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Abstract

More than 450 million people worldwide suffer from diabetes, or 1 in 11 people. Chronic

hyperglycemia degrades patients’ quality of life and the development of neuropathic pain

contributes to the burden of this disease. In this study, we used the mouse model of strepto-

zocin-induced diabetic type 1 neuropathy to assess the analgesic potential of etifoxine. Eti-

foxine is a prescribed anxiolytic that increases GABAAA receptor function through a direct

positive allosteric modulation effect and, indirectly, by stimulating the production of endoge-

nous GABAA receptor positive modulators such as allopregnanolone-type neurosteroids.

We show that a post-symptomatic or preventive treatment strongly and durably reduces

mechanical hyperalgesia and anxiety in diabetic neuropathic mice. This analgesic and neu-

roprotective effect on painful symptoms and emotional comorbidities is promising and

should now be clinically evaluated.

Introduction

With 463 million affected people worldwide, prevalence of diabetes has drastically increased in

the past few decades [1]. Painful diabetic neuropathy (PDN) is a frequent complication result-

ing from diabetes, reaching an estimated 6–34% of patients and considerably contributing to

the overall burden of this condition [2]. Clinical manifestations of PDN include painful symp-

toms in the limbs (hyperalgesia or allodynia) often associated with unpleasant sensations such

as paresthesia or numbness. On top of these somatic symptoms, PDN is also associated with

an increased risk for the development of anxiety disorders [3,4], which dramatically worsen

the patient’s quality of life.

Although it is well accepted that prolonged hyperglycemia is the first step leading to nerve

fiber damage, the detailed pathogenesis stages of diabetic neuropathy are still far from clear.

Current leading hypotheses include the role of metabolic dysregulation leading to an increased

activation of the polyol pathway and reactive oxygen species production contributing to oxy-

dative stress [5]. Endothelial dysfunction, advanced glycation end-product deposition,

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0248092 August 5, 2021 1 / 9

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Gazzo G, Salgado Ferrer M, Poisbeau P

(2021) The non-benzodiazepine anxiolytic etifoxine

limits mechanical allodynia and anxiety-like

symptoms in a mouse model of streptozotocin-

induced diabetic neuropathy. PLoS ONE 16(8):

e0248092. https://doi.org/10.1371/journal.

pone.0248092

Editor: Rosanna Di Paola, University of Messina,

ITALY

Received: February 17, 2021

Accepted: July 14, 2021

Published: August 5, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0248092

Copyright: © 2021 Gazzo et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: As there are no

ethical or legal restrictions on sharing, all data are

freely available in the seafile depository server of

https://orcid.org/0000-0002-1796-8363
https://orcid.org/0000-0002-6089-9201
https://doi.org/10.1371/journal.pone.0248092
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248092&domain=pdf&date_stamp=2021-08-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248092&domain=pdf&date_stamp=2021-08-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248092&domain=pdf&date_stamp=2021-08-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248092&domain=pdf&date_stamp=2021-08-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248092&domain=pdf&date_stamp=2021-08-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248092&domain=pdf&date_stamp=2021-08-05
https://doi.org/10.1371/journal.pone.0248092
https://doi.org/10.1371/journal.pone.0248092
https://doi.org/10.1371/journal.pone.0248092
http://creativecommons.org/licenses/by/4.0/


pro-inflammatory processes and neurotrophic factor deficiency also are considered as major

contributing factors [6,7]. Although multifactorial causes conjointly lead to PDN, it is interest-

ing to note here that hyperglycemia-induced mitochondrial dysfunction appears as a key

player in PDN development, contributing to the production of free radicals, activation of cell

death pathways, and responsible for a depletion in ATP synthesis [7].

In this context, we explored the therapeutic potentiel of etifoxine (EFX) in the treatment

of PDN pain symptoms and comorbid anxiety. EFX is a non-benzodiazepine anxiolytic pre-

scribed in several countries for the treatment of adaptation disorders with anxiety [8–10].

On top of acting as a positive allosteric modulator of GABAA receptors [11], EFX also binds

to the mitochondrial 18-kDa translocator protein (TSPO) complex, favoring cholesterol

entry in the mitochondria and subsequent neurosteroid production [12–14]. This action

of EFX on neurosteroidogenesis has been shown to limit pain symptoms in several

preclinical models [15]. Indeed, EFX has shown analgesic properties in animals models of

neuropathic pain [16,17], and also prevented the apparition of anxiodepressive-like comor-

bidities in a model of mononeuropathy following constriction of the sciatic nerve [18]. Fur-

thermore, EFX also presents neuroprotective actions and promotes nerve regeneration in

several rodent models [19–22], suggesting a potential therapeutic interest in the treatment

of PDN.

At the present date, prevention and limitation of diabetic neuropathy evolution mainly

relies on glycemia control [23,24], while pain management largely depends on the use of large

spectrum antalgic drugs, anticonvulsants or antidepressants [5,6], without providing full

patient satisfaction. Considering the aforementioned properties of EFX, the aim of this project

thus was to evaluate the properties of post-symptomatic or preventive etifoxine in the relief of

PDN pain and anxiety-like symptoms in a rodent model of type 1 diabetes-induced

neuropathy.

Materials & methods

Animals

Experiments were performed on adult male C57BL6J mice (Charles River, France) aged 8–12

weeks at the time of neuropathic pain induction. Animals were housed in a temperature

(23 ± 1˚C) and humidity (50 ± 10%) controlled room under a 12h light-dark cycle (lights on at

7:00am). Animals were housed in group cages with ad libitum access to food and tap water. All

procedures were conducted in accordance with EU regulations and approved by the local ethi-

cal committee (CREMEAS, Comité Régional d’Ethique en Matière d’Expérimentation Ani-

male de Strasbourg: authorization number 2016110716292742). At the end of all experimental

procedures, animals were sacrificed with cervical dislocation, performed by appropriately

trained and competent personnel.

Streptozotocin-induced diabetic neuropathy

Type 1 diabetes was induced with a single intraperitoneal (i.p.) injection of 150 mg/kg strepto-

zotocin (STZ; Merck, France) freshly dissolved in 0,9% NaCl, at a volume of 0,1 mL/10 g.

CTRL animals received a single i.p. injection of 0,9% NaCl, vehicle for STZ [25]. A week after

STZ injection, hyperglycemia was evaluated using a glucometer (Accu-Chek Performa, Accu-

Check, France) with 5 μL blood samples collected from one of the lateral caudal veins. Only

animals which presented non fasting blood glucose levels� 2,25 g/L were considered diabetic

and kept in the STZ group.
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Pharmacological treatment

Etifoxine (EFX; 2-ethylamino-6-chloro-4-methyl-4-phenyl-4H-3,1-benzoxazine hydrochlo-

ride) was kindly provided by Biocodex laboratories (batch 653; Biocodex, Gentilly, France).

EFX was prepared in 0,9% NaCl containing 1,5% ethanol and 1% Tween 80 (Merck, France)

and administered i.p. (0,1 mL/kg) at a dose of 50 mg/kg [17]. Control animals received an

equivalent volume of vehicle. STZ and VEH animals were randomly assigned to the EFX or

VEH group, after verification that the difference in mechanical nociceptive baseline was not

significant in-between both conditions in the established treatment groups. Experimenters

were then blind to the treatment condition when performing behavioral assays.

Evaluation of mechanical nociceptive sensitivity

Von Frey filaments were used (Stoelting, Wood Dale, IL, USA) according to a protocol

adapted from Chaplan [26]. Animals were placed in clear Plexiglas1 boxes (7 × 9 × 7 cm) on

an elevated mesh screen. After 15 min habituation, calibrated von Frey filaments were applied

on the plantar surface of each hindpaw in a series of ascending forces. Each filament was tested

5 times per paw, and the mechanical nociceptive threshold was considered to correspond to

the force of the first von Frey filament eliciting 3 or more withdrawals of the paw out of the

five trials [27].

Evaluation of anxiety-like symptoms

Light/Dark box. Apparatus consisted in two compartments (20 x 20 x 15 cm each), one

dark and one brightly lit (350 lux), connected by a dark tunnel (7 x 7 x 10 cm). Animals were

placed in the lit compartment and video-tracked for 5 min. Time spent in the lit compartment

was analyzed with the ANY-maze 5.2 software (Ugo Basile, Gemonio, Italy).

Open field. Animals were placed nose facing one of the walls of an open field (40 x 40 x

30 cm) lit at 120 lux. Animals were video-tracked for 5 minutes, during which time spent in

the center of the open field (24 x24 cm) and total distance travelled in the whole apparatus

were analyzed with the ANY-maze 5.2 software (Ugo Basile, Gemonio, Italy).

Marble burying test. Mice were placed individually in Plexiglas1 cages (27 x 16 x 14 cm)

containing 3 cm of sawdust on top of which twenty-five glass marbles (diameter 1 cm) were

evenly placed. After being left undisturbed for 30 min, animals were removed from the cage

and the number of buried marbles were counted by an observer blind to the condition of the

animals. Marbles were considered buried if two thirds or more of their surface was covered by

sawdust. The number of buried marbles is considered a measure of animal anxiety and also

reflects obsessive compulsive disorders [28].

Statistical analysis

Data are expressed as mean ± standard error of the mean (SEM). Statistical analysis was per-

formed using the GraphPad Prism 6 software (Lajolla, CA, USA). Normal distribution of val-

ues was verified with the Shapiro-Wilk normality test before performing parametric analysis.

Two-way (time x condition) analysis of variance tests (ANOVA), with repeated measures for

the time variable (2wRM-ANOVA) were used to evaluate the time course of pain thresholds

and followed by Tukey’s post hoc multiple comparison test. Anxiety-like symptoms were

assessed with an ordinary 2w-ANOVA (condition x treatment) followed by Tukey’s post-hoc

test. Differences were considered to be statistically significant for p< 0.05.
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Results

EFX as a preventive compound limiting the extent of STZ-induced

mechanical allodynia

Evolution of mechanical thresholds was assessed in a model of STZ-induced diabetic neuropa-

thy (Fig 1A). STZ injection induced a progressive decrease in mechanical thresholds that

became significantly lower than in the control groups after one week, with PWT dropping to

1.77 ± 0.29 g, compared to 4.38 ± 0.30 g in control animals (2wRM-ANOVA (time x condi-

tion), F(33,638) = 7.450, p< 0.0001). Mechanical allodynia persisted until the end of the obser-

vation period, i.e. 7 weeks after STZ injection, with a 62% decrease in PWT compared to

VEH-VEH animals at the same time point.

A first group of animals received a preventive EFX treatment, which started two weeks

before STZ injection and was continued until the end of the second week following STZ injec-

tion. EFX significantly reduced STZ-induced mechanical allodynia, with PWT that were sig-

nificantly higher in EFX-treated compared to non-treated STZ-animals, as soon as the first

week following STZ injection (2.89 ± 0.19 g in EFX-STZ vs 1.77 ± 0.29 g in VEH-STZ at week

1). This analgesic effect persisted long after cessation of treatment since PWT were of

2.83 ± 0.3 g in EFX-STZ animals five weeks after the end of the treatment (i.e. week 7), signifi-

cantly higher than the 1.51 ± 0.14 g threshold displayed by VEH-STZ animals. Although EFX

successfully limited mechanical pain symptoms, it did not completely prevent PDN develop-

ment since PWT remained lower in EFX-treated STZ animals compared to VEH-VEH and

EFX-VEH control groups.

Durable analgesic effect of EFX on STZ-induced mechanical allodynia

In another group of animals, EFX treatment was started 4 weeks after STZ injection in order

to allow for pain symptoms to develop (Fig 1B). Animals were then exposed to two sessions of

5 consecutive daily injections separated by two days, hence treatment lasted for a period of two

weeks. EFX treatment durably increased von Frey thresholds in the STZ group, with values

that were significantly higher than in VEH-treated STZ animals on the 7th and 9th weeks fol-

lowing STZ injection (2wRM-ANOVA (time x condition), F(33,396) = 2.196, p = 0.0002). On

Fig 1. Preventive (A) and post-symptomatic (B) etifoxine action on von Frey paw withdrawal thresholds (PWT) following STZ-induced

diabetic neuropathy (n = 10 per group). STZ injection was performed at week 0 (arrows), and treatment period is indicated in grey for a 4-week

preventive (panel A) and a 2-week post-symptomatic EFX treatment (panel B). Statistical significance was assessed with Tukey’s multiple

comparison test, illustrated as follows: p< 0.05 (�), p< 0.01 (��) or p< 0.001 (���) for comparisons between VEH and EFX-treated STZ groups

and p< 0.01 (§§), p< 0.001 (§§§) for comparisons between STZ-VEH and its control VEH-VEH at each time point.

https://doi.org/10.1371/journal.pone.0248092.g001
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the 9th week following STZ injection for example, PWT were 3.2 ± 0.33 g in STZ-EFX animals,

significantly higher than the 1.24 ± 0.24 g threshold displayed by STZ-VEH animals.

Effect of EFX on anxiety-like symptoms

We then evaluated anxiety-like symptoms following PDN apparition (Fig 2). In the open field

test, performed 6 weeks after STZ injection, neuropathic animals displayed a moderate ten-

dency towards a decrease in the time spent in the anxiogenic center of the open field (Fig 2A1;

2w-ANOVA (condition x treatment), STZ condition factor: F(1,42) = 1.088, p = 0.3028). EFX-

treated STZ animals spent 17.64 ± 5.29 s in the center of the OF, while STZ-VEH only spent

11.1 ± 3.01 s, which could indicate a non-significant tendency towards a decrease in anxiety-

like signs following EFX treatment (2w-ANOVA (condition x treatment), EFX treatment fac-

tor: F(1,42) = 1.056, p = 0.3099). Total distance travelled in the open field during the 5-minute

test show no significant difference between groups (Fig 2A2; 2w-ANOVA (condition x treat-

ment), F(1,39) = 0.0003967, p = 0.9842).

In the light/dark box test however, we were unable to demonstrate any anxiety-like signs 7

weeks after STZ injection, since no difference was found in the time spent in the light cham-

ber between VEH-VEH and STZ-VEH animals (Fig 2B; 2w-ANOVA (condition x treat-

ment), STZ condition factor: F(1,58) = 2.789, p = 0.1003). The anxiolytic effect of EFX was

however significant in both STZ and VEH groups (2w-ANOVA (condition x treatment),

EFX treatment factor: F(1,58) = 14.90, p = 0.0003). Indeed, EFX significantly increased the

time spent in the light chamber, both in neuropathic (46.36 ± 6.61 s in STZ-VEH vs

76.96 ± 7.83 s in STZ-EFX) and control animals (59.98 ± 4.78 s in VEH-VEH vs

89.25 ± 11.74 s in VEH-EFX).

Finally, as illustrated in Fig 2C, non-treated animals with STZ-induced PDN buried a mean

of 2.71 ± 1.12 marbles in the 30-min session, significantly less than the 14.06 ± 1.34 marbles

buried by VEH-VEH animals (2w-ANOVA (condition x treatment), F(1,26) = 8.114,

p = 0.0085). Here, EFX treatment significantly restored the number of buried marbles in EFX-

treated STZ animals to a mean of 10.92 ± 3.31 marbles, similar to the mean number buried in

the control groups.

Fig 2. Effect of etifoxine on anxiety-like symptoms following STZ-induced diabetic neuropathy. A. Time spent in the center of an open field (A1;

n = 10–14 per group) and total distance travelled in the open field (A2). B. Time spent in the light compartment of a light/dark box (n = 13–21 per

group). C. Mean number of buried marbles (n = 7–8 per group). Statistical significance was assessed with Tukey’s multiple comparison test, illustrated

as follows: p< 0.05 (�) for intra-group comparisons (VEH vs EFX treatment) and p< 0.01 (§§) for inter-group comparisons (VEH or EFX).

https://doi.org/10.1371/journal.pone.0248092.g002
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Discussion

Here, we showed that EFX, administered after PDN development, or preventively prior to neu-

ropathy induction, successfully and durably limited STZ-induced mechanical allodynia. EFX

also showed a tendency towards an anxiolytic effect in STZ animals, although we were not able

to observe strong anxiety-like comorbidities in this model of PDN.

The anti-allodynic effect of EFX observed in this model is in accordance with other studies

in which EFX successfully limited pain symptoms [15]. Long-lasting analgesic effect was previ-

ously shown to rely on the promotion of neurosteroidogenesis following EFX binding to the

mitochondrial TSPO complex. Considering the alteration of mitochondrial function induced

by diabetes mellitus [29,30], restoring mitochondrial neurosteroidogenesis could be an inter-

esting strategy in order to prevent long-term damage induced by a poor mitochondrial func-

tion [31–33].

Microglial activation in the spinal cord has been reported in rat models of STZ-induced

type 1 diabetes [34,35], which could contribute to sensory disturbances and an increased pro-

duction of pro-inflammatory cytokines [6]. In this context, EFX has shown beneficial effects in

the reduction of inflammatory pain symptoms in models of knee monoarthritis [36] or carra-

geenan-induced inflammatory sensitization [37]. Therefore, the analgesic properties of EFX

observed here in a model of STZ-induced PDN could be due, in part, to a reduction of pro-

inflammatory cytokine production and microglial activation [17]. Similarly, preventive EFX

could have limited nerve damage considering EFX’s demonstrated neuroprotective properties

[20,22,38].

Diabetic neuropathy patients often exhibit anxiodepressive comorbidities, as it is the case

in many chronic pain states [3,39]. In this study, we were not fully successful to demonstrate

any strong anxiety-like signs in our model using the open field and light/dark box tests. How-

ever, sharp differences could be seen in the marble burying test which is also used to reveal ste-

reotypic behavior abnormalities often associated with obsessive-compulsive disorders [40].

Usually, a high number of marbles indicates a strong anxiety-like phenotype [28]. In our

study, results are hard to interpret as STZ animals buried a very low amount of marbles, con-

trary to what was expected, while the anxiolytic EFX restored control values. Nonetheless, this

result suggests that EFX benefited STZ animals since it brought back values closer to that of

control animals.

Altogether, we provide further evidence that EFX could be a useful drug to alleviate pain

symptoms and emotional comorbidities in this model of PDN. Due to the mechanism of action

of EFX, further investigations will be required to ensure its use since neuropathic states result-

ing from metabolic dysfunction may alter the efficacy of drugs such as EFX. It remains that

EFX was efficient to alleviate pain responses and anxiogenic behaviors in this model. Clinical

trials using this already prescribed anxiolytic will help confirm the therapeutic potential of EFX.
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