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A B S T R A C T

We investigated antimicrobial residues, non-typhoidal Salmonella (NTS), Vibrio spp. and their associated anti-
microbial resistance (AMR), in shrimps locally purchased in Ho Chi Minh City (Vietnam). In addition, we in-
vestigated the relationship between AMR in NTS, Vibrio spp. and antimicrobial residue in the same sample. A
total of 40 samples of shrimp heads/shells from different retail sources was cultured using ISO 6579–1:2017
(NTS) and ISO/TS 21872–1:2007 (Vibrio spp.). Phenotypic antimicrobial susceptibility was investigated using
Vitek (NTS, 34 antimicrobials) and disk diffusion (Vibrio spp., 12 antimicrobials). A total of 9 (22.5%) samples
contained antimicrobial residue, including tetracyclines, fluoroquinolones, sulfonamides and macrolides (in
7.5%, 7.5%, 2.5% and 2.5% of samples, respectively). Shrimp samples from supermarkets had a higher pre-
valence of antimicrobial residue than those purchased in street markets (50% vs. 13.3%) (p=0.049). A total of
30 (75%) samples were contaminated with NTS. All samples contained Vibrio spp., with V. parahaemolyticus
being most common (87.5% samples). A total of 58.9% NTS isolates were multidrug resistant. With regards to
the highest priority, critically important antimicrobials, the highest resistance corresponded to quinolones
(14.4–47.8%), followed by 3rd and 4th generation cephalosporins (3.3–7.8%). Vibrio spp. isolates were char-
acterised by their high resistance against ampicillin (82.7%) and 3rd generation cephalosporins (8.3–16.5%).
Extended Spectrum Beta-Lactamase (ESBL) activity was detected in 28.1% V. parahaemolyticus isolates. Half of
ESBL-positive V. parahaemolyticus strains harboured blaCTX-M1. We found an association between the presence of
residues and the number of resistances for NTS (p=0.075) and Vibrio spp. isolates (p= 0.093) from the same
sample. These findings suggest that the presence of residues may contribute to the selection of AMR in foodborne
pathogens in shrimps. Authorities should strengthen policies aiming at restricting inappropriate antimicrobial
usage in shrimp farming, and step up monitoring of antimicrobial residues and food-borne pathogens at retail in
Vietnam.

1. Introduction

Antimicrobial resistance (AMR) is one of the greatest threats to our
society (O'Neill, 2016). Among other sources, humans may acquire
AMR bacterial infections or AMR-encoding genes through the con-
sumption of contaminated food, including fish and shellfish (Cabello

et al., 2013; Likotrafiti et al., 2018). In recent years shrimp farming has
rapidly increased, reaching a global production of 3.2 million metric
tons in 2017, much of it taking place in Asia (Anon., 2018). This in-
crease is happening in a context of rapid globalization of markets, as
well as the threat of climate change (Lauria et al., 2018). Antimicrobials
are widely used in shrimp and aquaculture production, both to treat
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and prevent diseases (Henriksson et al., 2018). Contamination of
aquaculture food products with antimicrobial residues represents a
potential health hazard to the consumer due to food poisoning, the
development of allergy problems, changes of the intestinal flora, as well
as the emergence and subsequent spread of antimicrobial resistance
(Okocha, Olatoye, & Adedeji, 2018).

Non-typhoidal Salmonella (NTS) and certain Vibrio spp. are major
microbiological hazards associated with shrimp and seafood con-
sumption (Baker-Austin et al., 2018; Tusevljak et al., 2012). Vibrio
parahaemolyticus is the leading cause of seafood-borne bacterial gas-
troenteritis in the world. Both its thermostable direct hemolysin (tdh)
and tdh-related hemolysin (trh) are considered major virulence factors
of this micro-organism (Raghunath, 2015). In the late 1990s’, V. para-
haemolyticus was implicated in a large outbreak of enteric disease in
central Vietnam, with 523 cases reported (Chowdhury et al., 2004).

NTS is a major cause of gastroenteritis worldwide (Majowicz et al.,
2010). In Vietnam, NTS is recognised as a major cause of pediatric
diarrhoea (Thompson et al., 2012). There is also evidence of an increase
in the incidence of severe invasive infections in hospitalised patients
associated due to this organism (Lan et al., 2016; Nga et al., 2012).

The Vietnamese shrimp industry has experienced a considerably
expansion over recent years, with most of its production being aimed
the export market (mostly to the USA, Europe and Japan). In 2017,
shrimp exports made up about half of the total Vietnam seafood ex-
ports, with sales worth 3.8 billion US$ (Hong, Hien, Thu, & Lebailly,
2017).

Shrimp exports are regularly screened for their microbiological
safety by the companies themselves. However, little is known about the
microbiological safety of shrimps available for domestic consumption.
Therefore, the aims of this study were: (1) to investigate major food-
borne hazards associated with shrimps from local retail sites in Ho Chi
Minh City (HCMC), Vietnam, such as antimicrobial residues, NTS and
Vibrio spp.; and (2) to characterise the AMR profile of these organisms,
including the presence of Extended Spectrum Beta-Lactamases (ESBL)
and colistin resistance. In addition we investigated the relationship
between the presence of AMR in the two bacterial species and anti-
microbial residues in the same batches, which to our knowledge has not
been previously investigated.

2. Methods

2.1. Sample collection and identification

Batches of shrimps (250–300 g each) were purchased from 40 dif-
ferent retail sites located in 10 districts of HCMC (Vietnam) from March
to June 2018. In order to maximize the diversity of sources, from each
district three street markets and one supermarket were selected. From
each retail site, one batch of live or dead shrimps (chilled, not frozen)
was purchased. Shrimps were collected into a clean plastic bag, and
were transported to the laboratory within 2 h in an ice-containing box.
Five representative specimens per batch were weighted using precision
scales. Shrimp species were identified based on their morphological
features. Using a pair of sterile scissors, the heads, legs and exoskeleton
were separated from the muscle tissue, and were subsequently pooled
(shell mix). Muscle tissue samples were investigated for the presence of
antimicrobial residues, and the shell mixes were investigated for NTS
and Vibrio spp.

2.2. Antimicrobial residue analyses

Shrimp muscle tissue samples were investigated for antimicrobial
residues using a hierarchical approach. Firstly, they were screened
using PremiTest (R-Biopharm AG, Germany), an assay based on the
inhibition growth of Bacillus stearothermophilus spores. Positive or in-
conclusive result samples were then examined for the presence of
macrolides, amphenicols, tetracyclines, β-lactams and sulfonamides

antimicrobial classes, as well as for the presence of chloramphenicol,
streptomycin and gentamicin/neomycin using a Charm II analyzer 7600
(Charm Sciences, USA) (Gaudin, Juhel-Gaugain, Moretain, & Sanders,
2008). Samples that tested positive by Charm II were then confirmed
for specific antimicrobials within each class by Ultra-High Performance
Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS). In
addition, PremiTest-positive samples were investigated for quinolones
by LC-MS/MS. (See Table A with the list of antimicrobials investigated
by LC-MS/MS).

2.3. Isolation of NTS and vibrio spp.

The shrimp shell mixes were investigated for NTS using a modified
ISO 6579–1:2017 method. Briefly, from each sample 25 g of homo-
genized shell mix was pre-enriched in 225mL buffered peptone water
(BPW, Oxoid, UK) at 37 °C for 18 h. A loop of pre-enrichment media was
then inoculated on Modified Semi-solid Rappaport-Vassiliadis (MSRV,
Oxoid, UK), and incubated at 41.5 °C for 24 h. and positive growth was
further inoculated on chromogenic Rambach agar (CHROMagar,
France) and incubated at 37 °C for 24 h (Carrique-Mas, Barnes,
McLaren, & Davies, 2009). Matrix-Assisted Laser Desorption Ionization
Time-of-Flight Mass Spectrometry (MALDI-TOF MS) (Bruker, Germany)
was used to investigate the species identity of three suspected (pink)
isolates from each culture. NTS isolates were further classified as either
group B, C, D, E or ‘others’ according to the Kauffmann-White scheme
using relevant poly-O antiserum (Grimont P.A. & Weill, 2007). Shrimp
shell mixes (25 g) were also investigated for the presence of Vibrio spp.
using a modification of the ISO/TS 21872–1:2007 method. Briefly, the
steps were: (1) 25 g of the shell mix was suspended in 225mL of al-
kaline saline peptone water (ASPW) at 41.5 °C for 24 h; (2) a loop of
enrichment was cultured on thiosulfate citrate bile and sucrose agar
(TCBS, Oxoid, UK) at 37 °C for 24 h. Four suspected Vibrio spp. isolates
from each sample were confirmed by MALDI-TOF.

2.4. Antimicrobial susceptibility testing

All confirmed NTS isolates were tested for their antimicrobial sus-
ceptibility against a panel of 34 antimicrobials belonging to 11 classes
by Vitek (bioMérieux, Marcy l’Etoile, France) (Livermorea et al., 2002)
(33 antimicrobials), as well as by Etest (BioMérieux, France) (colistin).
All Vibrio spp. isolates were tested using the disk diffusion method for
12 antimicrobials representative of eight classes (Oxoid, UK). The full
list of antimicrobials investigated is displayed in Tables C4 and C5. NTS
and Vibrio spp. isolates were classified as susceptible, intermediate or
resistant according to CLSI guidelines (M100-S27 for NTS, M45-A2 for
Vibrio spp.) (Anon., 2010; 2017a). A strain was defined as ‘multidrug
resistant’ (MDR) if it was fully resistant to antimicrobials belonging to
at least three different classes. The potential production of ESBLs was
investigated by the ‘comparative disk diffusion method’, using cefo-
taxime and ceftazidime disks alone, as well as in combination with
clavulanate (Anon., 2017a). Antimicrobial susceptibility results were
sorted according to the WHO list of antimicrobials of human health
importance (Anon., 2017b).

2.5. Determination of serovar identity of NTS

NTS isolates were further classified as belonging to either group B,
C, D, E or ‘others’ according to the Kauffmann-White scheme using
poly-O antiserum (Grimont P.A. & Weill, 2007). From each sample, one
isolate representative of each a serogroup-antimicrobial susceptibility
testing result pattern was investigated by Multi-Locus Sequence Typing
(MLST). The MLST scheme followed is based on seven loci aroC, dnaN,
hemD, hisD, purE, sucA and thrA (Yun et al., 2015).
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2.6. Investigation of tdh and trh genes of vibrio spp. by PCR

The presence of genes encoding a thermostable direct hemolysin
(tdh) and a tdh-related hemolysin gene (trh) was investigated by PCR in
all Vibrio spp. isolates (Tada et al., 1992). Positive and negative control
isolates were used. The positive control isolates originated from con-
firmed human cases.

2.7. Investigation of ESBL and plasmid mediated colistin resistance-
encoding genes by PCR

The presence of blaCTX-M(1, 2, 8, 9 and 25), blaTEM, blaSHV, and blaOXA
genes (all encoding extended-spectrum β-lactamases) was investigated
by multiplex PCR (Dallenne, Da Costa, Decre, Favier, & Arlet, 2010) in
all NTS and Vibrio spp. isolates that tested positive phenotypically for
ESBL. The presence of plasmid-mediated genes (mcr-1 to mcr-5) among
phenotypic colistin-resistant isolates was investigated by multiplex PCR
(Rebelo et al., 2018).

2.8. Statistical analyses

We investigated 40 shrimp batches with the aim of determining the
prevalence of residues, based on an expected prevalence of 8%, a 95%
level of confidence and an 8% relative precision. We expected to obtain
50 NTS isolates from these batches. This sample size (50) allowed de-
termining a prevalence of MDR of ∼27% (based on published data)
with a 95% level of confidence and a 9% relative precision. The pre-
valence of contamination and resistance across variables was compared
using chi-square tests. The level of agreement between presence of re-
sidues and presence of intermediate (or resistant) isolates in each
shrimp batch sample was investigated using the kappa statistic.

3. Results

3.1. Shrimp samples

The 40 batches investigated included specimens of five shrimp
species: white leg shrimp (Litopenaeus vannamei) (30) (22.5 g weight;
16.2 ± Standard Deviation (SD) 1.2 cm length), giant tiger shrimp
(Penaeus monodon) (5) (22.0 g; 15.4 ± SD 1.4 cm), banana shrimp
(Penaeus merguiensis) (3) (17.3 g, 12.5 ± SD 1.6 cm), greasy-back
shrimp (Metapenaeus ensis) (1) (11.5 g; 11.5 ± SD 1.4 cm), and giant
prawn (Macrobrachium rosenbergii) (34.3 g; 16.6 ± SD 1.1 cm). The

descriptive data for the samples investigated, and the prevalence of
PremiTest, NTS and Vibrio spp. sample positivity results are shown in
Table 1.

3.2. Antimicrobial residues

Antimicrobial residues were detected in 9/40 (22.5%) samples by
PremiTest. Shrimp samples from supermarkets had a higher prevalence
of antimicrobial residues than those purchased in street markets (50%
vs. 13.3%) (χ2= 3.871, p=0.049). Four of the nine PremiTest-positive
samples were positive by Charm II, whereas the remaining five tested
negative (Table 2). Tetracyclines, sulfonamides, and macrolides were
detected by Charm II in 7.5%, 2.5%, and 2.5% of samples, respectively.
Antimicrobials identified by LC-MS/MS included two tetracycline an-
timicrobials (tetracycline and oxytetracycline) and two fluoroquinolone
antimicrobials (ciprofloxacin and flumequine). The Charm II macrolide-
positive sample tested negative for both tylosin and erythromycin by
LC-MS/MS. Two samples contained antimicrobial residues above the
maximum residue limits (MRL) according to Vietnamese regulations
(one contained tetracycline and sulfamethoxazole; another oxyte-
tracycline, and ciprofloxacin). Oxytetracycline and flumequine were
also found in two other samples although at concentrations below the
MRL (43.7 μg/kg and 41.2 μg/kg, respectively).

3.3. Prevalence of contamination with NTS serovars and vibrio spp.

A total of 90 NTS isolates were recovered from 30/40 (75%) shrimp
batches (Table 1). The prevalence of NTS among samples purchased in
street markets was higher than that from supermarket samples, al-
though this difference was not significant (80% vs. 60%; χ2= 0.711;
p=0.399). There was lower probability of recovering NTS from Pre-
miTest-positive samples than from PremiTest-negative samples (5/9 vs.
25/31), although this difference was not significant (Fisher’s exact test,
p= 0.190). MLST was performed on 62 isolates with a unique ser-
ogroup-antimicrobial susceptibility pattern. The remaining 28 isolates
were assigned to serovar based on MLST results of isolates recovered
from the same sample and with the same serogroup-AST pattern. A total
of 28 MLST sequence types (ST) corresponding to 25 NTS serovars were
identified. One NTS strain (Group B) could not be assigned to ST, and
therefore its serovar identity was not determined (Table B). The most
prevalent serovars identified were Braenderup (present in 20% sam-
ples), Anatum (16.7% samples), Saintpaul (13.3% samples), Rissen and
Litchfield (10% samples each). All (100%) samples were positive for

Table 1
Description, prevalence of residues, NTS and Vibrio spp. among 40 shrimp batches purchased in HCMC.

Variable No. samples No. (%) positive

PremiTest NTS (%) Vibrio species

V. parahaemolyticus V. navarrensis V. alginolyticus V. cholerae non-O1 V. vulnificus V. fluvialis

Type of retail site

Supermarket 10 5 (50.0%) 6 (60.0%) 9 (90.0%) 7 (70.0%) 4 (40%) 6 (60.0%) 2 (20.0%) 0 (0%)
Street market 30 4 (13.3%) 24 (80.0%) 26 (86.7%) 17 (56.7%) 17 (56.7%) 9 (30.0%) 7 (23.3%) 4 (13.3%)

Shrimp species
White leg shrimp 30 8 (26.7%) 22 (73.3%) 26 (86.7%) 15 (50.0%) 16 (53.3%) 12 (40.0%) 7 (23.3%) 4 (13.3%)
Giant tiger shrimp 5 1 (20.0%) 3 (60.0%) 4 (80.0%) 5 (100%) 2 (40.0%) 2 (40.0%) 1 (20.0%) 0 (0%)
Other species 5 0 (0%) 5 (100%) 5 (100%) 4 (80%) 3 (60%) 1 (20%) 1 (20%) 0 (0%)

Condition
Alive 17 3 (17.6%) 12 (70.6%) 16 (94.1%) 8 (47.1%) 11 (64.7%) 4 (23.5%) 5 (29.4%) 4 (23.5%)
Dead 23 6 (26.1%) 18 (78.3%) 19 (82.6%) 16 (69.6%) 10 (43.5%) 11 (47.8%) 4 (17.4%) 0 (0%)

Retail price (per kg)
≤170 k VNDa 22 6 (27.3%) 14 (63.6%) 18 (81.8%) 14 (63.6%) 12 (54.5%) 9 (40.9%) 5 (22.7%) 1 (4.5%)
>170 k VND 18 3 (16.7%) 16 (88.9%) 17 (94.4%) 10 (55.6%) 9 (50%) 6 (33.3%) 4 (22.2%) 3 (16.7%)

Total 40 9 (22.5%) 30 (75.0%) 35 (87.5%) 24 (60.0%) 21 (52.5%) 15 (37.5%) 9 (22.5%) 4 (10.0%)

a VND=Vietnam Dong (1USD=23 kVND).
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Vibrio species, yielding 133 isolates. Among six Vibrio species, V.
parahaemolyticus was the most common species (87.5% samples), fol-
lowed by V. navarrensis (60%), V. alginolyticus (52.5%), V. cholerae non-
O1 (37.5%), V. vulnificus (22.5%) and V. fluvialis (10%) (Table 1).

3.4. Antimicrobial susceptibility among NTSisolates

Among highest priority-critically important antimicrobial classes,
the highest prevalence of resistance corresponded to quinolones (nali-
dixic acid, ciprofloxacin, ofloxacin, levofloxacin, moxifloxacin) (range
14.4–47.8%), followed by 3rd and 4th generation cephalosporins (ce-
fixime, cefotaxime, ceftazidime and ceftriazone) (3.3–7.8%). Among
high priority-critically important antimicrobials, resistance was highest
against aminoglycosides (16.7% gentamicin and 7.8% tobramycin),
monobactams (7.8% aztreonam), and glycylcyclines (3.3% tigecycline)
(Fig. 1, Table C). A total of 58.9% isolates were MDR. The highest
prevalence of MDR corresponded to Group B isolates (76.2%; 95% CI
58.0–94.4%), followed by Group D (75.0; 95% CI 32.6–100%) and
Group C (51.4%; 95% 35.2–67.5%). Seven isolates (7.8%) (from 3
samples) were identified as ESBL-positive. They were identified as
serovars Infantis (3), Give (3) and Braenderup (1). The isolates

identified as Infantis and Give (three of each, from two different sam-
ples) had identical antimicrobial susceptibility profile.

3.5. Antimicrobial resistance of vibrio spp. isolates

Results of antimicrobial susceptibility testing of 133 of Vibrio spp.
against 12 antimicrobial drugs are shown in Fig. 2 and in Table D. The
highest prevalence of resistance corresponded to ampicillin (82.7%),
followed by co-trimoxazole (18.8%) and 3rd generation cephalosporins
(16.5% cefotaxime; , 8.3% ceftazidime). All (100%) V. parahemolyticus
and V. alginolyticus isolates were fully resistant to ampicillin. The pre-
valence of resistance against amoxicillin-clavulanic, penems, ami-
noglycosides, tetracyclines, quinolones and phenicols was< 11.3% in
all cases. A total of 18/64 (28.1%) V. parahaemolyticus were ESBL
producers; however none (0%) of the 69 non-V. parahaemolyticus strains
were ESBL producers. Overall, 18 of 133 (13.5%) Vibrio spp. isolates
were MDR, but this percent was 28.1% among V. parahemolyticus, and
0% among other Vibrio species.

Table 2
Results of antimicrobial residue testing by Charm II and LC-MS/MS among 9 shrimp samples that tested positive by PremiTest.

Sample ID Description Charm II (antimicrobial class) LC-MS/MS (antimicrobial) Concentration of antimicrobial active ingredient (μg/kg) MRL (μg/kg)

1 White leg shrimp, dead Tetracyclines Tetracycline 590.7 100
Sulfonamides Sulfamethoxazole 157.6 100

Flumequinea 38.5 200
2 White leg shrimp, dead Tetracyclines Oxytetracycline 122.2 100

Ciprofloxacin* 30 Not allowed
3 White leg shrimp, dead Macrolides ND – –

Flumequinea 41.2 200
4 White leg shrimp, dead Tetracyclines Oxytetracycline 43.7 100
5 White leg shrimp, dead ND ND – –
6 White leg shrimp, live ND ND – –
7 White leg shrimp, live ND ND – –
8 White leg shrimp, live ND ND – –
9 Tiger shrimp, dead ND ND – –

a Highest priority, critically important antimicrobial; ND=Not detected; MRL=Maximum Residue Limits according to Vietnamese regulation.

Fig. 1. Phenotypic resistance of NTS isolates by group. Pale bars indicate the percent of isolates showing intermediate resistance; dark bars indicate percent of
isolates with full resistance. 95% binomial confidence intervals have been drawn around the percentage of resistant plus intermediate resistant isolates.
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3.6. Detection of toxin-encoding genes

None of the 133 Vibro spp. isolates tested positive for either the tdh
or trh genes.

3.7. Detection of ESBL genes in NTS and vibrio spp. isolates

The phenotypically ESBL-positive serovar Branderup isolate tested
negative for all ESBL genes investigated. All three serovar Infantis
isolates (from the same sample) were positive for blaCTX-M9. The three
serovar Give isolates tested positive for both blaCTX-M1 and blaTEM.
Interestingly, all isolates were fully susceptible to cefepime and cefox-
itin. A total of 9/18 (50%) ESBL-positive V. parahaemolyticus strains
were positive for blaCTX-M1. In addition, one of these isolates tested
positive to the blaTEM gene.

3.8. Relationship between residues, and AMR in NTS and vibrio spp.
isolates

NTS isolates from shrimp samples that tested positive to PremiTest
(n=15) were resistant to a median of 10 antimicrobials [IQR 3–13],
whereas NTS isolates from samples testing negative (n=75) were re-
sistant to 5 antimicrobials [IQR 0–9] (Wilcoxon test W=724.5,
p=0.075). Vibrio spp. isolates from PremiTest-positive samples
(n=29) were resistant to a median of 1 [IQR 1–4] antimicrobial,
compared with 1 [IQR 1–2] among Vibrio spp. from PremiTest-negative
samples (n=104) (Wilcoxon= 1792; p=0.093) (Fig. 3). We found
fair agreement between presence of residue (PremiTest) and presence of
co-trimoxazole and ciprofloxacin resistant NTS from the same sample
(kappa values 0.265 and 0.365; p≤0.016). We also found a fair
agreement between presence of a quinolone residue and ciprofloxacin
resistance in Vibrio spp. isolates from the same sample (kappa= 0.383;
p=0.005). In addition, there was a moderate agreement between
samples that contained ESBL-positive Vibrio spp. and ESBL-positive NTS
isolates (kappa= 0.515, p < 0.001) (Table D). However, in neither of
the two samples that contained both phenotypically ESBL-positive NTS
and Vibrio spp. we could demonstrate the presence of the same genes: in
one sample V. parahaemolyticus was positive for both blaTEM and blaCTX-
M1, whereas no ESBL genes were detected in the NTS isolate; in the
other, NTS harboured the blaCTX-M9, wheras V. parahaemolyticus tested

negative for all ESBL genes.

4. Discussion

This study evidenced a high prevalence of contamination of shrimp
samples with antimicrobial residues (22.5%), NTS (75%), and Vibrio
spp. (100%). This result is in line with a previous survey of shrimps
from local markets in the Red River and Mekong Delta regions of
Vietnam (13.0% and 33.3%, respectively) (Pham et al., 2015), but
higher than previous results reported from the Vietnamese provinces of
HCMC, Thai Binh and Nha Trang (8.8, 1.8 and 3.2%, respectively)
(Uchida et al., 2016). However, we were only able to establish the
identity of the antimicrobial residue in 4 of 9 samples that tested po-
sitive by a bacterial inhibition test. This may be the result of a false-
positive result in our screening test, or (more likely) due to the presence
of antimicrobial residues not investigated in this study. All anti-
microbials confirmed in our samples (tetracyclines, ciprofloxacin,

Fig. 2. Phenotypic resistance of Vibrio spp. isolates. Pale bars indicate the percent of isolates showing intermediate resistance; dark bars indicate percent of isolates
with full resistance. 95% binomial confidence intervals have been drawn around the percentage of resistant plus intermediate resistant isolates.

Fig. 3. Number of phenotypic resistances among NTS and Vibrio spp. isolates
from PremiTest-positive and PremiTest-negative shrimp samples.
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flumequine) are known to be commonly used in Vietnamese aqua-
culture (Pham et al., 2015), although levels of flumequine (two sam-
ples) and oxytetracycline (one sample) where within the legal limits.
We found considerable agreement between the screening results by
Charm II and the residues detected by LC-MS/MS. The exception was a
macrolide-positive sample by Charm that subsequently tested negative
for both erythromycin and tylosin. We hypothesize that this may reflect
the use of spiramycin, another macrolide antimicrobial known to be
used in aquaculture (Sekkim & Kum, 2011) that was not investigated. It
is likely that the observed prevalence of residues in shrimp samples
reflects the use of antimicrobials late in the production cycle, thought to
be common practice in Vietnamese aquaculture (Pham et al., 2015). A
surprising finding was the higher prevalence of residues in shrimps
procured from supermarkets than from (more informal) street markets.
This suggests that intensive production systems (normally associated
with the supermarket supply chains) may be associated with a higher
levels of antimicrobial usage. This is consistent with a previous study
that reported a higher prevalence of residues in shrimp products pro-
cured in supermarkets compared with wholesale markets (Uchida et al.,
2016). The observed prevalence of contamination with NTS in this
study (75%), is higher than in previous studies from Vietnam, China,
Thailand and Bangladesh (prevalence levels ranging between 13% and
55%) (Minami et al., 2010; Phan et al., 2005; Pinu, Yeasmin, Bar, &
Rahman, 2007; Uddin, Larsen, Barco, Phu, & Dalsgaard, 2015). A recent
study investigating NTS in 25 g meat samples purchased across markets
in Vietnam resulted in a comparatively lower prevalence (71.8% in
chicken, 70.7% in pork and 62.2% in beef samples) (Nhung et al.,
2018). In contrast with the antimicrobial residue results, shrimp sam-
ples purchased in street markets had higher prevalence of NTS con-
tamination than shrimps purchased in supermarkets, although this
difference was not statistically significant. We hypothesize that this
may reflect deficiencies in the cold chain associated with street mar-
kets. A study in Thailand reported absence of NTS in shrimps purchased
in supermarkets, compared with a 50.2% prevalence among shrimps
purchased in street markets (Minami et al., 2010).

We found a considerable serovar diversity (25) of NTS in our sam-
ples, with serovars Braenderup, Anatum, Saintpaul and Rissen ac-
counting for 46.7% of all NTS isolates. Most serovars detected in
shrimps have been isolated in outbreaks of human disease in different
countries. A study from 2004 on 56 human clinical (diarrhoea, fever) in
Vietnam identified 12 different serovars (Vo et al., 2006), of which four
(Anatum, Albany, Typhimurium and Enteritidis) were detected in our
shrimp samples. However, in that study, serovars Typhimurium and
Enteritidis accounted for 50% of human cases, whereas in our study
they only accounted for 6.6% of all isolates. A more recent study on
invasive (bloodstream infection) isolates identified 19 serovars, of
which 8 were identified in our study (Lan et al., 2016). Surprisingly,
serovar Weltevreden, which was predominant in a previous study on
shrimp farms in the Mekong Delta of Vietnam (Uddin et al., 2015) was
found only in one sample, and was a pansusceptible strain. A possible
explanation for this discrepancy is that NTS contamination of shrimps
mainly occurs after harvesting. It has been shown experimentally that
seafood is an excellent nutrient media supporting vigorous post-harvest
NTS multiplication at ambient temperatures (Kumar, Datta, & Lalitha,
2015). Since no routine diagnostic or surveillance data exists for human
salmonellosis, it is not possible to know to what extent shrimps are a
significant source of NTS to the community in Vietnam. A total of
58.9% NTS isolates were MDR, a figure higher compared with overall
MDR prevalence in isolates from meat in a previous study using the
same antimicrobial panel (52.2%) (Nhung et al., 2018). Overall re-
sistance to ciprofloxacin (33.3%) is of great concern, since this anti-
microbial is often used to treat enteric infections. We found that 7.8%
isolates were ESBL-producers and were fully resistant to at least one of
the four 3rd-4th generation cephalosporins investigated. ESBL-

producing NTS organisms were identified as belonging to serovars
Braenderup (1), Infantis (3), and Give (3). These ESBL-producing iso-
lates were MDR (including quinolone resistance), although were sus-
ceptible to carbapenems. The latter is the first choice drug in the
treatment of ESBL-producing microorganisms (Zhanel et al., 2007).

All (100%) retail shrimp samples were contaminated with Vibrio
spp., being V. parahaemolyticus the most prevalent species (87.5%
samples). Other Vibrio species were isolated in 10.0–60.0% samples.
These levels of contamination are comparable with studies in northern
Vietnam (99.5% prevalence) (Tra et al., 2016) and Malaysia (100%)
(Letchumanan, Yin, Lee, & Chan, 2015), although higher than results
from Turkey (67%) (Mus, Cetinkaya, & Celik, 2014), confirming that
Vibrio spp. organisms are omnipresent in the shrimp farm aquatic en-
vironment (Gopal et al., 2005). In addition to V. parahaemolyticus, both
V. vulnificus and V. cholerae non-O1 are also known to cause severe
human disease (Deshayes et al., 2015). We did not, however, find
evidence of any of the two major virulence genes investigated (tdh and
trh) in any of the 133 Vibrio spp. isolates. Previous research in Malaysia
has shown a low prevalence of tdh (4%) and trh (12%) genes in non-
clinical V. parahaemolyticus isolates (Paydar, Teh, & Thong, 2013). In a
study on 47 environmental isolates from India, only 4.2% and 2.1%
harboured the tdh and trh genes, respectively (Koralage et al., 2012).
However there was no evidence of these genes in isolates investigated
in northern Vietnam (Tra et al., 2016), Hong Kong (Wong, Liu, Wan, &
Chen, 2012), or Sri Lanka (Koralage et al., 2012). In the late 1990s’, V.
parahaemolyticus was implicated in a large outbreak of enteric disease in
central Vietnam, with 548 cases reported (Tuyet et al., 2002). It was
determined in further analyses that the prevailing serovar changed over
time (O3:K6 in 1997, O4:K68 in 1998, O1:K25 in 1998–1999), and that
85% clinical isolates harboured either the tdh or trh genes (Chowdhury
et al., 2004).

We found that 82.7% of Vibrio spp. isolates were resistant to am-
picillin (100% for V. parahaemolyticus and V. alginolyticus). This pre-
valence was comparable to published resistance levels among V. para-
haemolyticus isolates from shrimps in northern Vietnam (87%) and
Malaysia (82%) (Letchumanan et al., 2015; Tra et al., 2016). A total of
31.3% V. parahaemolyticus isolates were resistant to third generation
cephalosporins and 28.1% were ESBL producers. In about half of those
strains, the gene carried was blaCTX-M1. However, in another half the
molecular basis for ESBL activity could not be established. Given that
these genes are highly mobile, and are often inserted in plasmids and
transposons, we hypothesize that V. parahaemolyticus may act as a re-
servoir of ESBL genes (Canton, Jose, & Galan, 2012). Interestingly we
found an association between the presence of ESBL in NTS and V.
parahaemolyticus isolated from the same sample.

The study confirmed the association between presence of anti-
microbial residues and phenotypic resistance in NTS and Vibrio spp. in
the same samples. This may be a reflection of AMR selection during the
farming process, or may alternatively reflect post-harvesting con-
tamination. The latter would be likely if the antimicrobial residue in the
sample contributed to preferentially select for contamination with more
resistant strains.

This study provides evidence of high levels of contamination with
antimicrobial residues, NTS and Vibrio spp. among shrimps purchased
in retail sites in HCMC. We found a high prevalence of MDR among
NTS, with worryingly high levels of quinolone resistance. Although
most Vibrio spp. isolates are unlikely to be pathogenic, the high carriage
levels of ESBL in V. parahaemolyticus is of concern. We recommend
authorities to enforce existing policies aiming at restricting in-
appropriate antimicrobial usage on shrimp farms, stepping up hygiene
conditions during harvesting, transporting and retailing of shrimps, and
to establish monitoring of antimicrobial residues, NTS and Vibrio spp.
(focused on ESBL and virulence factors) in Vietnam. These findings
should encourage the establishment of microbiological surveillance
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systems focused on health hazards in aquaculture food products, as well
as strengthening laboratory capacity to enable comparisons between
NTS and Vibrio spp. isolates from shrimps and human cases of disease.
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Appendix

Table A
Panel of antimicrobial residues tested by LC-MS/MS.

WHO category Antimicrobial class Antimicrobial

Highest priority-critically important Fluoroquinolones Enrofloxacin, ciprofloxacin, norfloxacin, flumequine
Macrolides Tylosin, erythromycin

Highly important Tetracyclines Tetracycline, oxytetracycline, chlortetracycline
Sulfonamides Sulfadiazine, sulfamethazine, sulfaquinoxaline, sulfamethoxazole

Table B
Serovar identity of 62 NTS isolates investigated by MLST.

No. Serogroup Serovar Sequence type (ST) Number of isolates

1 B Saintpaul 50 3
B Saintpaul 27 2

2 B Derby 40 4
3 B Paratyphi B 42 2
4 B Typhimurium 36 2
5 B Agona 13 1
6 B Stanley 29 1
7 B Unknown Unknown 1

8 C Braenderup 311 6
C Braenderup 22 3

9 C Rissen 469 6
10 C Bovismorbificans 1499 1
11 C Infantis 32 1
12 C Litchfield 214 3
13 C Ohio 329 1
14 C Albany 292 1
15 C Bareilly 203 1
16 C Kentucky 314 1
17 C Potsdam 2039 1

18 D Enteritidis 11 4

19 E Anatum 64 8
20 E Give 516 1

E Give 831 1
21 E Senftenberg 14 1
22 E Weltevreden 365 1
23 E London 155 1

24 Other Poona 1069 1
25 Other Kedougou 1543 2
26 Other Urbana 512 1
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Table C.1
Phenotypic antimicrobial susceptibility results for 90 NTS isolates from shrimps, listed by antimicrobial class ranked by their importance according to the WHO
classification. The figures correspond to the number of intermediate resistant, followed by the number of fully resistant isolates.

Class and antimicrobial Group B (n=21)

Agona Derby Paratyphi B Saintpaul Stanley Typhimurium Unknown Intermediate resistant (%) Fully resistant (%)

No. isolates 1 4 3 9 1 2 1

Samples (n= 30) (%) 1 (3.3%) 2 (6.7%) 1 (3.3%) 5 (16.7%) 1 (3.3%) 2 (6.7%) 1 (3.3%)

Highest priority-critically important
Cephalosporins (3rd & 4th gen.)
Cefepime 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0(0%) 0(0%)
Cefixime 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0(0%) 0(0%)
Cefotaxime 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0(0%) 0(0%)
Ceftazidime 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0(0%) 0(0%)
Ceftriazone 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0(0%) 0(0%)

Polyymyxins
Colistin 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0(0%) 0(0%)

Quinolones
Ciprofloxacin 1│0 4│0 2│0 0│9 0│1 1│0 0│1 8(38.1%) 11(52.4%)
Levofloxacin 1│0 4│0 0│0 3│6 1│0 0│0 0│1 9(42.9%) 7(33.3%)
Moxifloxacin 0│0 0│0 0│0 0│6 1│0 0│0 0│1 1(4.8%) 7(33.3%)
Nalidixic Acid 0│0 0│0 0│0 0│6 0│0 0│0 0│1 0 (0%) 7(33.3%)
Ofloxacin 0│1 0│4 0│0 0│9 0│1 0│0 0│1 0 (0%) 16(76.2%)

High priority-critically important
Aminoglycosides
Amikacin 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0 (0%) 0 (0%)
Gentamicin 0│0 0│0 0│0 0│6 0│0 0│0 0│1 0 (0%) 7(33.3%)
Tobramycin 0│0 0│0 0│0 7│0 0│0 0│0 0│0 7(33.3%) 0 (0%)

Carbapenems and other penems
Ertapenem 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0(0%) 0(0%)
Imipenem 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0(0%) 0(0%)
Meropenem 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0(0%) 0(0%)

Glycylcyclines
Tigecycline 0│0 0│0 0│0 3│0 0│0 0│0 0│0 3(14.3%) 0(0%)

Monobactams
Aztreonam 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0 (0%) 0 (0%)

Penicillins
Ampicillin 0│1 0│4 0│0 0│9 0│1 0│0 0│1 0(0%) 16(76.2%)
Piperacillin 0│1 0│4 0│0 0│9 0│1 0│0 0│1 0 (0%) 16(76.2%)
Ticarcillin 0│1 0│4 0│0 0│9 0│1 0│0 1│0 1(4.8%) 15(71.4%)

Highly important
Amphenicols
Chloramphenicol 0│0 0│4 0│0 0│9 0│0 0│0 0│1 0(0%) 14(66.7%)

Cephalosporins (1st and 2nd gen.)
Cefalotin 0│0 1│0 0│0 0│0 0│0 0│0 0│0 1(4.8%) 0(0%)
Cefoxitin 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0 (0%) 0(0%)
Cefuroxime 0│0 0│0 0│0 3│0 0│0 0│0 0│0 3(14.3%) 0(0%)
Cefuroxime Axetil 0│0 0│0 0│0 3│0 0│0 0│0 0│0 3(14.3%) 0(0%)

Tetracyclines
Minocycline 0│1 0│4 1│0 0│9 0│1 2│0 0│1 3(14.3%) 16(76.2%)
Tetracycline 0│1 0│4 0│0 0│9 0│1 0│0 1│0 1 (4.8%) 15(71.4%)

Other
Penicillin & β-lactamase inhibitor
Amoxicillin/Clavulanic Acid 0│0 0│0 0│0 1│0 0│0 0│0 0│0 1(4.8%) 0(0%)
Piperacillin/Tazobactam 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0(0%) 0(0%)

Folate pathway inhibitors
Trimethoprim 0│1 0│1 0│0 0│8 0│1 0│0 0│0 0(0%) 11(52.4%)

Folate pathway inhibitors/Sulfonamides
Trimethoprim/Sulfamethoxazole 0│1 0│1 0│0 0│9 0│1 0│0 0│1 0(0%) 13(61.9%)

Nitrofurantoins
Nitrofurantoin 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0(0%) 0(0%)

ESBL (%) – – – – – – – – 0(0%)

MDR (%) 1(100%) 4(100%) – 9(100%) 1(100%) – 1(100%) – 16(76.2%)
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Table C.2

Class and antimicro-
bial

Group C (n= 37)

Albany Bareilly Bovismor-
bificans

Braenderup Infantis Kentucky Litchfield Ohio Potsdam Rissen Intermediate re-
sistant (%)

Fully resis-
tant (%)

No. isolates 1 1 3 13 3 1 3 2 1 9

Samples (n= 30) (%) 1 (3.3%) 1 (3.3%) 1 (3.3%) 6 (20%) 1 (3.3%) 1 (3.3%) 3 (10%) 1
(3.3%)

1 (3.3%) 3 (10%)

Highest priority-critically important
Cephalosporins (3rd & 4th gen.)
Cefepime 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0(0%) 0(0%)
Cefixime 0│0 0│0 0│0 0│1 0│3 0│0 0│0 0│0 0│0 0│0 0(0%) 4(10.8%)
Cefotaxime 0│0 0│0 0│0 0│1 0│3 0│0 0│0 0│0 0│0 0│0 0(0%) 4(10.8%)
Ceftazidime 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0(0%) 0(0%)
Ceftriazone 0│0 0│0 0│0 0│1 0│3 0│0 0│0 0│0 0│0 0│0 0(0%) 4(10.8%)

Polyymyxins
Colistin 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0 (0%) 0(0%)

Quinolones
Ciprofloxacin 1│0 0│1 0│0 2│8 0│3 1│0 1│2 0│0 0│1 4│0 9(24.3%) 15(40.5%)
Levofloxacin 1│0 1│0 0│0 10│0 3│0 0│0 2│1 0│0 0│1 3│1 20(54.1%) 3(8.1%)
Moxifloxacin 0│0 0│0 0│0 1│0 0│0 0│0 1│1 0│0 0│1 0│0 2 (5.4%) 2(5.4%)
Nalidixic Acid 0│1 0│0 0│0 0│2 0│3 0│0 0│1 0│0 0│1 0│0 0(0%) 8(21.6%)
Ofloxacin 0│1 0│1 0│0 0│10 0│3 0│0 0│3 0│0 0│1 1│3 1(2.7%) 22 (59.5%)

High priority-critically important
Aminoglycosides
Amikacin 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0(0%) 0 (0%)
Gentamicin 0│0 0│0 0│0 0│1 0│3 0│0 0│0 0│0 0│1 0│0 0(0%) 5(13.5%)
Tobramycin 0│0 1│0 0│0 0│1 0│3 0│0 1│0 0│0 1│0 0│0 3(8.1%) 4 (10.8%)

Carbapenems and other penems
Ertapenem 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0(0%) 0(0%)
Imipenem 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0(0%) 0(0%)
Meropenem 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0(0%) 0(0%)

Glycylcyclines
Tigecycline 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0(0%) 0 (0%)

Monobactams
Aztreonam 0│0 0│0 0│0 0│1 0│3 0│0 0│0 0│0 0│0 0│0 0(0%) 4 (10.8%)

Penicillins
Ampicillin 0│1 0│1 0│0 0│1 0│3 0│0 0│3 0│0 0│1 0│9 0(0%) 19(51.4%)
Piperacillin 0│1 0│1 0│0 0│1 0│3 0│0 0│3 0│0 0│1 0│9 0(0%) 19(51.4%)
Ticarcillin 0│1 0│1 0│0 0│1 0│3 0│0 0│3 0│0 0│1 0│9 0(0%) 19(51.4%)

Highly important
Amphenicols
Chloramphenicol 0│1 0│1 0│0 0│1 0│3 0│0 0│3 0│0 0│1 1│6 1(2.7%) 16(43.2%)

Cephalosporins (1st and 2nd gen.)
Cefalotin 0│0 0│0 0│0 0│1 0│3 0│0 0│0 0│0 0│0 0│0 0(0%) 4(10.8%)
Cefoxitin 0│0 0│0 0│0 0│0 3│0 0│0 0│0 0│0 0│0 0│0 3(8.1%) 0(0%)
Cefuroxime 0│0 0│0 0│0 0│1 0│3 0│0 0│0 0│0 0│0 2│0 2(5.4%) 4(10.8%)
Cefuroxime Axetil 0│0 0│0 0│0 0│1 0│3 0│0 0│0 0│0 0│0 2│0 2(5.4%) 4(10.8%)

Tetracyclines
Minocycline 0│0 0│0 0│0 0│1 0│3 0│0 0│3 0│0 0│1 0│9 0(0%) 17(45.9%)
Tetracycline 0│1 0│0 0│0 0│1 0│3 0│0 0│3 0│0 0│1 0│9 0(0%) 18(48.6%)

Other
Penicillin & β-lactamase inhibitor
Amoxicillin/Clavul-
anic Acid

1│0 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0│0 1(2.7%) 0(0%)

Piperacillin/Tazoba-
ctam

0│0 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0│0 0(0%) 0(0%)

Folate pathway inhibitors
Trimethoprim 0│1 0│0 0│0 0│3 0│0 0│0 0│3 0│0 0│0 0│9 0(0%) 16(43.2%)

Folate pathway inhibitors/Sulfonamides
Trimethoprim/Sulf-
amethoxazole

0│1 0│0 0│0 0│3 0│0 0│0 0│3 0│0 0│1 0│9 0(0%) 17(45.9%)

Nitrofurantoins
Nitrofurantoin 0│0 0│0 0│0 6│1 0│3 0│0 0│0 0│0 0│0 0│0 6(16.2%) 4(10.8%)

ESBL (%) – – – 1 (7.7%) 3 (100%) – – – – – – 4(10.8%)

MDR (%) 1(100%) 1
(100%)

– 1(7.7%) 3(100%) – 3(100%) – 1(100%) 9(100%) – 19(51.4%)
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Table C.3

Class and antimicrobial Group E (n= 21)

Anatum Give London Senftenberg Weltevreden Intermediate resistant (%) Fully resistant (%)

No. isolates 11 4 1 3 2

Samples (n= 30) (%) 5 (16.7%) 2 (6.7%) 1 (3.3%) 1 (3.3%) 1 (3.3%)

Highest priority-critically important
Cephalosporins (3rd & 4th gen.)
Cefepime 0│0 0│0 0│0 0│0 0│0 0(0%) 0 (0%)
Cefixime 0│0 0│3 0│0 0│0 0│0 0(0%) 3(14.3%)
Cefotaxime 0│0 0│3 0│0 0│0 0│0 0(0%) 3(14.3%)
Ceftazidime 0│0 0│3 0│0 0│0 0│0 0(0%) 3(14.3%)
Ceftriazone 0│0 0│3 0│0 0│0 0│0 0(0%) 3(14.3%)

Polyymyxins
Colistin 0│0 0│0 0│0 0│0 0│0 0 (0%) 0 (0%)

Quinolones
Ciprofloxacin 2│0 0│4 0│0 0│0 0│0 2(9.5%) 4 (19%)
Levofloxacin 0│0 0│4 0│0 0│0 0│0 0(0%) 4 (19%)
Moxifloxacin 0│0 0│4 0│0 0│0 0│0 0(0%) 4 (19%)
Nalidixic Acid 0│0 0│4 0│0 0│0 0│0 0(0%) 4 (19%)
Ofloxacin 0│0 0│4 0│0 0│0 0│0 0(0%) 4 (19%)

High priority-critically important
Aminoglycosides
Amikacin 0│0 0│0 0│0 0│0 0│0 0(0%) 0 (0%)
Gentamicin 0│0 0│3 0│0 0│0 0│0 0(0%) 3(14.3%)
Tobramycin 0│0 0│3 0│0 0│0 0│0 0(0%) 3(14.3%)

Carbapenems and other penems
Ertapenem 0│0 0│0 0│0 0│0 0│0 0(0%) 0(0%)
Imipenem 0│0 0│0 0│0 0│0 0│0 0(0%) 0(0%)
Meropenem 0│0 0│0 0│0 0│0 0│0 0(0%) 0(0%)

Glycylcyclines
Tigecycline 0│0 0│3 0│0 0│0 0│0 0(0%) 3(14.3%)

Monobactams
Aztreonam 0│0 0│3 0│0 0│0 0│0 0(0%) 3(14.3%)

Penicillins
Ampicillin 0│7 0│4 0│1 0│0 0│0 0(0%) 12(57.1%)
Piperacillin 0│7 0│4 0│1 0│0 0│0 0(0%) 12(57.1%)
Ticarcillin 0│7 0│4 0│1 0│0 0│0 0(0%) 12(57.1%)

Highly important
Amphenicols
Chloramphenicol 0│3 0│4 0│1 0│0 0│0 0(0%) 8(38.1%)

Cephalosporins (1st and 2nd gen.)
Cefalotin 0│0 0│3 0│0 0│0 0│0 0 (0%) 3(14.3%)
Cefoxitin 0│0 0│0 0│0 0│0 0│0 0 (0%) 0(0%)
Cefuroxime 5│0 0│3 0│0 0│0 0│0 5(23.8%) 3(14.3%)
Cefuroxime Axetil 11│0 0│3 0│0 0│0 0│0 11(52.4%) 3(14.3%)

Tetracyclines
Minocycline 3│3 0│4 0│1 0│0 0│0 3(14.3%) 8(38.1%)
Tetracycline 0│10 0│4 0│1 0│0 0│0 0(0%) 15(71.4%)

Other
Penicillin & β-lactamase inhibitor
Amoxicillin/Clavulanic Acid 0│0 0│0 0│0 0│0 0│0 0(0%) 0(0%)
Piperacillin/Tazobactam 0│0 0│0 0│0 0│0 0│0 0(0%) 0(0%)

Folate pathway inhibitors
Trimethoprim 0│9 0│4 0│1 0│0 0│0 0(0%) 14(66.7%)

Folate pathway inhibitors/Sulfonamides
Trimethoprim/Sulfamethoxazole 0│3 0│4 0│1 0│0 0│0 0(0%) 8(38.1%)

Nitrofurantoins
Nitrofurantoin 0│0 0│0 0│0 0│0 0│0 0(0%) 0 (0%)

ESBL (%) 3 (75%) – – – – 3(14.3%)

MDR (%) 10(90.9%) 4(100%) 1(100%) – – – 15(71.4%)
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Table C.4

Class and antimicrobial Other serogroups (N=11)

Enteritidis Kedougou Poona Urbana Intermediate resistant (%) Fully resistant (%)

No. isolates 4 2 3 2

Samples (n= 30) (%) 2 (6.7%) 1 (3.3%) 1 (3.3%) 1 (3.3%)

Highest priority-critically important
Cephalosporins (3rd & 4th gen.)
Cefepime 0│0 0│0 0│0 0│0 0(0%) 0(0%)
Cefixime 0│0 0│0 0│0 0│0 0(0%) 0(0%)
Cefotaxime 0│0 0│0 0│0 0│0 0(0%) 0(0%)
Ceftazidime 0│0 0│0 0│0 0│0 0(0%) 0(0%)
Ceftriazone 0│0 0│0 0│0 0│0 0(0%) 0(0%)

Polyymyxins
Colistin 0│1 0│0 0│0 0│0 0(0%) 1(9.1%)

Quinolones
Ciprofloxacin 3│0 1│0 0│0 0│0 4(36.4%) 0 (0%)
Levofloxacin 3│0 1│0 0│0 0│0 4(36.4%) 0 (0%)
Moxifloxacin 0│0 0│0 0│0 0│0 0 (0%) 0 (0%)
Nalidixic Acid 0│3 0│0 0│0 0│0 0 (0%) 3 (27.3%)
Ofloxacin 3│0 0│1 0│0 0│0 3 (27.3%) 1 (9.1%)

High priority-critically important
Aminoglycosides
Amikacin 0│0 0│0 0│0 0│0 0(0%) 0(0%)
Gentamicin 0│0 0│0 0│0 0│0 0(0%) 0(0%)
Tobramycin 0│0 0│0 0│0 0│0 0(0%) 0(0%)

Carbapenems and other penems
Ertapenem 0│0 0│0 0│0 0│0 0(0%) 0(0%)
Imipenem 0│0 0│0 0│0 0│0 0(0%) 0(0%)
Meropenem 0│0 0│0 0│0 0│0 0(0%) 0(0%)

Glycylcyclines
Tigecycline 0│0 0│0 0│0 0│0 0 (0%) 0(0%)

Monobactams
Aztreonam 0│0 0│0 0│0 0│0 0 (0%) 0(0%)

Penicillins
Ampicillin 0│3 0│0 0│0 0│0 0(0%) 3(27.3%)
Piperacillin 0│3 0│0 0│0 0│0 0(0%) 3(27.3%)
Ticarcillin 0│3 0│0 0│0 0│0 0(0%) 3(27.3%)

Highly important
Amphenicols
Chloramphenicol 0│0 0│0 0│0 0│0 0(0%) 0 (0%)

Cephalosporins (1st and 2nd gen.)
Cefalotin 2│0 0│0 0│0 0│0 2(18.2%) 0(0%)
Cefoxitin 0│0 0│0 0│0 0│0 0(0%) 0(0%)
Cefuroxime 0│0 1│0 0│0 0│0 1 (9.1%) 0(0%)
Cefuroxime Axetil 2│0 1│0 0│0 0│0 3(27.3%) 0(0%)

Tetracyclines
Minocycline 0│3 1│0 0│0 0│0 1(9.1%) 3(27.3%)
Tetracycline 0│3 0│0 0│0 0│0 0(0%) 3(27.3%)

Other
Penicillin & β-lactamase inhibitor
Amoxicillin/Clavulanic Acid 1│0 0│0 0│0 0│0 1(9.1%) 0(0%)
Piperacillin/Tazobactam 0│0 0│0 0│0 0│0 0(0%) 0(0%)

Folate pathway inhibitors
Trimethoprim 0│0 0│0 0│0 0│0 0(0%) 0(0%)

Folate pathway inhibitors/Sulfonamides
Trimethoprim/Sulfamethoxazole 0│0 0│0 0│0 0│0 0(0%) 0(0%)

Nitrofurantoins
Nitrofurantoin 0│3 0│0 0│0 0│0 0(0%) 3(27.3%)

ESBL (%) – – – – – 0(0%)

MDR (%) 3(75%) – – – – 3(27.3%)
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Table C.5

Class and antimicrobial Isolates (n=90) All serovars CLSI 2017 breakpoints

No. isolates (N=90) Intermediate resistant (%) Fully resistant (%) Sensitive Resistant

Highest priority-critically important
Cephalosporins (3rd & 4th gen.)
Cefepime 0│0 0(0%) 0(0%) ≤2 ≥16
Cefixime 0│7 0(0%) 7(7.8%) ≤1 ≥4
Cefotaxime 0│7 0(0%) 7(7.8%) ≤1 ≥4
Ceftazidime 0│3 0(0%) 3(3.3%) ≤4 ≥16
Ceftriazone 0│7 0(0%) 7(7.8%) ≤1 ≥4

Polyymyxins
Colistin 0│1 0 (0%) 1(1.1%) ≤2 >2

Quinolones
Ciprofloxacin 23│30 23(25.6%) 30(33.3%) ≤0.06 ≥1
Levofloxacin 33│14 33(36.7%) 14(15.6%) ≤0.12 ≥2
Moxifloxacin 3│13 3(3.3%) 13(14.4%) ≤2 ≥8
Nalidixic Acid 0│22 0(0%) 22(24.4%) ≤16 ≥32
Ofloxacin 4│43 4(4.4%) 43(47.8%) ≤0.12 ≥2

High priority-critically important
Aminoglycosides
Amikacin 0│0 0(0%) 0(0%) ≤16 ≥64
Gentamicin 0│15 0(0%) 15(16.7%) ≤4 ≥16
Tobramycin 10│7 10(11.1%) 7(7.8%) ≤4 ≥16

Carbapenems and other penems
Ertapenem 0│0 0(0%) 0(0%) ≤0.5 ≥2
Imipenem 0│0 0(0%) 0(0%) ≤1 ≥4
Meropenem 0│0 0(0%) 0(0%) ≤1 ≥4

Glycylcyclines
Tigecycline 3│3 3(3.3%) 3(3.3%) ≤2 ≥8

Monobactams
Aztreonam 0│7 0(0%) 7(7.8%) ≤4 ≥16

Penicillins
Ampicillin 0│50 0(0%) 50(55.6%) ≤8 ≥32
Piperacillin 0│50 0(0%) 50(55.6%) ≤16 ≥128
Ticarcillin 1│49 1(1.1%) 49(54.4%) ≤16 ≥128

Highly important
Amphenicols
Chloramphenicol 1│38 1 (1.1%) 38 (42.2%) ≤8 ≥32

Cephalosporins (1st and 2nd gen.)
Cefalotin 3│7 3(3.3%) 7(7.8%) ≤8 ≥32
Cefoxitin 3│0 3(3.3%) 0 (0%) ≤8 ≥32
Cefuroxime 11│7 11(12.2%) 7(7.8%) ≤8 ≥32
Cefuroxime Axetil 19│7 19(21.1%) 7(7.8%) ≤4 ≥32

Tetracyclines
Minocycline 7│44 7(7.8%) 44(48.9%) ≤4 ≥16
Tetracycline 1│51 1(1.1%) 51(56.7%) ≤4 ≥16

Other
Penicillin & β-lactamase inhibitor
Amoxicillin/Clavulanic Acid 3│0 3(3.3%) 0(0%) ≤8/4 ≥32/16
Piperacillin/Tazobactam 0│0 0(0%) 0(0%) ≤16/4 ≥128/4

Folate pathway inhibitors
Trimethoprim 0│41 0(0%) 41(45.6%) ≤8 ≥16

Folate pathway inhibitors/Sulfonamides
Trimethoprim/Sulfamethoxazole 0│38 0(0%) 38(42.2%) ≤2/38 ≥4/76

Nitrofurantoins
Nitrofurantoin 6│7 6(6.7%) 7 (7.8%) ≤32 ≥128

ESBL (%) – – 7(7.8%) – –

MDR (%) – – 53(58.9%) – –

N.T.P. Yen, et al. Food Control 107 (2020) 106756

12



Table D
Phenotypic antimicrobial susceptibility results for Vibrio spp. isolates (n= 133). The figures correspond to the number of intermediate resistant, followed by the
number of fully resistant isolates.

Class and antimicro-
bial

No. isolates and percent resistant (%) (n= 133 isolates) Disk Zone diameter (mm)

V. parahaemoly-
ticus (n= 64)

V. navar-
rensis
(n= 23)

V. alginoly-
ticus
(n= 21)

V. cho-
lerae non-
O1
(n=15)

V. vulni-
ficus
(n= 6)

V. flu-
vialis
(n= 4)

Total inter-
mediate resis-
tant (%)

Total
fully re-
sistant
(%)

antimicrobial

(μg/mL) Sensitive Resistant

Highest priority-critically important
Cephalosporins (3rd &4th gen.)
Cefotaxime 3ǀ20 10ǀ2 0ǀ0 8ǀ0 2ǀ0 0ǀ0 23 (17.3%) 22

(16.5%)
30 ≥23 ≤14

Ceftazidime 3ǀ10 0ǀ0 0ǀ0 1ǀ1 0ǀ0 0ǀ0 4 (3.0%) 11 (8.3%) 30 ≥18 ≤14
Quinolones
Ciprofloxacin 9ǀ7 0ǀ0 1ǀ0 2ǀ0 1ǀ0 0ǀ0 13 (9.8%) 7 (5.3%) 5 ≥21 ≤15
Ofloxacin 3ǀ6 0ǀ0 0ǀ0 2ǀ0 0ǀ0 0ǀ0 5 (3.8%) 6 (4.5%) 5 ≥16 ≤12

High priority-critically important
Aminoglycosides
Amikacin 29ǀ1 1ǀ0 1ǀ0 0ǀ0 1ǀ0 0ǀ0 32 (24.0%) 1 (0.8%) 30 ≥17 ≤14
Gentamicin 7ǀ0 1ǀ0 1ǀ0 0ǀ0 0ǀ0 0ǀ0 9 (6.8%) 0 (0%) 10 ≥15 ≤12

Carbapenems and other penems
Imipenem 0ǀ2 0ǀ1 0ǀ0 1ǀ0 0ǀ0 0ǀ0 1 (0.8%) 3 (2.3%) 10 ≥16 ≤13

Penicillins
Ampicillin 0ǀ64 6ǀ12 0ǀ21 3ǀ8 1ǀ2 0ǀ3 10 (7.5%) 110

(82.7%)
10 ≥17 ≤13

Amoxicillin-clavu-
lanic acid

1ǀ6 8ǀ4 0ǀ0 3ǀ5 2ǀ0 3ǀ0 17 (12.8%) 15
(11.3%)

20ǀ10 ≥18 ≤13

Highly important
Amphenicols
Chloramphenicol 3ǀ1 1ǀ0 0ǀ0 1ǀ0 1ǀ0 0ǀ0 6 (4.5%) 1 (0.8%) 30 ≥18 ≤12

Tetracyclines
Tetracycline 15ǀ7 3ǀ1 0ǀ0 1ǀ1 0ǀ1 0ǀ0 19 (14.3%) 10 (7.5%) 30 ≥19 ≤14

Folate pathway inhibitors & sulfonamides
Trimethoprim/sul-
famethoxazole

7ǀ17 3ǀ3 1ǀ0 0ǀ3 1ǀ2 1ǀ0 13 (9.8%) 25
(18.8%)

1.25/23.75 ≥16 ≤10

ESBL 18 0 0 0 0 0 – 18
(13.5%)

MDR 18 0 0 0 0 0 – 18
(13.5%)
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