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Patients with type-2 diabetes (T2D) are more likely to develop severe respiratory tract
infections. Such susceptibility has gained increasing attention since the global spread of
Coronavirus Disease 2019 (COVID-19) in early 2020. The earliest reports marked T2D as
an important risk-factor for severe forms of disease and mortality across all adult age
groups. Several mechanisms have been proposed for this increased susceptibility,
including pre-existing immune dysfunction, a lack of metabolic flexibility due to insulin
resistance, inadequate dietary quality or adverse interactions with antidiabetic treatments
or common comorbidities. Some mechanisms that predispose patients with T2D to
severe COVID-19 may indeed be shared with other previously characterized respiratory
tract infections. Accordingly, in this review, we give an overview of response to Influenza A
virus (IAV) and to Mycobacterium tuberculosis (Mtb) infections. Similar risk factors and
mechanisms are discussed between the two conditions and in the case of COVID-19.
Lastly, we address emerging approaches to address research needs in infection and
metabolic disease, and perspectives with regards to deployment or repositioning of
metabolically active therapeutics.
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1 INTRODUCTION: TYPE-2 DIABETES AND SEVERITY OF
RESPIRATORY TRACT INFECTIONS

Diabetes is a chronic condition characterized by persistently high levels of glucose in blood due to
insufficient insulin action or secretion. The international diabetes federation (IDF) estimates that
there will be 783 million adults with diabetes in 2045, which is 46% higher compared to the number
of cases in 2021 (1). The IDF also reported Type-2 Diabetes (T2D) to be the most prevalent form,
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accounting for 90% of all cases worldwide (1). T2D is a condition
of insulin resistance, defective insulin secretion and b-cell
destruction, these are associated with inflammation and
metabolic stress. It results from several risk-factors, such as
aging, lifestyle and genetic predisposition (2). Metabolic stress
due to loss of glycemic homeostasis results in detrimental
microvascular and macrovascular complications and hepatic
comorbidities (3). Studies have also shown that T2D increases
patient susceptibility to severe infections, with this being
attributed to microenvironmental dysmetabolism impairing the
immune responses (4, 5). Importantly, this applies to several
forms of infection: skin and soft tissue infections, urinary tract
infections and respiratory infections, with increased
hospitalization and mortality rates (6, 7).

Respiratory infections are considered one of the major severe
infections associated with diabetes. Hyperglycemia and increased
protein glycosylation were found to be associated with
microangiopathic alterations in the lungs of patients with T2D
(8). Based on the pneumonia severity index, a higher proportion of
diabetic patients suffer severe respiratory infections, compared to
non-diabetic patients (52.3% vs. 9.4% of patients) (9). In addition,
continuous exposure to high glucose also leads to formation of
advanced glycation end-products (AGEs) which are implicated in
the development of diabetic vascular complications, induce reactive
oxygen species (ROS) and development of pulmonary fibrosis (10).
These effects in the lung have been observed in common respiratory
diseases that gravely affect patients with diabetes. These include
asthma (11), pneumonia (7), tuberculosis (12), influenza (5) and
Coronavirus Disease (COVID)-19 (13).

In such conditions, immune responses are often studied for
potential impairments and as mechanistic targets contributing to
severity (14). In normal physiology, immunity coordinates
detection of pathogens, phagocytosis, antigen presentation and
production of specific antibodies. In diabetes, the increased
susceptibility to severe infection has been associated with
defects in these functions at multiple levels (4). Results from a
cross-sectional study showed that pulmonary functions were
reduced in people with inadequate glucose control and high
levels of inflammatory markers like TNFa, IL-6 and C-Reactive
Protein (CRP) (15). These inflammatory markers are elevated in
diabetes, under non-infectious conditions, and associated with
hyperglycemia (16). It was also found that hyperglycemia
suppressed IL-2, IL-6 and IL-10 in peripheral blood
mononuclear cells (PBMCs) suggesting impaired cellular
defense mechanism in patients with diabetes (17). Such
markers in circulation reflect localized problems at a given site
of infection, such as the lungs. Alveolar macrophages, that
populate the lungs, are among the first points of contact with
respiratory pathogens, and their dysfunction is a characteristic
abnormality in severe cases of COVID-19 (18). These
macrophages are specialized tissue resident cells of the innate
immune system, generally detecting and disposing of invading
foreign debris or pathogens. They also retain the capacity to raise
an alarm via signaling to cells in the microenvironment (e.g.,
endothelial or dendritic cells, T-cells etc.).
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Every stage of the immune response also relies on
micronutrient balance or availability. Micronutrients have
synergistic roles with the molecular machinery that facilitates
immune effector functions. Vitamin D has been gaining
attention as one of the most important micronutrients
contributing to efficiency of immune reponses (19). Vitamin D
is most widely known as a regulator of calcium and phosphate
levels in the body and is necessary for healthy teeth, bones and
muscles. However, Vitamin D also ensures integrity of innate
immune responses at mucosal barriers, these are the first line of
defense against invading pathogens (19). It also plays a role in
cell-mediated processes, decrease pro-inflammatory cytokines
expression and has inhibitory actions against pathogens (19).
The inhibitory effect of the active form of vitamin D [Calcitriol
(1,25 (OH)2D3)] is modulated by vitamin D receptors (VDRs)
that are present in the heart, brain, pancreatic islets, immune
cells, muscles and adipose tissue. These are all common target
organs in the development of diabetes and its complications (20).
Typically, during infection immune cells would trigger VDR
signaling, to convert vitamin D to calcitriol, then induce the
production of antimicrobial proteins such as cathelicidin (LL-37)
via Toll-like receptor (TLR) activation (21).

Several studies have reported an inverse relationship between
vitamin D status and T2D incidence (22–24) as its deficiency is
associated with b-cell dysfunction and insulin resistance (25).
Results from an observational study showed that the prevalence
of hypovitaminosis D was higher in T2D compared to control
(39% vs 25%) (26). Similarly, Plataki et al. also reported that T2D
patients tend to have low levels of vitamin D, as well as of LL-37,
providing a mechanism for impaired immune responses and
antimicrobial peptide production (27). Such alterations of
vitamin D could also increase susceptibility to severe
respiratory infections especially in patients with asthma and
pulmonary diseases (28). Interestingly, the lung’s epithelium
was found to “self-generate” the active form of vitamin D that
increases LL-37 expression. Dysfunction of this process can also
contribute to severity of respiratory infections (29).

Such immune-mediated mechanisms, and others, have been a
central focus of COVID-19 research. Indeed, T2D is one of the
top 3 risk-factors leading to severe infection and undesirable
outcome of COVID-19 across all adult age groups (13).
Interactions between infection, immunity, and metabolic
disease has been studied to decipher which criteria contribute
to risk and by which mechanisms does diabetes impair response
to infection. However, prior to the emergence of SARS-CoV-2,
decades of research into respiratory infection in T2D have given
a wealth of information. This review brings together current
knowledge in T2D and respiratory infections, mainly
interactions between systemic metabolism and the immune
system’s response to bacterial and viral infectious pathogens.
We discuss tuberculosis (TB) and influenza, that predate
COVID-19, as longer-studied conditions well-known to be
affected by diabetic status. We discuss risk-factors and
mechanisms that contribute to severity in both conditions,
then relate this to the current knowledge on COVID-19.
July 2022 | Volume 13 | Article 919223
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2 MYCOBACTERIUM TUBERCULOSIS
AND METABOLIC DISEASE

The observation that metabolic factors determined the various
outcomes of COVID-19, with severe COVID-19 manifesting
primarily in people with metabolic syndrome (30, 31), indicates
how host metabolic fitness underlines immune function. A similar
spectrum of infection outcomes is observed in TB, caused by
infection with the intracellular bacteria Mycobacterium
tuberculosis (Mtb). These range from early clearance to latent
tuberculosis infections (LTBI) to active TB and severe disease
(32). In recent years, T2D emerged as a major risk-factor for
developing severe disease, with TB-diabetes recently classified as a
syndrome by WHO, particularly prevalent in Southeast Asia (33).
Although both pre-diabetes and T2D can enhance risk of
contracting TB in the form of LTBI in low burden TB countries
(34), in areas where TB is endemic T2D certainly increases risk of
active TB and is associated with poorer responses to treatment (12,
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35, 36). Interestingly, in these environments, particularly Asia, T2D
is associated with worse TB disease (37) irrespective of body mass
index (BMI), while obesity in the absence of hyperglycemia is
associated with a better prognosis (38). These observations
suggest that multiple factors associated with metabolic syndrome
including hyperglycemia, insulin resistance and hyperlipidemia can
affect TB host immunity differently and ultimately affect disease
outcome. Therefore, TB can serve as a case study for howmetabolic
factors promote severe infection risk. Insights into metabolic factor
contribution to TB immunity, from clinical data and limited animal
models, are discussed below (Figures 1A, 2A).

2.1 Factors Affecting Tuberculosis
in Diabetes
2.1.1 Hyperglycemia
Hyperglycemia affects immune responses to Mtb infection in
mouse models and glycemic control has emerged as critical to
disease outcome in patient cohorts (Figure 1A). Poorer glycemic
B

C

A

FIGURE 1 | Impact of diabetes and systemic metabolic factors on respiratory infections. (A) Impact of hyperinsulinemia, hyperglycemia and dyslipidemia on
Mycobacterium tuberculosis infection. (B) Impact of hyperglycemia on Influenza A virus infection. (C) Impact of hyperglycemia and renin-angiotensin-aldosterone
system (RAAS) dysfunction on SARS-CoV-2 infection. Created with BioRender.com.
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control is associated with more severe TB disease (39), and
strategies to treat this reduce the relative risk. However, glycemia
centered strategies do not return relative risk of severe disease to
non-T2D levels (40). Mechanistically, peritoneal macrophages
from diabetic (db/db) mice display impaired phagocytosis and
cytokine responses (41, 42). In vitro studies suggest that
increasing glucose concentrations enhance Mtb-induced pro-
inflammatory cytokine responses in bone-marrow derived
macrophages (BMDM), but this is only noted at high glucose
concentrations which mimic hyperglycemia (43) (Figure 2A).
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With the realization that immunometabolic reprogramming
underlines macrophage responses in Mtb, these processes should
be re-examined. In particular, monocyte-derived macrophages
recruited to sites of Mtb infection up-regulate expression of the
main macrophage glucose transporter GLUT1 and glucose
consumption to promote anti-microbial functions and pro-
inflammatory cytokine production (44, 45). Whether this is
impacted by the systemic hyperglycemia, characteristic of T2D
has not yet been described. However, circulating monocytes
derived from pre-diabetic patients display enhanced cytokine
B

C
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FIGURE 2 | Cellular factors influencing respiratory infections in diabetes. (A) Cellular factors influencing Mycobacterium tuberculosis infection. (B) Cellular factors
influencing influenza A virus Infection. (C) Cellular factors influencing SARS-CoV-2 infection. ACE2, Angiotensin converting enzyme 2; NO°, nitric oxide; RAAS, renin-
angiotensin-aldosterone system; RAGE, Receptor of advanced glycation end products; ROS, reactive oxygen species. Created with BioRender.com.
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production (46), while monocyte-derived macrophages from
patients with T2D have impaired anti-microbial responses to
Mtb (47). Similar impairments have been observed in alveolar
macrophages derived from diabetic mice (48, 49), these cells
seem to rely on oxidative metabolism (45) and are described
further in the following sections. In vivo Mtb infections in
diabetic mouse models display heightened lung inflammation
and bacillary burden (50, 51). This correlates with clinical
observations of increased lesions, cavities and increased
transmissibility of TB in T2D patients (52, 53). Although the
antigen-presenting ability of innate cells was not affected by
hyperglycemia (54), altered cytokine production can affect the
nature of the subsequent T-cell response contributing to poorer
bacterial containment (48). Importantly, in vivo studies have also
found a profound defect in inherent lymphocyte function in
streptozotocin-treated hyperglycemic mice. Martinez et al. found
that the accumulation of Receptor for Advanced Glycation End-
Products (RAGE)-ligands during chronic hyperglycemia
activates a p38 dependent pathway that epigenetically
reprograms naïve T-cells, making them hyper-responsive to
subsequent activation by Mtb antigens (54) (Figure 2A). Thus,
both myeloid and lymphocyte function is inherently impaired
under hyperglycemic conditions and can escape the regulatory
mechanisms active under homeostasis.

2.1.2 Hyperinsulinemia
Hyperinsulinemia is the result of insulin resistance, given that
pre-diabetes is associated with increased risk of LTBI and that
cells from pre-diabetic patients display altered responses to
stimulation (40, 46), there is an interest in identifying if
hyperinsulinemia in pre-diabetes contributes to altered
immune responses (Figure 1A). The recent interest in
immunometabolism has demonstrated that Mtb-infected
macrophages upregulate glycolysis to promote anti-bacterial
and pro-inflammatory cytokine functions (44, 45), processes
enhanced by T-cell-derived interferon (IFN)-g and limited by
virulent and drug-resistant forms of Mtb (55–57). Although
GLUT1 expression is insulin-independent, and insulin-
dependent GLUT4 is not expressed in macrophages (58),
insulin receptor signaling can have both pro- and anti-
inflammatory roles and could impact Mtb immunity. Mtb
infection itself can induce transient hyperglycemia through
stimulating insulin production which, in guinea pig models,
has been linked to more severe disease (59). Identifying these
insulin-dependent mechanisms could help explain the complex
interdependency between insulin signaling and glucose
homeostasis in increased disease severity linked to T2D.

2.1.3 Dyslipidemia
Since glycemic control does not completely reduce risk of
severe TB in T2D (40), other metabolic factors have been
considered, chiefly, altered lipid homeostasis. Increased BMI
contributes to resilience against severe disease (38) and limited
human data suggests cholesterol-rich diets may actually protect
against TB disease (60). Larger epidemiological studies in Asia
have demonstrated that lower total cholesterol levels are linked
Frontiers in Endocrinology | www.frontiersin.org 5
to more severe TB and poorer treatment outcomes (61). These
data suggest a protective role for total cholesterol against TB,
which have not been always observed in animal models or in
vitro studies. Indeed, hyperlipidemic mice display enhanced TB
disease with increased lung inflammation characterized by
myeloid nitrous oxide production, increased bronchoalveolar
fluid (BALF) T helper type 1 (Th1) cytokines, poorer lung
histology and higher bacterial burdens and dissemination to
organs (62, 63)(Figure 1A). The increased myeloid
inflammation – both macrophage and neutrophil driven,
promotes tissue degradation while simultaneously limiting
the development of protective T-cell responses. As a caveat,
the mouse models used to illustrate this (Apoe-/-, Ldlr-/-; high-
fat fed genetically-deficient mice) display abnormally high
cholesterol levels, only seen in humans with familial
hypercholesterolemia and may not accurately reflect
TB-diabetes.

Mtb itself is a lipid rich bacillus and must obtain cholesterol
for biosynthesis and growth from the host (64). This promotes
long-term persistence in the host since mutant strains which lack
cholesterol transporter systems (e.g. mce4) succumb to the pro-
inflammatory effects of IFN-g (65). The TB granuloma, contains
a lipid-rich core surrounded by various foamy macrophage cell
types (66). Although initially thought to represent a nutrient
source for the mycobacteria, recent lipidomics and single-cell
analysis suggests that heterogeneity exists in both the lipid
content and inflammatory phenotype of granuloma
macrophages (67, 68). While Mtb infection can alter both
cholesterol and fatty acid metabolism to favor mycobacterial
growth (69, 70), the process of lipid droplet formation appears to
be host encoded and augmented by IFN-g treatment
(Figure 2A). This drives initiation of triglyceride biosynthesis
and lipid uptake to maintain lipid droplets in infected
macrophages. This process is linked to the production of
eicosanoids which promote host-defence (67). Much of this
work has been performed in BMDM cultures and it is now
appreciated that the alveolar macrophages, initial host cells rely
basally on fatty acid oxidation and do not employ anti-Mtb
glycolysis, which is the opposite to infiltrating macrophages.
Dodd et al. illustrated that Mtb-infected alveolar macrophages
and monocyte-derived macrophages upregulate the lipid
transporter CD36 to drive an anti-inflammatory, pro-
mycobacterial phenotype (71, 72). Surfactant lipoproteins in
the pulmonary space facilitate this and are internalized during
infection (71). The lipid-rich environment of the lung itself
undoubtedly shapes alveolar macrophage development and
may explain the tropism of Mtb for the pulmonary
compartment. Whether these processes are altered in the
setting of hyperlipidemia is unclear and may depend on the
nature of the dyslipidemia. Hypertriglyceridemia in western
populations was found to be particularly pathogenic and linked
to poorer treatment outcomes than hypercholesterolemia (73).
Another confounding factor is that often it is not simply elevated
lipid levels themselves, but modified lipid species generated
during disease (74). Oxidized forms of low-density lipoprotein
(LDL)-cholesterol and sterols have been shown to impact
July 2022 | Volume 13 | Article 919223
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macrophage Mtb responses and macrophage recruitment to the
lung respectively (75, 76).

2.1.4 Vitamin D Deficiency
Alterations in vitamin D levels in individuals with diabetes and
Mtb can disrupt the maintenance of immune homeostasis.
Several studies have reported that cases of Mtb infection are
associated with low levels of vitamin D, in particular active Mtb
(77, 78). A randomized controlled trial confirmed that upon
vitamin D supplementation, patients had significantly reduced
symptoms by 36.6% in the first month (79). Since TLRs are
linked to the antimicrobial function of vitamin D, Liu et al.
investigated this mechanism and found that the induction of
antimicrobial peptide LL-37 inhibits Mtb proliferation in human
monocytes and macrophages (80). This was confirmed further in
vitro where the inhibition of LL-37 led to enhanced growth of
Mtb, confirming LL-37’s suppressive role (81). Very limited
number of studies have investigated the status of vitamin D
and LL-37 in patients with TB and diabetes. Zhan and Jiang
assessed the levels of vitamin D in patients with Mtb and diabetes
mellitus and found that the concentration of vitamin D was 35%
lower in patients with Mtb and DM compared to the control
group (82). In addition, patients with both conditions exhibited
high levels of LL-37 that is correlated with a positive acid-fast
bacillus smear which indicates the presence of TB (82).

2.2 Chronic Inflammation and
Immune Training
As a consequence of both hyperlipidemia and hyperglycemia,
systemic inflammation is triggered which underlines many of the
metabolic sequelae of T2D. This baseline meta-inflammation could
also impact host-defense responses and is already implicated in
defective anti-tumor immunity (83). Chronic inflammation inhibits
both resolution of inflammation and the development of protective
lymphocyte responses and can also alter TB granuloma
composition (51, 62). Recently, chronic inflammation associated
with hyperlipidemia and western diets was shown to reprogram
myeloid progenitor cells for heightened activity through the process
of innate immune training (84, 85). Following this, Choudhury and
colleagues demonstrated that hyperglycemic but not hyperlipidemic
mice also displayed heightened monocyte cytokine production due
to epigenetic modification and alterations to bone-marrow
myelopoiesis, characteristic of innate immune training (84, 86).
This process contributes to the development of T2D, but may also
impair host-defense in TB-diabetes. With hematopoietic progenitor
cells emerging as a key target of inflammation affecting immune cell
composition and fate (87), the chronic inflammation in T2D could
alter immune cell fate and affect granuloma composition. Recent
profiling studies examining active TB granulomas demonstrate a
more regulatory phenotype dominated by immunosuppressive
myeloid and Regulatory T cells (Treg) (68) and the impact of
meta-inflammation on this warrants examination.
Frontiers in Endocrinology | www.frontiersin.org 6
2.3 (Immuno)-Metabolic Treatments for
TB-Diabetes
Although control of glycemia in T2D doesn’t completely reduce
the risk of increased TB (40), metabolic drugs are being assessed
for their ability to prevent disease due to their immunometabolic
effects. They can also reveal novel targets in pathogenesis which
could form the basis for future novel immuno-therapies or
vaccine targets. In a normoglycemic mouse model of TB,
metformin was shown to exacerbate late-stage disease by
ameliorating inflammation (88). In particular, IL-1b expression
was reduced, which can be regulated through metformin-
induced inhibition of mitochondrial complex 1 activity (89).
Similar results were observed in humans receiving metformin,
with improved macrophage responses to Mtb infection (90).
More pressingly, in the context of T2D, a recent meta-study
revealed that diabetes controlled by metformin led to a reduced
risk of TB in humans (91). In contrast, a recent mouse study of
Mtb infection in diet induced obesity (DIO)-mice suggests that
metformin is only beneficial in the hyperglycemic context (92).
More recently, cytotoxic CD8+ lymphocytes emerged as targets
for metformin in Mtb-infection models in euglycemic mice.
Metformin metabolically reprograms these cells toward
oxidative metabolism and promotes anti-microbial function.
Traditionally TB vaccines target CD4+ Th1 cells, so this study
is important as it places these CD8+ T-cells as key in protecting
against severe disease, particularly relevant in the metabolically
dysregulated context of T2D.

Because of Mtb’s tropism for cholesterol, the HMG-CoA
reductase targeting drugs, statins, have received attention both
as a direct anti-Mtb drug and for use in the context of TB
diabetes. By reducing cholesterol biosynthesis at this early rate-
limiting step (93), statins lead to compensatory low-denisty
lipoprotein receptor (LDLR) expression and reduced serum
LDL-cholesterol which should be beneficial in the context of
hyperlipidemia and its effect on TB pathogenesis. Clinical studies
are examining the feasibility of this (94), however given the
controversial role of elevated total cholesterol in TB host defense,
the results thus far are unclear. Since targeting HMGR leads to
knock-on effects on the production of multiple lipid species (93,
95), statins may affect mycobacterial growth. In vitro studies
suggest that statins may directly alter axenic Mtb growth in
culture (96), Mtb growth in macrophages is also reduced after
statin treatment (97). This may be due to cholesterol depletion
but also could be mediated through the immunomodulatory
functions of statins (95). Finally, novel lymphocyte subsets which
present lipid antigens via CD1 have recently been associated with
early immune responses in TB including gd T and invariant
natural killer T (iNKT) cells (98). The impact of altered systemic
lipid homeostasis as well as statin treatment on their function
needs to be considered, as does the nature of vaccine strategies
used to boost TB immunity, with current targets focusing solely
on MHC-restricted peptide antigens that promote CD4+ T-cells.
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3 INFLUENZA A VIRUS AND
METABOLIC DISEASE

Influenza A virus (IAV) presents a continuous threat to human
health, infecting up to 15% of the population annually (99, 100).
Influenza infection severity largely depends on the immune and
health status of the individual (101). Although considered to be
relatively mild, the 2009 H1N1 pandemic served to emphasize
that certain host comorbidities increase the risk of severe disease
upon influenza virus infection (102, 103). Prior to 2009, reports
already emphasized that diabetes increases the risk of lower
respiratory tract infections (LRTI) and pneumonia related
hospitalization, and indeed led to more severe influenza
outcomes (104–106). Both patients with Type 1 Diabetes
(T1D) and T2D were at greater risk of developing LRTI
(including influenza), while there was no difference in the risk
of upper respiratory tract infections over a 12-month time period
(105). Interestingly, in this study T2D patients in particular had
an increased risk of developing two or more episodes of a LRTI
within the 12-month period. This indicates that hyperglycemia
per se may be an important factor in LRTI severity, but not
necessarily in frequency of LRTIs. A 7-year retrospective study
reported that individuals with diabetes are at a higher risk of
being hospitalized due to pneumonia (104). This increased risk
was also associated with increasing blood glucose levels (104).
Furthermore, during a one year period, individuals with diabetes
were more likely to have influenza or pneumonia listed as cause
of death compared to people without diabetes, regardless of race,
sex, and socioeconomic status (106). Strikingly, it was estimated
that during this time, individuals with diabetes made up more
than 10% of the recorded influenza and pneumonia associated
deaths in the U.S (106). Together, these studies demonstrate the
enhanced risk of severe influenza outcomes in individuals with
diabetes during seasonal influenza epidemics.

Much of the current literature regarding the susceptibility of
individuals with diabetes to severe IAV infection emerged in
response to the 2009 H1N1 pandemic (pH1N1) and has been
addressed in a previous review (107). Specifically, diabetes was
identified as one of the most common host comorbidities in
those hospitalized with pH1N1 (108). During the 2009
pandemic, individuals with diabetes had around a 3- to 4-fold
increased risk of hospitalization (109–112), intensive care unit
(ICU) admission (109, 113, 114), and death (113–115). Indeed,
one study reported up to a 9-fold increased risk of hospital
mortality in individuals with diabetes (116). While diabetes was
identified as an independent risk-factor for severe pH1N1
outcomes, this risk of ICU admission and death becomes
higher in patients with additional underlying medical
conditions (117).

3.1 Factors Influencing Influenza
in Diabetes
3.1.1 Hyperglycemia
Experimentally, murine models of both T1D and T2D show that
diabetic mice have more severe influenza outcomes when
compared to healthy controls (107, 118–120), providing
Frontiers in Endocrinology | www.frontiersin.org 7
experimental evidence that hyperglycemia per se is a major
contributor to disease severity. Studies using an in vivo STZ-
induced model of T1D, demonstrated that diabetic mice had
increased viral load with a more extensive infection, and lower
rates of survival (118, 120, 121). This increase in viral load has
also been correlated to increasing blood glucose levels observed
in T1D mice (119). Similar results have been observed using a
leptin receptor-deficient model for obesity and T2D. Specifically,
elevated blood glucose levels correlated with increased viral copy
number and an increase in the pulmonary pro-inflammatory
cytokine response (122) (Figure 1B).

Despite the abundance of data that indicates the role of diabetes in
influenza severity, the research into mechanisms remains limited.
Chronic hyperglycemia can induce oxidative stress via the production
of ROS and is thought to be one of the key sources of hyperglycemia-
induced diabetes complications (123, 124). There are several
mechanisms by which hyperglycemia causes increased oxidative
stress, such as the production of AGEs, the activation of Protein
Kinase-C (PKC), the accumulation of sorbitol, and the hyperactivity
of the hexosamine pathway (125). Cumulatively, these lead to the
over production of ROS and a decrease in the endogenous
antioxidant defense systems (125). Given the causal role of
hyperglycemia-induced ROS has in the development of the non-
infectious complications of diabetes, it is likely that hyperglycemia-
induced ROS production is a driving factor in increased severity of
influenza in individuals with diabetes (Figure 2B).

There is evidence that hyperglycemia-driven ROS production
alters cellular metabolism that can shape the inflammatory
response during viral infections (126), however this has yet to
be explored in influenza. Hyperglycemia can upregulate
glycolysis (127), which can promote a pro-inflammatory
immune cell phenotype (128), and increase viral replication
(129) (Figure 2B). Despite not coming in direct contact with
circulating blood, glucose concentrations in the airway surface
liquid increase as a direct result of elevated blood glucose levels
(130). High levels of glucose cause a dose-specific increase in IAV
infection and replication in Madin-Darby Canine Kidney
(MDCK) epithelial cells (129). This was associated with a
glycolysis-dependent increase in the assembly of the cellular V-
ATPase which is necessary for viral release into the cytoplasm
(129). Indeed, increased viral replication has been observed in
murine models of both T1D and T2D, and correlated with
increased blood glucose levels (119–122). This increase in viral
replication as a result of abundance of glucose is likely due to
ROS-driven alterations to metabolic function. While this is yet to
be directly demonstrated in the context of influenza, high levels
of glucose have been shown to increase SARS-CoV-2 viral
replication and monocyte cytokine production in a ROS/
glycolysis-dependent manner (131).

In addition to altering cellular metabolic function, a history of
exposure to hyperglycemia can lead to ROS-driven endothelial
dysfunction in diabetes (132). While endothelial cells are not
normally infected by influenza virus in humans, they play a
crucial role in influenza pathogenesis given their close proximity
to the pulmonary alveolar epithelium. Specifically, during IAV
infection, it is the pulmonary endothelial cells that are believed to
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be a major source of cytokine production in the lungs (133, 134).
We have previously demonstrated using both an in vitro and in
vivomodel, that exposure to high glucose conditions prior to IAV
infection increased virus-induced pulmonary barrier damage
(122). This was associated with an increased pro-inflammatory
response in endothelial cells and the subsequent damage of the
epithelial junctional complex. This is likely to be further
exacerbated in conditions of glycemic variability (Figure 2B).

3.1.2 Glycemic Variability
Typically, individuals without diabetes have blood glucose levels
ranging between 70-100 mg/dl (135). These glucose levels
fluctuate during the day, particularly post-meal up to almost 140
mg/dl (135). These glucose fluctuations are referred to as glycemic
instability or glycemic variability and can be more extreme and
prolonged in individuals with uncontrolled diabetes.

There is mounting evidence that glycemic variability is
associated with greater ROS production than steady
hyperglycemia (125), and could further impair the immune
response (107, 136). However, glycemic variability as a factor
in severe influenza infections remains a relatively new topic, with
an extremely limited amount of research into its role, and most
studies are outside the scope of influenza. Nevertheless, there has
been one key study that has investigated the role of glycemic
variability in the context of influenza. Using an in vitro co-
culture model mimicking the respiratory epithelial-endothelial
barrier we have shown that compared to hyperglycemia,
glycemic variability increased viral replication, cell death, and
inflammation of both the epithelial and endothelial cells (136).
This was correlated with an increase in a marker of oxidative
stress. These results were confirmed using an in vivo model,
where mice that experience glycemic variability in the weeks
leading up to infection suffered more severe influenza (136).
Specifically, mice with glycemic variability had increased weight-
loss, decreased lung function, and increased apoptotic cell death.
This was again associated with increased pulmonary
inflammation and oxidative stress. Together, these data suggest
a key role of dysregulated glucose levels, both elevated and
variable, driving severe influenza in the context of a primary
infection (Figure 1B).

3.2 Adaptive Immune Responses
In addition to its effect on the innate immune system and viral
replication, diabetes may also have direct effects on the cellular
adaptive immune response to viral infection. There is evidence
that hyperglycemia induces hyperresponsiveness, enhanced
activation, and proliferation of T cells (54, 137) (Figure 2B).
However, there is perhaps a larger body of evidence that
hyperglycemia impairs responses, increases the frequency of
senescent cells, and impairs the proliferation of T cells (138–
140). In vitro evidence suggest that high glucose concentrations
reduce the production of IFN-g by CD8+ T cells (141), and
reduces their viability (142). Consistent with this, it has been
shown that when compared to healthy controls, CD8+ T cells
from patients with diabetes had reduced lysis of target cells (143),
and using genome-wide expression analysis of PBMCs from
donors with diabetes showed a reduction in activity of cytotoxic
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genes compared to controls (144). Much like what has been
observed in innate immunity, there is an emerging role of
glycemic variability in negatively shaping the adaptive immune
response to influenza. Compared to hyperglycemia, we have
shown that glycemic variability increases pulmonary
inflammation, oxidative stress and influenza severity following
a secondary influenza infection in a murine model (136). It was
speculated that this increase in severity could be driven by
glycemic variability-induced oxidative stress reducing the
CD8+ T cell function. Currently, there is very little known
about the effect of both hyperglycemia and glycemic variability
on the adaptive immune response to influenza, and further in-
depth investigation is warranted.

Taken together these studies suggested that individuals with
diabetes suffer more severe influenza as a result of i) metabolic
dysfunction, ii) increased viral replication, iii) endothelial
dysfunction, and iv) dysregulation of the immune response.

3.3 Response to Vaccination in Diabetes
As individuals with diabetes are at a higher risk of developing
serious influenza complication, influenza vaccination is currently
recommended by the Centers for Disease Control and
Prevention (CDC) for patients with diabetes (145). During
recent influenza seasons, almost 30% of adults hospitalized
with influenza had diabetes (145), highlighting the need for
vaccination in this vulnerable group. During influenza
epidemics of the early 1990s, vaccination of individuals with
diabetes (both T1D and T2D) reduced hospital admission by
almost 80% (146). A more recent meta-analysis determined that
when individuals with diabetes (both T1D and T2D) are
vaccinated, there is a reduced risk of hospitalization for
pneumonia, and a lower mortality rate (147). Furthermore,
while individuals with diabetes are at risk of developing
cardiovascular complications following influenza virus
infection (148, 149), influenza vaccination is associated with a
reduced risk of cardiovascular mortality in adults with diabetes
(150). While there are rare case study reports of adverse reactions
to influenza vaccination in individuals with diabetes, overall,
reactogenicity is similar in individuals with diabetes and healthy
adults (151, 152). Although influenza vaccines are proven to be
safe and reduced the development of severe complications, there
have been some questions over vaccine efficacy in people with
diabetes. Specifically, there is evidence that whilst patients with
T2D were more likely to have received the influenza vaccination
in the last 12 months they still experienced a greater number of
respiratory infections than their non-diabetic counterparts (153).
This is likely due to their reduced T cell and antibody response to
influenza vaccines. In a small cohort, patients with T1D had
decreased T cell response to influenza A-H1N1 subunit vaccine
compared to controls, and this was associated with
hyperglycemia (143). A larger study that encompassed both
T1D and T2D reported that in the T1D group there was a
significant increase in antibody non-responders to two of the
three vaccine components (143). While this may be cause for
concern, it has been demonstrated in vivo that vaccination via a
higher dose, or a second low dose, increases antigen levels in
diabetic mice to the point that they are able to protect against an
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otherwise lethal challenge (120, 121). Together, this emphasizes
the importance of maintaining up-to-date vaccination in
individuals with diabetes. Unfortunately, vaccination rates for
influenza are often lagging amongst those with diabetes. The
current target vaccination rate for patients with diabetes is 75%
(99). However, in developed countries coverage values are
around 50-70% (154, 155), with some as low as 10% (156).
Recently, in China, the reported vaccination rate of individuals
with diabetes was below 8%, despite more than 46% of
participants reporting an original intention to receive the
vaccine (157). On top of lagging vaccine coverage rates in
individuals with diabetes, the overall efficacy of the vaccine is
known to change from season to season, as the circulating strains
change. For example, the CDC has reported the current influenza
vaccination for the 2021-2022 flu season in the U.S. did not
reduce the risk of outpatient illness caused by influenza A
(H3N2) (158). This suggests that not all influenza associated
complications and death in diabetic individuals can be prevented
with vaccination alone. Lagging vaccination rates, combined
with sub-optimal vaccine efficacy in some influenza seasons
means that severe influenza infections remain an issue for
those living with diabetes.
4 COVID-19 SEVERITY AND
TYPE-2 DIABETES

The above examples of respiratory infections in patients with
diabetes clearly indicate a strong interaction between metabolism
and successful detection and clearance of invading pathogens
from the lung. Whether this be at the level of systemic
metabolism or cellular immunometabolic defects that alter
immune responses, a wealth of knowledge from cases of
influenza and of TB can be used to draw comparisons with
COVID-19.

Global events since March 2020 have made COVID-19 a near
singular preoccupation of medical and research professionals
due to the unprecedented strain on healthcare services. Early in
the outbreak, T2D and associated metabolic syndrome were
identified as risk factors for severity and death from COVID-
19 (159). Diabetes is underpinned by inflammation and systemic
dysmetabolism putting patients at-risk of other comorbidities.
Although, initial reports focused on the immunology of SARS-
CoV-2 infection and clinical trials applied antiviral or anti-
inflammatory therapies (160); higher mortality in patients with
pre-existing dysmetabolism indicates that metabolic
mechanisms are also attractive, to establish risk, or redeploy
therapeutics to mitigate severity. Indeed, the increased severity of
other respiratory infections (e.g., TB, influenza) in diabetes and
the interactions with specific metabolic traits support those
common features of metabolic decline that are more important
to focus on to mitigate risk.

The earliest report dedicated to COVID-19 patients with T2D
revealed that glycemic instability/variability increases risk of severe
disease (13). Further meta-analyses found that of the components of
metabolic syndrome, diabetes is the biggest contributor to adverse
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outcome compared to hyperlipidemia, obesity and hypertension
(161). Multiple reviews have addressed the interactions between
COVID-19 and T2D (162, 163). Here we will cover common points
with risk factors for TB and influenza, as well more recent questions
regarding metabolically active therapeutics and responses to
vaccination in the population with TD2 and COVID-19.

4.1 Factors Influencing COVID-19
in Diabetes
Identified factors that increase risk of COVID-19 include
increased inflammation, increased ROS, insulin resistance,
hyperglycemia and vascular endothelial damage. All of
these factors are pre-existent or accentuated in patients with
T2D prior to infection with SARS-CoV-2 (163). These risk
factors are generally shared with IAV and Mtb infection
(Figures 1C, 2C). The particularity of SARS-CoV-2 is its
activation of the renin-angiotensin-aldosterone system (RAAS)
via the virus’s main entry point, the Angiotensin converting
enzyme (ACE)-2 (164). The RAAS is defective in T2D and has
long been known to contribute to the development of
complications in diabetes (nephropathy, macroangiopathy)
(165, 166). However, dysfunction of this system cannot solely
explain the increased susceptibility of patients with diabetes to a
plethora of infectious respiratory conditions. Therefore, other
metabolic factors are valuable candidates to look into to better
understand risk.

4.1.1 Hyperglycemia
Hyperglycemia increases SARS-CoV-2 replication in circulating
monocytes (131). Interestingly, on the immunometabolic front,
mitochondrial adaptation also occurs in these cells to produce
more ROS, contributing to severity. Our own work demonstrated
that patients most severely affected exhibit morphological and
functional changes in their monocyte pool (167). These changes
are related to hyperinflammation and interferon signaling,
associated with severity and are more pronounced in T2D.
Thus, potentially via an interaction with monocytes,
hyperglycemia may be an important mechanism-based risk-
factor for severe COVID-19. Of note, glycemic control tends to
deteriorate with infection in patients with T2D (Figure 2C).
Those on insulin will require increasing doses to lower glycemia,
and this requirement is associated with increased levels of
inflammatory cytokines (168, 169).

Local and systemic inflammation are characteristic of
COVID-19. Autopsy studies have reported inflammatory
infiltrate, in the form of macrophages and lymphocytes, in a
number of tissues, including the lungs, myocardium, liver and
the brain (170, 171). Systemically, the cytokine storm syndrome
and hyperinflammation are common and potentially life
threatening in severe cases (172). The major immune signals
that are impaired in COVID-19 at the transcriptional and
translational levels are pro-inflammatory IL-6 signaling and
the type-1 interferon system (173, 174). Mechanisms shared
with other coronavirus infections have been proposed to link
immune responses to disturbed metabolic homeostasis and
worsening disease course. Notably, the large burden of
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inflammatory infiltrate affects key insulin-responsive tissues,
including the liver and skeletal muscle (175).

4.1.2 Dyslipidemia
The role of dyslipidemia in COVID-19 severity on a background of
T2D is unclear. Studies have found either increased risk of severe
COVID-19 with dyslipidemia or no effect (176). The lack of clarity
comes from confounding factors (such as multiple treatments, age
and comorbid conditions) and from heterogeneity of
studied populations.

4.1.3 Vitamin D Deficiency
Hypovitaminosis D is associated with severe COVID-19, increased
hospitalization and increased mortality (177). Several studies
reported the inverse relationship between vitamin D
supplementation and COVID-19 and its role as a preventive
measure (178, 179). Generally, the protective effects of vitamin D
against COVID-19 are linked to respiratory epithelial cell
production of LL-37 that contributes to host-defense mechanisms
through the disruption of viral membranes and replication (180).
This was confirmed by Roth et al. as they demonstrated the role of
LL-37 in preventing viral cell entry by binding to the ACE2 receptor
of SARS-CoV-2 (181). It was also noted that vitamin D deficiency
leads to a reduction in modulatory potential towards the cytokine
storm during viral infection. This phenomenon is implicated in
braking the lung epithelium, resulting in alveolar edema (182).

To date, very limited data are available on the link between
hypovitaminoses in diabetic individuals and COVID-19. Results
from a clinical study found that 76% of patients with vitamin D
deficiency and hyperglycemia had severe COVID-19 with increased
hospitalization and mortality rates compared to patients with
normal vitamin D and glucose levels (183). They also confirmed
that hypovitaminosis D in hyperglycemia resulted in worse
respiratory parameters and increased levels of IL-1b, IL-6 and
IFN-g (183). Similar results were also found in obese and vitamin
D deficient individuals with 72% increase in infection severity
compared to the control group (183). These studies suggest that
optimal nutrition and supplementation with vitamin D is a
promising candidate as a preventive measure or potentially an
adjunct treatment for COVID-19 (184).

4.1.4 Obesity
Obesity is considered as a major risk factor for COVID-19 infection
due to its significant role in increasing systematic inflammation
through the dysregulation of adipose tissue. Compared to non-
obese individuals, obese individuals had greater COVID-19 severity,
hypoxemic respiratory failure and higher baseline initial serum
levels of CRP and IL-6 (associated with low-grade-chronic
inflammation) (185). This suggests that obesity leads to worse
COVID-19 outcomes that are associated increased inflammation
and metabolic dysregulation.

4.2 Response to Vaccination and
Metabolically Active Therapeutics
Efficiency of the COVID-19 vaccine response has been evaluated
in patients with T2D. Vaccination has been reported to be
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efficient in patients with good glycemic control compared to
patients with uncontrolled T2D. Therefore, the adaptive immune
compartment does not seem to be compromised with regards to
antibody production in T2D. However, hyperglycemia in
uncontrolled diabetes results in weak immunity, indicating that
poor glycemic control can indeed impair the antibody producing
branch of adaptive immunity. Two independent studies reported
similar results (186, 187).

Of the different classes of metabolically active drugs applied in
metabolic syndrome and T2D, some have been studied for their
contribution to risk or better outcome of infection with SARS-
CoV-2. Given the risk factors described above, one would
hypothesize that rigorous glycemic control and use of insulin
would be beneficial, whilst use of lipid lowering drugs may not
affect outcome. Metanalyses have found that user of metformin
and sulfonylureas had lower mortality risk (188). Metformin acts
by lowering hepatic glucose output, with a number of proposed
molecular mechanisms, and Sulfonylureas are insulin
secretagogues. Interestingly, some studies report that insulin
use was associated with worse outcome (188). This is at odds
with the proposed action on stimulating CD8+ T-cell function,
however in an already diabetic context, the use of insulin may be
a sign of progressed diabetes and thus an overall less healthy
metabolic status of the patient. Use of dipeptidyl peptidase-4
inhibitors did not have an effect on disease outcome. So, these
studies indicate that use of antidiabetic agents either improve or
do not affect outcome in COVID-19 in patients with T2D; unless
patients with T2D have progressed to the stage of use of
exogenous insulin. With regards to controlling dyslipidemia,
the most commonly used class of drugs is Statins and studies
have been ambivalent. Some meta-analyses conclude better
outcome from retrospective studies (189) whilst others report
improvement, worsening or no effect (190).
5 PERSPECTIVES: METABOLOMIC
SHIFTS AND METABOLIC DEPRESSION
IN COVID-19

Beyond pre-existing T2D, and clinical and immunological
factors mentioned above, another way of addressing
interactions between metabolism and response to infection is
the application of metabolome studies. Such approaches are most
valuable to basic research when applied translationally, studies
are often data-driven in nature and when combined with clinical
and immunometabolic observations, metabolomic approaches
may lead to further hypothesis generation to direct future
mechanistic work. Two reports by Shen et al (191) and by Wu
et al (192) actually characterized the systemic metabolomic,
lipidomic and proteomic responses to SARS-CoV-2 infection.
Concertedly, these studies show that COVID-19 is characterized
by a generalized systemic metabolic depression, although they
were carried out in non-diabetic patients, metabolomic and
lipidomic changes may indicate which specific pathways are
dysregulated in COVID-19, and potentially subject to
worsening in patients with metabolic disease.
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The study by Shen et al. investigated proteomic and
metabolomic profiles of sera from patients with severe and
non-severe COVID-19 and non-COVID-19 patients with
similar clinical presentation (other respiratory infections). In
this study, the COVID-19-dependent proteome and metabolome
represented three major pathways: complement system,
macrophage function and platelet degranulation (191).
Lipoproteins, sphingolipids, glycerolipids, steroid hormones
and their intermediates related to macrophage function were
downregulated in COVID-19 and correlated to severity. These
molecules play important roles in immune function, including
signaling, regulating membrane properties, apoptosis, migration
and importantly in the resolution of inflammation. This lipid
repressive profile is specific to SARS-CoV-2, as studies with other
viruses (HCoV-229E, MERS-CoV) found increases of several of
these lipid mediators relative to healthy subjects (193). As for
liver-derived molecules, increased bilirubin degradation
products and bile acid derivatives indicate impaired hepatic
detoxification and urea cycle activity is also altered, which is a
typical consequence of the interferon response associated with
viral infection. Interestingly, the proteomic profile also showed
decreased serotonin correlating to disease severity; which would
influence sickness behaviors (e.g., lack of appetite, lethargy) also
altering systemic metabolism.

The publication by Wu et al (192) carried out kinetic targeted
lipidomic and metabolomic profiling of sera from healthy subjects
and from COVID-19 patients ranging from mild to severe, and to
fatal disease. When compared to healthy subjects, 87 out of 431
metabolites tested were altered in patients with fatal COVID-19 at
inclusion, which increased to 162 at last sampling; with fewer
metabolites altered in severe and mild cases. Pathway analyses
over all severities reflected enrichment of pyrimidine, fructose and
mannose and carbon metabolism as well as taste transduction
pathways; whereas fatal case features reflected thyroid hormone
synthesis and signaling, and purine metabolism pathways. The last
time points sampled in fatal cases were marked by an acute
reduction of metabolites, with malate and aspartate being the
most affected, indicating breakdown of mitochondrial respiration.
Targeted lipidomic analyses foundmost lipids to be upregulated in
COVID-19 compared to healthy subjects, with magnitude
increasing with severity. Lipids dysregulated over all severities
enriched pathways in phosphatidylinositol signaling, inositol
phosphate metabolism and long-term depression. Dysregulated
lipids in fatal COVID-19 enrich endocannabinoid signaling,
bacterial and viral infection and glycerophospholipid
metabolism pathways. Interestingly, the serum metabolome did
not normalize after recovery. This could be due to residual effects
of hyperinflammation, lasting damage to metabolic tissues, a
particularity of COVID-19; or a combination of the above. In
any case, this indicates that clinical recovery is not dependent on
re-establishing metabolic homeostasis.

Taken together the above studies report generalized metabolic
depression in COVID-19. Although metabolic diseases were not
discussed, it is reasonable to assume that pre-existing dysmetabolism,
sub-optimal liver function, impaired glucose homeostasis,
dyslipidemia, or any other disequilibrium associated with
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metabolic disease will adversely affect the metabolic response to
COVID-19. The above studies indicate that higher risk of severity in
metabolic disease may be due to a lack of metabolic flexibility, as
required to efficiently respond to SARS-CoV-2 infection. Indeed, the
80% of COVID-19 cases that are mild or asymptomatic, may be so
because of their adaptable metabolism, capable of ramping up or
down their substrate production or utilization to cope with
pathogen burden.

Several overarching themes can be drawn in the context of these
studies. COVID-19 is associated with: i) compromised liver
function; ii) dyslipidemia; iii) depression or a depression-like
molecular profile; and 4) Altered cellular metabolism. The liver
response in releasing alarmmolecules is common in severe infection
and sepsis, compromised function may arise from high viral loads,
congestion due to outstripped filtering capacity, or pre-existing
intrahepatic triglycerides that impair liver function. Dyslipidemia
may be due to increased lipolysis from a highly inflammatory
background, which would be aggravated in T2D where fatty tissues
lose sensitivity to insulin’s anti-lipolytic effects. Importantly,
dyslipidemia and increased lipolysis may also arise due to sickness
behaviors that modify energy intake and expenditure, notably a loss
of appetite and drop in blood glucose levels causing ketogenesis and
reliance on lipid metabolism. Finally, effects were reported on
cellular pathways of nucleic acid synthesis, lipid synthesis and
oxidative metabolism. The loss of substrates for nucleic acid and
lipid synthesis, may be explained by virus-host cell dynamics where
viral particles usurp nucleotides for their own replication, and make
use of cellular lipids to construct their envelopes. SARS-CoV-2
seems particularly efficient in diverting the use of cellular substrates
for its own needs, the authors describe this as a ‘hijacking’ of host
cell metabolic machinery (191). A recent study by Zhang et al.
supports such dynamics by demonstrating that intercellular glucose
and folate are depleted in SARS-CoV-2 infected cells. This is the
result of SARS-CoV-2 infection orienting glucose and folate
metabolism towards needs supporting viral replication,
destabilizing host mRNA abundance and protein translation
processes by its use for viral biosynthesis (194).

To put findings into context, over recent years immuno
metabolism research has characterized systemic immunity in
metabolic diseases as well as cellular metabolism associated
with immune functions. Yet the metabolic demands of
viral infection remain relatively understudied. A hallmark
publication by Wang et al. in 2017 (130) highlights the systemic
metabolism associated with bacterial and viral infection. Whilst
both cause similar symptoms or sickness behaviors: loss of
appetite, weight loss, fever, lethargy; the energy imbalance and
systemic metabolic shift is favourable only in bacterial infection.
Of note, fever and marked weight loss are common to SARS-
CoV-2, where decreased energy intake is aggravated due to the
loss of taste and smell and depression of central reward systems
with decreased serotonin reported in the above studies (191, 192,
195). The resulting undernutrition shifts systemic metabolism
from glucose-dependence to reliance on ketone bodies and fatty
acids, reminiscent of fasting metabolism. This is maladaptive in
viral infection, where nutritional supplementation, particularly
with glucose, is protective, independently of inflammatory status
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or pathogen burden. The systemic metabolic shift in infection is
also favorable for viral replication, where free fatty acid substrates
are used to form and close virion membranes (196). Whilst all
may also apply to COVID-19, the added respiratory depression
will also starve the host of oxygen and thus the capacity to
maintain efficient oxidative metabolism, largely dependent on
lipid-substrates, the mediators of which also sustain lipogenesis.

To date, few specific therapies have proven to be effective against
COVID-19 (197, 198). Generally patients receive standard supportive
care and antiviral therapies, trials have been ambivalent with regards
to alternative therapies including chloroquine, steroids or their related
compounds (199). These studies and many others have applied these
approaches to classify patient risk, importantly these findings can also
be used to redirect trials towards metabolically active therapeutics
already applied in metabolic diseases. Analyses from medical
databases based around prescription history will also give signs
whether lipid lowering, glycogenolytic or anti-hyperglycemic agents
may mitigate or aggravate COVID-19, as well as other respiratory
infections with a high burden of disease.
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