.
The quartz admixture was also found in the examined samples at 792 cm−1. By comparison
of the positions of the bands, no significant differences between samples were found.
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Figure 2. FT-IR spectra diagram of Bent, ZnBent, and CuBent and powder samples.

3.3. Surface Characterizations
Scanning Electron Microscope-SEM-Energy Dispersive Spectroscopy (SEM-EDS)

As shown in Figure 3, montmorillonite is in the form of thick flakes exhibiting irregular
and curling edges [64]. The clay particles are usually found as particle aggregates and not as
single particles. As a result, the particle (mainly particle aggregates) size ranges from 5 µm
to 30 µm which is a lot larger than montmorillonite's usual particle size. The distribution
of the metal ions is illustrated via elemental mapping utilizing energy dispersive X-ray
spectrometry. As seen in Figure 3, the metal ions are distributed homogenously and
densely upon the smectite crystals. This is the desired result, as microbial growth could
occur in large areas where metal ions are scarce or absent. Moreover, this distribution
validates the theory that the metals have not formed distinguishable aggregates, which
would be susceptible to mechanical removal, thus downgrading the antimicrobial potential
of the material.

3.4. Chemical Characterization
X-ray Fluorescence Spectroscopy Analysis (XRF)

Table 1 shows the trace elements present in each sample. The modified bentonite
is richer in copper and zinc for CuBent and ZnBent respectively in comparison to the
unmodified bentonite (Table 2).

Table 1. Major element composition (% oxides) (XRF) of Bent, ZnBent, and CuBent powder samples.

Oxide Bent ZnBent CuBent

SiO2 77.44 74.53 75.35
Al2O3 9.87 9.07 9.13
Fe2O3 0.8 0.69 0.83
MnO 0.01 0.01 0.00
MgO 4.53 3.75 3.78
CaO 0.78 0.3 0.21

Na2O 0.87 0.77 0.33
K2O 0.8 0.73 0.57
TiO2 0.07 0.06 BDL
P2O5 0.19 0.11 0.02
LOI 4.4 6.97 7.37
Sum 99.76 96.99 97.59

BDL = Below Detection Limit LOI = Loss of ignition.
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Table 2. Trace element composition (ppm) (XRF) of Bent, ZnBent, and CuBent powder samples.

Element Bent ZnBent CuBent

Cr 7 10 BDL
Co BDL BDL BDL
Cu BDL 3 45,637
Zn 97 38,266 37
Sr 91 43 42
Y 46 31 136
Hf 6 7 48
Pb BDL BDL 26

BDL = Below Detection Limit.

3.5. Profile of Metal Concentration

The concentration of Zn and Cu ions released from ZnBent and CuBent respectively
in the PBS is presented in Figure 4. The concentrations of both metals elevated rapidly
to a maximum value of 500 ppm (zinc) and 100 ppm (copper) after 5 min of contact time.
Regarding Zn, the concentration of zinc ions was decreased until reaching the minimum
value of 370 ppm at 60 min and then was increased again up to the value of 470 ppm
at 120 min. Statistically significant differences were reported between the sets of t0–t1,
t0–t2, t0–t3, t1–t2, t2–t3 (p < 0.05), while no difference was noted between set t1–t3 (p = 0.52).
Concerning, copper ions their concentration was decreased to 80 ppm at 30 min of contact
time and remained at this level until the 120 min mark. The concentration of free copper
ions decreases with the formation of oxides, while more copper ions are released from
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the smectite to compensate for this decrease until an equilibrium is achieved. Statistically
significant differences were reported between sets t0–t1, t0–t2, t0–t3, t1–t2, t2–t3 (p < 0.05),
while no difference was noted between set t1–t3 (p = 0.26). Additionally, it is worth noting
that the difference between the maximum concentrations of each metal can be attributed to
the adsorption preference of smectites between Zn and Cu ions. Sipos et al., (2018) [65],
and Baghenejad et al., (2016) [66] refer that Cu is characterized by higher sorption than
Zn in soils with smectite clay mineralogy. Specifically, the affinity sequence of the various
metals studied by Sipos et al. (2018) [65] is as follows: Pb > Cu > Cd > Zn.
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3.6. Challenge Test

There are several PET Protocols, like the compendial methods of European and U.S.
Pharmacopoeia, or ISO 11930. During this study, an alternative PET Protocol has been
used, known as mixed Protocol, which is based on the compendial protocols but is more
demanding [56]. The mixed protocol is based on the compendia methods and includes
eleven (11) Gram-positive and Gram-negative bacteria, yeast, and molds (Table 3). The
selection of the 11 stains is based on spoiling microorganisms usually found on cosmetics
production sites and are also representative of the contaminants that are likely to be
exposed, during the product's intended use. The contamination level is of the same level
with the compendial protocols (105–106 colony-forming units, cfu/g) and the key difference
lies in the mixed inoculation. Unlike the Compendial Pharmacopoeia tests and ISO 11930,
in which five specified micro-organisms are used as single strain inoculations, the PET
mixed protocol includes 11 specified micro-organisms used as grouped (mixed) inocula.
The multi-strain contamination simulates the real-life conditions and the increased number
of strains challenges in a greater level, the formulation under test. The mixed protocol
involves, for each group of test micro-organisms, placing the formulation in contact with
calibrated inoculums (10 g of the test formulation, 0.1 mL of calibrated inoculums) and
measuring the number of surviving micro-organisms at defined intervals (2nd, 7th, 14th,
and 28th day) during a period of 28 days. The containers of inoculation formulation are
stored in a dark place at (22.5 ± 2.5 ◦C).
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Table 3. Types of microorganisms tested.

Test Organisms

Gram-positive bacteria Staphylococcus aureus
ATCC 6538

Staphylococcus epidermis
ATCC 12228

Kokuria rhizophilia
ATCC 9341

Gram-negative bacteria

Enterobacteria Pseudomonas

Escherichia coli
ATCC 8739

Enterobacter
gergoviae

ATCC 33028

Pseudomonas
aeruginosa

ATCC 9027

Burkholderia
cepacia

In house

Pseudomonas
luteola

ATCC 43330

Yeasts Candida albicans
ATCC 10231 Molds

Aspergillus
brasiliensis

ATCC 16404

Penicillium
aurantiogriseum

ATCC 16025

ATCC (Wesel, Germany).

The enumeration method used was the plate count method-pour plate technique,
using 1ml as inoculation quantity. For each time interval and group of micro-organisms,
the log reduction value was calculated and compared to the minimum values required for
evaluation according to criteria A or B (European Pharmacopoeia, current edition).

The preservative properties of the preparation are adequate if, in the conditions of the
test, there is a significant fall or no increase, as indicated by the European Pharmacopoeia
criteria. The criteria for the evaluation of PET are given in Table 4 in terms of the log
reduction in the number of viable micro-organisms (cfu) against the value obtained for
the inoculums. Criteria A expresses the recommended efficacy to be achieved. In justified
cases where Criteria A cannot be attained, for example, for reasons of an increased risk of
adverse reactions, Criteria B must be satisfied.

Table 4. European Pharmacopoeia, Criteria A and B, for cutaneous application, minimum reduction
in log units.

Criteria A

Time 2nd Day 7th Day 14th Day 28th Day
Bacteria 2 log 3 log - NI
Yeasts - - 2 log NI
Molds - - 2 log NI

Criteria B

Time 2nd Day 7th Day 14th Day 28th Day
Bacteria - - 3 log NI
Yeasts - - 1 log NI
Molds - - 1 log NI

NI: No increase.

The microbial load of all samples was evaluated prior to the challenge test, to deter-
mine whether the initial microbial load is low enough for reliable results to be obtained.
Any paste that exceeds the limits for total aerobic microbial count, molds, and yeasts
given by the European Pharmacopoeia 10.0 is not eligible to proceed to the challenge test.
Specifically, all samples passed the sterility test except for the unmodified bentonite paste
(Bentp) which developed a total aerobic microbial load >3 × 103 cfu/g five days after its
preparation (Table 5). Moreover, this result is corroborated by other authors like Jou et al.,
(2016) [67] and Holesova et al., (2013) [68] which reported that natural clay minerals show
no antibacterial effect. Therefore, the antibacterial properties of clay minerals are attributed
to coexisting inorganic species such as Zn [56,69,70] and Cu ions [56,71–73].
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Table 5. Initial microbial load test according to the European Pharmacopoeia method.

Paste Parameter Result (cfu/g) Limits (cfu/g)

Bentp Total Aerobic Microbial Count
Molds & Yeasts

>3.0 × 103

<10
<1.0 × 102

<10

The total count of bacteria, molds, and yeasts starting from the initial inoculation at the
predetermined time intervals are summarized in Table 6, while the logarithmic reduction
of CFU and the score for each sample according to the relevant criteria are presented in
Table 7. Specifically, CuBentp showed excellent resistance to bacteria and yeasts with
similar results to the phenoxyethanol sample, as the total count for bacteria and yeasts
was found lower than 100 cfu/g within two days and reduced to a minimum count of
<10 cfu/g until the seventh day, thus passing criterion A. Additionally, it demonstrated
an adequate reduction of CFU for molds barely missing criterion A with 1.41 instead of
2 log reduction at day 14, overall satisfying criterion B. In this case, the microbiological
risk of the product should be assessed during the product development phase, taking
into consideration control factors other than the formulation. Such a factor may be the
type of container, like an airless container with a pump, that prevents the contact of the
product with the environment, providing higher protection, or the strict application of
good manufacturing practices during production [74]. The excellent antibacterial behavior
of copper-enriched bentonite was also referred to by Das et al., (2014) [75] and Khurana
et al., (2015) [76] in their studies.

Table 6. Mixed culture—Preservation efficacy test.

Paste Parameter Sterility
Control Inoculation 0 Time 2nd Day 7th Day 14th Day 28th Day

CuBentp
Bacteria <10 6.2 × 106 6.1 × 106 <100 <10 <10 <10
Molds <10 3.4 × 105 3.1 × 105 1.3 × 104 7.6 × 105 1.3 × 104 <10
Yeasts <10 4.6 × 105 4.2 × 105 <100 <10 <10 <10

ZnBentp
Bacteria <10 6.2 × 106 5.4 × 106 8.5 × 102 8.0 × 103 3.0 × 105 2.2 × 105

Molds <10 3.4 × 105 3.4 × 105 4.7 × 105 3.1 × 105 3.0 × 105 3.9 × 105

Yeasts <10 4.6 × 105 4.3 × 105 <100 <10 <10 <10

PHBentp
Bacteria <10 6.2 × 106 5.4 × 106 <100 <10 <10 <10
Molds <10 3.4 × 105 3.4 × 105 4.8 × 103 3.1 × 102 <10 <10
Yeasts <10 4.6 × 105 4.1 × 105 <100 <10 <10 <10

Units: cfu/g.

Table 7. Criteria of acceptance. (Evaluation Criteria).

Paste Log
Reduction 2nd Day 7th Day 14th Day 28th Day Criterion A Criterion B Test Result

CuBentp
Bacteria 5.79 5.79 5.79 5.79
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Moreover, ZnBentp showed excellent resistance to yeasts, satisfying criterion A, al-
though its performance against molds and yeasts was poor rendering it unable to satisfy
any criteria. Finally, the results of the antimicrobial protection for the PHBentp paste were
excellent, satisfying criterion A for each microorganism. Total counts for each day paired
with the corresponding reduction rates are plotted logarithmically in Figure 5.
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4. Conclusions

In the present study, the antimicrobial protection of pastes composed of copper or
zinc-modified bentonite was evaluated. Firstly, mineralogical analyses via XRD verified
the purity of the pharmaceutical bentonite, identifying montmorillonite as its main char-
acteristic phase, while scanning electron microscopy revealed a homogenous dispersion
of copper and zinc ions on the main surfaces and edges of clay crystals. Moreover, the
abundance of each metal ion was confirmed via chemical analysis (XRF). On the other
hand, the structural composition of the samples after the chemical modification was not
affected, as no differences were detected between the examined FTIR spectra of modified
and unmodified samples. According to the ion release results, the concentrations of both



Pharmaceutics 2021, 13, 1190 12 of 15

Zn and Cu ions in the PBS peaked within the first 5 min of contact time, thus implying that
most ions were released immediately after the samples were submerged into the solution.
Overall, the modified pastes have shown excellent results against microbial contamination
achieving similar results to the phenoxyethanol control sample. The excess antimicrobial
metals that form salts have probably increased the antimicrobial properties of the samples.
Specifically, CuBentp demonstrated excellently against bacteria and yeasts satisfying cri-
terion A, while also performing adequately against molds satisfying criterion B. Despite
this, controlling certain factors like using airless containers or the strict application of
good manufacturing practices can ensure total antimicrobial protection. Contrary, ZnBentp
showed no significant antimicrobial protection against bacteria or molds but performed
excellently against yeasts satisfying criterion A. Both ingredients could be used in combi-
nation with other preservatives that are active against molds, reducing their concentration,
or with other natural ingredients with complementary antimicrobial action that are not
listed in Annex V of the cosmetic regulation EU 1223/2009. In conclusion, the chemically
modified semi-solid bentonite formulations could serve as an alternative solution that
offers antimicrobial protection without the use of preservatives, which are responsible for
human health and environmental degradation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13081190/s1, Figure S1. SEM photomicrographs of montmorillonite showing
crystals in flakes exhibiting irregular and curling edges in different magnifications 200 nm, 300 nm,
1 µm, and 10 µm, respectively.
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