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Harnessing the central dogma for stringent
multi-level control of gene expression
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Strictly controlled inducible gene expression is crucial when engineering biological systems

where even tiny amounts of a protein have a large impact on function or host cell viability. In

these cases, leaky protein production must be avoided, but without affecting the achievable

range of expression. Here, we demonstrate how the central dogma offers a simple solution to

this challenge. By simultaneously regulating transcription and translation, we show how basal

expression of an inducible system can be reduced, with little impact on the maximum

expression rate. Using this approach, we create several stringent expression systems dis-

playing >1000-fold change in their output after induction and show how multi-level regula-

tion can suppress transcriptional noise and create digital-like switches between ‘on’ and ‘off’

states. These tools will aid those working with toxic genes or requiring precise regulation and

propagation of cellular signals, plus illustrate the value of more diverse regulatory designs for

synthetic biology.
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S ince the development of the first inducible systems in the
early 1980s1, the ability to dynamically control gene
expression through the use of small molecules2, light3,4, and

other signals5 has revolutionized biotechnology. From controlling
shifts between cell growth and protein production stages during
large-scale fermentations6, to the detailed characterization of
genetic parts and circuitry7, the control of gene expression
underpins a huge variety of applications. However, while
switching expression of a gene ‘on’ or ‘off’ is conceptually simple,
it is rare for genes to have such discrete states or ever be com-
pletely silenced. Stochastic effects8,9 and leaky expression are
widespread and potentially important for adaptation in natural
systems but can wreak havoc in engineered systems where genes
are toxic to a host or responses are highly sensitive and easily
triggered by unavoidable fluctuations10,11.

Early systems for controlling gene expression relied on
repurposing native regulatory components such as transcription
factors. One of the most widely used is the Ptac system1. This
consists of a constitutively expressed LacI repressor that can
form dimers and tetramers to strongly bind operator sites within
a Ptac promoter sequence and sterically block initiation of
RNA polymerase (RNAP). LacI is sensitive to Isopropyl β-d-1-
thiogalactopyranoside (IPTG) and at high concentrations, the
DNA binding activity of LacI is abolished. This lifts repression of
Ptac and leads to strong transcription of genes regulated by this
promoter. While in most cases such systems offer strong
repression, because such regulatory systems focus on a single step
during protein synthesis (i.e. transcription), they are vulnerable to
fluctuations in regulator production and the stochastic nature of
biochemical reactions during gene expression9.

Over the past decade, synthetic biologists have developed
more advanced methods to control gene expression. These include
engineered regulators based on DNA binding proteins, such as zinc
fingers12, TALENs13 and CRISPRi14, RNA–RNA interactions15–17,
post-transcriptional/translational processes such as RNA and
protein degradation18, as well as using directed evolution to opti-
mize existing inducible systems19. This offers a wealth of options to
more strictly regulate gene expression through the coupling of
multiple forms of regulation (e.g. affecting both transcription and
translation of a gene) to reduce unwanted expression and improve
the robustness of a system to component failure. However, few
examples of such multi-level regulation have been implemented to
date20,21. This has resulted in an unclear picture of how best
stringent multi-level control can be achieved and the trade-offs that
exist between performance, regulatory complexity, and cellular
burden when designing these systems.

Here, we address this problem by systematically studying the
combined use of transcriptional and translational regulators to
stringently control protein expression. Using a combination of
mathematical modelling and combinatorial genetic assembly, we
are able to design, build and test a variety of synthetic multi-level
controllers (MLCs) and elucidate the relative performance of
each. These controllers all implement a coherent type 1 feed-
forward loop (C1-FFL) regulatory motif (Fig. 1a) that is com-
monly found in natural genetic systems and is known to enable
more stringent control of an output but is rarely used when
designing new expression systems22. We show how MLCs offer
advantages for many applications spanning the stringent control
of protein expression to the accurate propagation of information
in a cell23,24 and demonstrate how applying modern synthetic
biology tools to even simple regulatory systems can offer paths
towards the precise and reliable control of biological systems.

Results
Stringent control of gene expression by harnessing the central
dogma. In most synthetic genetic circuits, control of gene

expression is achieved through the use of a single type of reg-
ulation (Fig. 1a), with control of transcription predominantly
used. While this type of single-level controller (SLC; Fig. 1b) is
often sufficient for many applications, the central dogma natu-
rally lends itself to more stringent multi-level regulation where
both transcription and translation are controlled simultaneously
(e.g. via transcription factors and RNA-based translational
switches). Such multi-level controllers (MLCs; Fig. 1c) can be
generalised by a genetic design that consists of an L1 gene
encoding a level 1 transcriptional regulator with cognate pro-
moter PL1, and an L2 gene encoding a level 2 translational reg-
ulator. Both L2 and the gene of interest (GOI) are separately
transcribed by PL1 promoters and the product of L2 activates
translation of the GOI transcript. This MLC encapsulates a
coherent type 1 feed-forward loop (C1-FFL) in which both L1
and L2 are necessary for production of the GOI.

To explore the possible benefits of this regulatory motif, we
developed mathematical models to capture how the rate of
production of a GOI varied in response to differing concentra-
tions of an input inducer for both the SLC and MLC designs
(Supplementary Note 1; Supplementary Data 1). We generated
steady-state response functions by simulating the models using
biologically realistic parameters (Supplementary Table 1) over a
range of different input IPTG concentrations. As expected, the
output production rate displayed a sigmoidal shape with both
controllers reaching near identical maximum rates at high input
IPTG concentrations (Fig. 1d). The main difference was that the
MLC design displayed a 50-fold lower output than the SLC design
at low IPTG concentrations, leading to significantly reduced basal
expression when no input was present (Fig. 1d). This caused the
MLC design to have both an increased dynamic range and fold
change between ‘off’ and ‘on’ states when compared to the SLC
design.

We also simulated the output protein production rate for both
models when exposed to a range of dynamic inputs. These
included delta functions, as well as pulse and step inputs (Fig. 1e).
Simulations showed that both types of controller displayed
virtually identical output responses for both the pulse and step
inputs, with only a small reduction in output expression rate for
the MLC that matched its lower basal expression level. However,
significant differences were observed in the responses to the delta
function input. While the SLC led to moderate sized pulses in
output, the MLC design fully suppressed all output activity with
only tiny fluctuations in the output expression rate observed. The
behaviour of the MLC arose from the need for both L1 and L2 to
be expressed to sufficiently high levels for expression of the GOI
to be triggered. The short pulses of expression caused by the delta
function input were insufficient to cause this switch and allowed
the MLC to effectively filter out these transient events in its input.

The ability to filter out rapid fluctuations is particularly
important for stringent control in systems where input promoters
exhibit high levels of intrinsic noise. In such scenarios, protein
levels can vary significantly across a population of cells8 due to
the often bursty nature of gene transcription. This is commonly
seen for weak promoters where intrinsic noise dominates. Rather
than the activity of a weak promoter being uniformly low, it
instead displays short bursts of strong activity separated by long
periods of inactivity8,25. Across a population this averages out to a
low overall expression level, but large variability is present
between cells. As seen for the delta function inputs, such input
profiles driving the SLC will lead to large fluctuations in the
output. However, because intrinsic promoter noise is specific to
an individual promoter and uncorrelated between multiple
identical versions of a promoter within a construct, the MLC
design, which contains two copies of the input promoter
PL1, should find that a burst of expression from one PL1 promoter
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is highly unlikely to occur at the same time as a burst from the
other. Therefore, the MLC will suppress noise in the output.

To test this hypothesis, we generated accurate time-series
promoter activity profiles based on a two-state model25 where the
mean length of time a promoter was in an ‘on’ active and ‘off’
silent state (ΔtON and ΔtOFF, respectively) were 〈ΔtON〉= 6 min
and 〈ΔtOFF〉= 37 min. These values were taken from previous
experimental measurements in E. coli25. We also set the activity of
the PL1 promoter when in an ‘on’ state to a biologically realistic
0.25 RNAP/min. Independent time-series were generated for each
PL1 promoter in the MLC and only one of these was used for the
SLC where only a single PL1 promoter is present. These profiles
were then fed into our existing dynamic models and the responses
of the systems simulated. We found that the output production
rate for the SLC saw large increases, especially where the input
consisted of longer bursts of activity or several bursts in short
succession (Fig. 1f). In comparison, the MLC fully suppressed all
output production making it an excellent filter of intrinsic
promoter noise.

A genetic template to explore multi-level gene regulation.
There are many ways that an MLC could be implemented bio-
logically. Furthermore, when implementing such a controller it is
often necessary to switch the input that is used and internal
regulators such that multiple controllers can be used simulta-
neously within the same cell. To meet these requirements, we
developed an 8-part genetic template and toolkit of parts to allow
for the rapid combinatorial assembly of MLCs (Fig. 2a). The
design enables both single and multi-level regulation, has the
option to introduce protein tags for further post-translational
control of the GOI (e.g. through protein degradation) and is
structured to minimise the chance of transcriptional readthrough
that would cause unwanted expression of the component parts.
The toolkit comprises eight types of part plasmid (pA–pH) and a

backbone plasmid (pMLC-BB1) in which the final MLC design is
inserted (Supplementary Data 2). Assembly is performed using a
standard one-pot Golden Gate reaction with individual blocks
designed to use 4-bp overhangs with minimal cross reactivity to
ensure the correct and efficient ligation of parts26. Furthermore,
rapid screening of successful inserts is enabled by the drop-out of
an orange fluorescent protein (ofp) expression unit27 (Supple-
mentary Note 2).

Using this toolkit, we aimed to compare the in vivo behaviours
of different SLC and MLC designs with a focus on the different
mechanisms that could be used for L2 control and the affect these
might have on overall performance. For the SLC design we chose
the widely used Ptac system introduced earlier (Fig. 2c). To
simplify comparisons, we also used the Ptac system for L1 control
in all the MLC designs and combined it with three different RNA-
based L2 regulators. These included a toehold switch (THS;
Fig. 2d)17,28, a small transcription activating RNA (STAR;
Fig. 2e)29, and a dual control system (DC; Fig. 2f)21.

The THS regulator encodes a structural component followed
by a ribosome binding site (RBS) that is used to drive translation
of the GOI (Fig. 2d). The structural region is designed to form a
strong hairpin loop that when transcribed hinders the ability for
ribosomes to bind the RBS, and thus inhibits translation.
Translation is activated by expression of a complementary small
RNA (sRNA) trigger that hybridizes to a short unstructured
region of the THS, causing a breakdown in its secondary
structure. This conformational change allows ribosomes to bind
the RBS and translation of the GOI to proceed. THSs were
selected because they offer strong repression of translation, can be
designed computationally, and large libraries of designs exist with
minimal crosstalk when used together17,28.

Unlike the THS, the STAR regulator works at a transcriptional
level. The STAR’s target is placed before an RBS in the 5′
untranslated region (UTR) of the GOI (Fig. 2e). This forms an

Fig. 1 Stringent control of protein expression through multi-level gene regulation. a Two possible regulatory schemes to control the expression of a gene
of interest (GOI): (1) control using a single regulator (L1), and (2) multi-level control using two separate regulators (L1 and L2) connected in the form of a
coherent type 1 feed-forward loop (C1-FFL). b Schematic of a genetic implementation of a single-level controller (SLC) that uses only transcriptional (red
lines) regulation. An input (e.g. small molecule) modulates activity of the PL1 promoter and production of the GOI. c Schematic of a genetic implementation
of a multi-level controller (MLC) that uses both transcriptional (red lines) and translational (blue line) regulation. An input (e.g. small molecule) modulates
activity of the two PL1 promoters and an internal L2 regulator activates the translation of GOI transcripts to finally produce the output protein. d Steady-
state response functions from mathematical models of the SLC and MLC. e Dynamic model simulations of the SLC and MLC and their response to different
forms of temporal input (left to right): delta functions (PL1 activity= 2 RNAP/min for 1 min at 100min and 150min), a pulse (PL1 activity= 5 RNAP/min
from 100–130min), and a step function (PL1 activity= 5 RNAP/min from 100min onwards). The activity of both PL1 promoters in the MLC is considered
identical. f Dynamic model simulations of the SLC and MLC showing suppression of intrinsic promoter noise by the MLC. The two identical PL1 promoters
for the L2 regulator and GOI are separately driven by independent and biologically realistic bursty transcriptional activity profiles (Methods).
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intrinsic terminator when transcribed and inhibits GOI expres-
sion. Activation is achieved by expression of the STAR RNA,
which interacts with the target, prevents terminator formation
and thus allows for expression of the downstream GOI. Similar to
THSs, STARs have been shown to offer strong repression and
there exist large libraries of orthogonal variants16,29.

Finally, the DC regulator combines both transcriptional and
translational control by modifying the pT181 attenuator21. The
DC target is placed in the 5′ UTR of the GOI and encodes an
intrinsic terminator that includes the RBS (Fig. 2f). When
transcribed, the intrinsic terminator not only halts transcription,
but also represses translation by causing the RBS to form a strong
RNA secondary structure making it inaccessible to the ribosome.
Activation is achieved by expression of a STAR, which interacts
with the target, both preventing terminator formation and
causing a conformational change in the RNA structure that
makes the RBS accessible for translation initiation. The DC
regulator was chosen due to this combined regulatory action,
which has been shown to produce strong repression21. However,
to date, only a single regulator like this has been created, limiting
future applications.

DNA encoding parts for each of these regulatory systems were
synthesised and our toolkit used to assemble the SLC and three
MLC designs. Superfolder green fluorescent protein (GFP) was
chosen as the GOI to allow for the measurement of output
expression in single cells using flow cytometry.

Performance comparison of the controllers. To characterise the
performances of the controllers, we transformed Escherichia coli

cells with each construct and measured GFP fluorescence using
flow cytometry for ‘off’ and ‘on’ input states. As Ptac was used as
an input for all the designs, this corresponded to growing the cells
in either 0 or 1 mM IPTG, respectively (Methods). Data from
these experiments was then used to calculate the dynamic range
and fold change in output GFP fluorescence (Table 1; Supple-
mentary Fig. 1).

We found a clear separation between output states for all
designs with little variation between biological replicates (Fig. 3a).
All MLCs (THS, STAR, and DC) reached higher expression levels
than the Ptac SLC, and the THS and DC designs achieved large
>1000-fold changes between output states. Notably, while the
STAR design reached a much higher ‘on’ state than the Ptac
design, the STARs high levels of basal (leaky) expression when no
input was present resulted in a 43% lower fold change (Table 1).

A challenge when calculating these measures (especially fold
change) is the ability to accurately quantify very low levels of
output GFP fluorescence, which are near or identical to the
autofluorescence of the cells. To better understand this aspect, we
measured the GFP autofluorescence of untransformed E. coli
cells, performing 11 biological replicates to estimate a fluores-
cence distribution that could be used as an approximate detection
limit. Overlaying the average and standard deviation of the cell
autofluorescence onto our results (Fig. 3a, dashed line and grey
shaded region), we found that the ‘off’ states for the Ptac, THS,
and DC designs all fell within this region and very close to the
average suggesting they have virtually no leaky expression at all.

Another difficulty when comparing the performance of the
controllers is the need to consider the large differences in the

Fig. 2 Combinatorial assembly of gene expression controllers. a Summary of the 8-part genetic template used to allow for systematic exploration of
direct and multi-level gene regulation. The 4-bp overhangs used for Golden Gate assembly are shown in grey at their respective junctions. Available genetic
elements are listed below each corresponding part type (A–H). b The MLC toolkit contains a set of plasmids that can be combined using Golden Gate
assembly to create a variety of direct and multi-level controllers (Supplementary Fig. 3). c The lacI transcription factor responsive to IPTG used for level 1
(L1) transcriptional regulatory control. d Toehold switch (THS) translational regulator used for level 2 (L2) control. e Small transcription activating RNA
(STAR) transcriptional regulator used for L2 control. f Dual control (DC) transcriptional and translational regulator used for L2 control.
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maximum expression rates (e.g. >60-fold difference between the
Ptac and THS designs for the ‘on’ state). It should be noted that
the same Ptac promoter is used as input to all our designs and that
it includes a 15-bp upstream spacer element to insulate its
function from contextual effects arising from differing nearby
sequences that are present in each design24,30. It is therefore
reasonable to expect the dynamic range of the input promoter’s
transcriptional activity to be similar for each controller, with
differences in output protein expression rate related directly to
the different strength ribosome binding sites found in each L2
regulator or the SLC design. Given these differences and to allow
for an unbiased comparison, we calculated the relative basal GFP
expression level of each controller as a percentage of its maximum
output (Table 1). This showed that the THS performed best,
displaying a 25-fold decrease in relative basal expression
compared to the Ptac SLC with 0.02% relative basal expression
compared to 0.5%, respectively. The DC design also performed
well with 0.04% relative basal expression, while the STAR MLC
saw the largest relative basal expression of 1.45%, nearly three
times that of the Ptac SLC.

While comparisons of average expression levels between ‘on’
and ‘off’ states are useful, they are not able to capture the role of
cell-to-cell variability inherent in all gene expression9. Such
variation is crucial when assessing the performance of stringent
expression systems because even though average output states
might be sufficiently separated to be distinguished, cell-to-cell
variation across a population can lead to overlaps in the output

distributions. Cells falling in this overlap are impossible to classify
resulting in some cells with an undetermined state. Engineers
have developed measures to help characterise the strength and
quality of a signal (i.e. the ability to distinguish ‘on’ and ‘off’
output states) with the Signal to Noise Ratio (SNR) commonly
used in other fields such as electronics. SNR has also recently
been adapted for use when studying engineered genetic systems
making it easier to understand how the quality of signals in a
circuit are maintained or degraded as they pass through various
genetic devices23.

Using the flow cytometry distributions, we calculated the SNR
for each controller in decibel (dB) units (Table 1; Methods). We
found that the Ptac SLC performed worst with a low SNR of 0.2
dB, corresponding to a signal barely larger than the noise. This
was evident for the flow cytometry distributions where a sizable
overlap in the ‘on’ and ‘off’ states was seen (Fig. 3b). All MLCs
performed better with the THS achieving an SNR >10 dB. This
improved performance was also evident from the flow cytometry
data with clear gaps of varying sizes between the ‘on’ and ‘off’
output distributions (Fig. 3b). This clearer separation between
cells in an ‘on’ and ‘off’ state would make these parts ideal for
genetic logic circuits, ensuring signals are cleanly propagated.

Burden of controllers on the host cell. There is a growing
awareness of the importance of considering the burden that
engineered genetic parts and circuits place on their host cell31.
The introduction of a genetic construct that sequesters large

Fig. 3 Performance comparison of single- and multi-level controllers in vivo. a Total GFP fluorescence for ‘off’ and ‘on’ input states (0 and 1 mM IPTG,
respectively). Points show the three biological replicates for each controller and condition (black circles, Ptac; blue squares, THS; red diamonds, STAR;
orange crosses, DC). Black dashed line denotes the mean fluorescence of cell autofluorescence (a.f.) controls containing no plasmid with grey shaded
region showing ±1 standard deviation of 11 biological replicates. Fluorescence given in calibrated molecules of equivalent fluorescein (MEFL) units. b Flow
cytometry distributions of total GFP fluorescence for ‘off’ (line) and ‘on’ (shaded) input states. Cell autofluorescence (a.f.) controls containing no controller
are shown by black dashed line and light grey filled distributions. c Doubling time of cells harbouring direct and multi-level controllers for varying
concentrations of IPTG (bars left to right for each design: 0, 0.1, 1, 10 mM IPTG). d Lag time calculated as the time to reach an OD600= 0.15 after
inoculation of cells harbouring controllers for varying concentrations of IPTG (bars left to right for each design: 0, 0.1, 1, 10 mM IPTG). Source data are
provided as a Source Data file.

Table 1 Performance summary of the single- and multi-level controllers in vivoa.

Controller Typeb Basalc (%) Dynamic ranged (103 MEFL) Fold changed Co-operativitye, n SNRf (dB)

Ptac SLC 0.5 0.9 93 3.4 0.2
THS MLC 0.02 65.5 2166 7.3 10.1
STAR MLC 1.45 4.6 53 9.3 4.7
STAR2 MLC 2.0 3.4 37 7.7 4.5
DC MLC 0.04 10.4 1030 3.4 7.1

aAll values are averages calculated from three biological replicates. Key performance features of the controllers are visually shown in Supplementary Fig. 1.
bSLC refers to ‘single-level controller’ and MLC refers to ‘multi-level controller’.
cRelative basal expression calculated when no IPTG is present and as a percentage of the expression level for the ‘on’ state (1 mM IPTG).
dCalculated between ‘on’ and ‘off’ states for cells grown in 0 and 1 mM IPTG, respectively, and given in calibrated molecules of equivalent fluorescein (MEFL) units.
eFrom the Hill function fitting of the steady-state response functions (Fig. 4a).
fSNR refers to ‘Signal to Noise Ratio’.
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quantities of shared cellular resources like ribosomes or heavily
impacts core metabolic fluxes can lead to reduced growth rates
and trigger stress responses that impair the function of engi-
neered genetic parts32–37. When designing the MLCs, we pur-
posefully selected RNA-based regulators as previous results
suggest that they impose a small metabolic burden on the cell38.
To experimentally verify this in our cells, we generated growth
curves for all SLC and MLC designs (Supplementary Fig. 2).
Because the metabolic demands of the controllers would vary
based on the concentration of inducer present (due to the varying
levels of sRNA or STAR produced), cells were exposed to four
different concentrations of IPTG (0, 0.1, 1, 10 mM) spanning the
‘off’ and ‘on’ states of the controllers.

From these growth curves, we estimated the doubling time
during the exponential growth phase (Methods). We found that
the SLC and all MLCs displayed similar doubling times of ~70
min (Fig. 3c). Furthermore, we saw a slight decrease in the
doubling times of all controllers as the IPTG concentration
increased. This trend is counterintuitive given that an increasing
IPTG concentrations will cause expression of the GOI and any L2
regulators, increasing the burden on the cell. However, it is
known that IPTG can have unexpected effects on cell
physiology39 and cause changes in plasmid stability40, which
could lead to reduced overall burden due to fewer copies of the
controller plasmid or more efficient utilisation of available
nutrients by the cell.

We also measured the lag time after inoculation into fresh
media before the cells entered exponential growth (Methods). We
found differences between many of the controllers with a lag time
of ~165 min for the Ptac and THS designs, a shorter lag time of 88
min for the DC design, and a significantly longer lag time of 373
min for the STAR design (Fig. 3d). Closer inspection of the
growth curves showed that the DC design had a consistently
higher initial cell density (optical density at 600 nm of 0.07
compared to 0.04 for the THS design), which could account for
the shorter lag phase (Supplementary Fig. 2). For the STAR
design the elongated lag phase coincided with a consistently
longer additional time of ~100 min to reach saturation of the
culture.

To better understand if the extended lag phase of the STAR-
based MLC was a general feature to be expected when using this
type of regulator, we rebuilt this construct using a different STAR
(STAR2) that had an identical initial 72 bp sequence, but unique
10 bp sequence at its 3′-end (Supplementary Table 2). As we
would expect for such a similar design, testing of the STAR2

construct showed similar performance to the initial STAR design
with a good dynamic range and similar leaky expression in its
output (Table 1; Supplementary Fig. 3; Methods). However,
unlike the original, the STAR2 design displayed a lag phase (161
min) and doubling time (72 min) that closely matched the other
MLCs. This suggests that the long lag times observed for the
original STAR design were likely due to some highly specific and
uncharacterised off-target interactions with endogenous cellular
processes and not due to a general feature of the STAR’s
regulatory mechanism.

Digital-like transitions and suppression of weak input signals.
Our previous modelling of the MLCs showed that in addition to
improved performance in ‘on’ and ‘off’ states, the addition of the
L2 regulator also altered the response function, causing a sharper
transition from an ‘off’ to an ‘on’ state due to the lower relative
basal expression, and an ability to suppress low-level noise in the
input (Fig. 1d, e).

To assess if these features were present, we generated response
functions of the controllers by growing the cells in varying
concentrations of input inducer and measuring steady-state
output GFP fluorescence. The sharpness of the transition is
captured by the co-operativity of Hill function fits to this data.
We found that in comparison to the Ptac SLC, both the THS and
STAR MLCs saw more than a doubling in this value from 3.4 to
more than 7, while the DC design maintained an identical value
(Table 1). High cooperativities correspond to a very sharp step-
like transition between ‘on’ and ‘off’ states that is clearly evident
from the response function curves (Fig. 4a). The high
nonlinearity in the response functions of the THS and STAR
MLCs is potentially useful for information processing tasks. In
particular, implementing digital logic within cells requires clear
‘on’ and ‘off’ states and limited chance for signals to reside at

Fig. 4 Response functions of single- and multi-level controllers in vivo. a Steady-state response functions of the controllers showing output GFP
fluorescence (corrected for cell autofluorescence) for varying input IPTG concentrations (0, 0.002, 0.01, 0.05, 0.1, 0.25, 0.5, 1, 2, 5, 10mM). Points show
the three biological replicates for each controller and condition (black circles, Ptac; blue squares, THS; red diamonds, STAR; orange crosses, DC). Grey
shaded region shows the standard deviation of cellular GFP autofluorescence from 11 biological replicates. b Comparison of how normalised GFP output (as
a fraction of the maximum GFP fluorescence) varies in response to changes in the normalised transcriptional activity of Ptac (as a fraction of its maximum
activity). Multi-level regulation can lead to the suppression or amplification of the output GFP production rate compared to direct transcriptional regulation
(i.e. a specific multi-level controller’s line falls below or above the diagonal, respectively). Insert shows zoomed area and grey shaded region denotes a GFP
output level of 1% for the controller. Source data are provided as a Source Data file.
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intermediate states. Sharp transitions in the response function
ensure that there is less room for an input to fall at an
intermediate point during the transition, ensuring an ‘on’ or ‘off’
state is always given. Furthermore, a high nonlinearity can also be
exploited to generate bimodality. For example, if a noisy input is
positioned to span the transition point in the response function, a
population of cells will have large groups of cells in ‘on’ and ‘off’
states, with much fewer in intermediate states because of the
sharp transition and small probability of falling in this small
region.

To quantify the ability of each MLC to suppress low-level input
noise, we further analysed the response functions. As mentioned
earlier, the large differences in dynamic range make comparisons
between designs difficult. Given that the promoter driving
transcription for each MLC is identical (Ptac), the discrepancies
arise from differing gfp translation rates controlled by the
associated ribosome binding sites. These do differ in sequence
and strength for each design and in some cases are specific and
integral to the RNA regulator’s function. Therefore, to allow for
comparisons, we normalised the output of each MLC to its
maximum output and used data from the Ptac SLC to estimate the
input activity of the Ptac promoter used in each controller. If no
secondary regulation was present (as in the SLC), then we would
expect the normalised input and output to follow a straight line
where one equals the other (see Ptac design in Fig. 4b). However,
if the secondary regulation suppresses the input Ptac activity then
a lower normalised output to input will be seen, and conversely,
an amplification of the input will lead to a higher normalised
output to input.

Using this approach, we assessed the responses of each MLC
and found that all caused a suppression of low levels of input
promoter activity and an amplification of higher input activities.
This effect was most prominent for the THS and STAR designs,
with both able to ensure controller output is maintained below
1% even when the input promoter reaches 3.5% activity (Fig. 4b,
insert). These results confirm the findings of our modelling and
demonstrate the potential for using MLCs to filter out unwanted
input activity in noisy environments.

Controller performance in a cell-free expression system. There
has been growing interest in the use of cell-free protein synthesis
(CFPS) systems41 as a means to prototype synthetic genetic
circuits42, enable the rapid characterisation of genetic parts and
metabolic pathways43, and more recently as a novel bioproduc-
tion platform44. While great progress has been made in
expanding the applications of CFPS systems45–48, strategies to
stringently control protein expression have yet to be developed.

To assess the performance of our controllers in a cell-free
context, we used a CFPS system created from crude E. coli cell
lysate and performed simple batch reactions (Methods) that we
continuously monitored so that output expression rate could be
inferred from changes in GFP fluorescence over time. These
experiments showed that all controllers were also functional in
the CFPS system and behaved qualitatively similar to the in vivo
situation (Fig. 5a; Supplementary Table 3). Overall, MLC designs
performed better than the SLC design by showing lower
percentages of basal expression, larger dynamic ranges and
larger fold changes between ‘off’ and ‘on’ states with sharper,
more digital-like, transitions (i.e. higher co-operativity in Hill
function fits).

However, compared to the in vivo situation, we observed
distinct differences in performance. The largest drop in
performance was observed for the Ptac SLC design, for which
basal expression reached 10% of the maximal output and only a
10-fold dynamic range (i.e. between ‘off’ and ‘on’ output states).

Performance losses were also observed for the other MLC designs.
However, the THS design displayed <1% relative basal expression
and a ~350-fold change between ‘off’ and ‘on’ output states. These
performance losses were likely caused by the relatively low
effective concentrations of regulators that can be achieved in a
CFPS system compared to the highly crowded cytoplasm of a
living cell49. Especially low concentrations of the LacI repressor
will likely limit the maximal repression that can be achieved in
the CFPS system, accounting for the higher basal expression
observed.

Notably, the STAR MLC showed a similar performance in
respect to percentage of basal expression, fold change and co-
operativity compared to the in vivo setting (Table 1 and
Supplementary Table S3). This robustness may stem from the
fact that the STAR design exploits secondary control at a
transcriptional level, specifically, through premature termination
of transcription in the 5′ UTR of the output gene, and therefore
regulation limits the potentially active transcripts that are present
within the reaction (Fig. 2e). In contrast, the THS design
produces full length transcripts and relies on continuous
suppression of translation initiation by RNA secondary structures
(Fig. 2d). Our data suggest that the STAR regulator is less affected
by the differing environment of the CFPS system than the THS,
enabling the STAR design to maintain virtually identical
performance across these contexts.

Time-course measurements from these experiments also
allowed us to quantify the output GFP production rates as the
reactions proceeded. This data revealed a key difference between
the in vivo and CFPS system that was observed for all controller
designs. For the first 2 hr the expression rates for ‘off’ and ‘on’
states for each design were virtually identical, with regulation only
being observed after this point and strongly affecting output GFP
production rate after 4 hr (Fig. 5b). The initial constant output
GFP production rates in the CFPS system matched the order of
different RBS strengths measured in vivo. The more rapid
decrease in expression observed for the MLC designs versus the
SLC for the regulated ‘off’ state is expected because of the
additional regulatory layer (L2 regulator) of these designs. The
observed ‘lag’ phase of the regulation very likely reflects the time
required for each controller to express sufficient LacI to interact
with the Ptac promoters that act as the input in all our designs. In
contrast to the CFPS system, cells in the in vivo experiments were
in exponential growth and the MLCs were likely at steady state
with LacI degradation and dilution rates equalling its production
rate which ensured a constast concentration of repressor.
Therefore, while multi-level regulation offers greatly improved
control over gene expression in CFPS systems, for batch
reactions, it is crucial that necessary regulatory components
(e.g. repressor proteins) are present at sufficient concentrations
from the start of an experiment to enable stringent regulation.
This could be achieved by generating the CFPS system from cells
that already express the regulators at high concentrations, by
separately adding these components into the reaction mix before
an experiment starts, or by making use of microreactors to enable
the CFPS system to maintain steady-state concentrations of
regulators through continual dilution of the reaction products50.

Discussion
In this work we have shown how multi-level control of gene
expression offers a means to more stringently regulate gene
expression both in vivo and in vitro. By harnessing the multi-step
process of transcription and translation that underpins the central
dogma of biology and simultaneously regulating both processes in
response to an input signal, we demonstrate through modelling
(Fig. 1) and experiments (Figs. 3–5) how inducible expression
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systems can be created with greatly reduced leaky expression
when in an ‘off’ state, while also maintaining high expression
rates once induced. Furthermore, we have shown that multi-level
regulation creates a more digital-like switch when transitioning
between ‘off’ and ‘on’ states and suppresses low-level transcrip-
tional noise (Fig. 4), both of which are valuable properties when
developing genetic systems for information processing or when
highly toxic products or excitable systems act as downstream
products.

Our top MLC design, which makes use of a THS for L2 reg-
ulation, achieved >2000-fold change in output upon induction
in vivo and displayed a 10 dB SNR (Table 1) making it one of the
most tightly controlled and high-performance induction systems
built to date. Furthermore, the flexibility of our modular genetic
toolkit for assembling new multi-level controllers (Fig. 2), and the
availability of many other THSs, makes it easy to develop addi-
tional orthogonal MLCs that could be used in parallel within the
same cell. It is worth noting that the underlying Ptac promoter
that the THS MLC uses achieved only a 93-fold change and 0.2
dB SNR when used alone as an SLC. Therefore, employing the
multi-level regulatory approach outlined in this work could offer
a means to greatly improve the performance of many existing
low-performance transcriptional sensors, without any need to
modify the transcription factors or promoter sequences making
up these devices.

With the improvements we see when employing multi-level
regulation, it is likely no coincidence that small interfering RNAs
(siRNAs) are also widely used by bacteria to refine the regulation
of many endogenous processes51–53. RNAs are perfectly tailored
for this task, imposing a small metabolic burden and offering a fast
response. In this work, we selected synthetic RNA-based reg-
ulators that function through RNA–RNA hybridisation alone.
While this reduces our dependencies on other cellular machinery
and makes them easier to transfer between strains/organisms, it is
known that many endogenous siRNA regulators employ protein
chaperones such as Hfq to increase their binding affinity to targets
and strengthen their regulatory effect54. It would be interesting to
explore the use of synthetic regulators that make use of these
chaperones38 or exploit recent advances in the RNA part design16

to see whether further improvements in performance are possible.

The stringent regulation of our controllers is achieved by
incorporating a C1-FFL regulatory motif that is known to be
evolutionarily selected in many natural and engineered systems55

and can be used to implement many useful functionalities22.
More recent work has also demonstrated the importance of
interconnections and clustering of many motifs in coordinating
more complex behaviours56,57. While this work focused on
demonstrating that transcriptional and translational regulation
can fit neatly into a C1-FFL structure, an intriguing future
direction would be to explore how these higher-level structures
(e.g. motif clusters or higher-level network structures) might be
implemented using the approaches outlined in this work to aid
the coordination of multiple interrelated processes in parallel.

This study started with the goal of more stringently controlling
gene expression. However, through the design of our MLCs it
became evident that the more intricate regulatory designs we built
had many other benefits. Synthetic biology to date has often
focused on simplifying complexity and reducing systems to their
minimal parts. Our findings indicate that complementary studies
exploring the complexification of synthetic regulatory systems
might also reap rewards allowing us to more efficiently exploit the
capabilities of biology by combining many diverse processes and
parts in unison. The genetic toolkit presented here offers a
starting point for such studies focused on the fundamental pro-
cesses of transcription and translation.

Methods
Strains, media and chemicals. All cloning and characterization of genetic con-
structs was performed using Escherichia coli strain DH10-β (Δ(ara-leu) 7697
araD139 fhuA ΔlacX74 galK16 galE15 e14- ϕ80dlacZΔM15 recA1 relA1 endA1
nupG rpsL (StrR) rph spoT1 Δ(mrr-hsdRMS-mcrBC) (New England Biolabs,
C3019I). Cells were grown in DH10-β outgrowth medium (New England Biolabs,
B9035S) for transformation, LB broth (Sigma–Aldrich, L3522) for general propa-
gation, and M9 minimal media supplemented with glucose (6.78 g/L Na2HPO4,
3 g/L KH2PO4, 1 g/L NH4Cl, 0.5 g/L NaCl (Sigma–Aldrich, M6030), 0.34 g/L
thiamine hydrochloride (Sigma T4625), 0.4% D-glucose (Sigma–Aldrich, G7528),
0.2% casamino acids (Acros, AC61204-5000), 2 mM MgSO4 (Acros, 213115000),
and 0.1 mM CaCl2 (Sigma–Aldrich, C8106)) for characterization experiments.
Antibiotic selection was performed using 100 μg/mL ampicillin (Sigma–Aldrich,
A9518) and 50 μg/mL kanamycin (Sigma–Aldrich, K1637). Induction of the
expression systems was performed using varying concentrations of isopropyl β-D-
1-thiogalactopyranoside (IPTG) (Sigma–Aldrich, I6758).

Fig. 5 Performance of single- and multi-level controllers in a cell-free expression system. a Response functions of the controllers showing output GFP
production rates in arbitrary fluorescence units per hour (arb. units/hr) at 4 hr after the start of the cell-free reaction for varying input IPTG concentrations
(0, 0.002, 0.01, 0.05, 0.1, 0.25, 0.5, 1, 2, 5, 10 mM). Points show the three biological replicates for each controller and condition (black circles, Ptac; blue
squares, THS; red diamonds, STAR; orange crosses, DC). b Output GFP production rate of the controllers over time since the start of the reaction. Time
courses shown for controllers in an ‘off’ (0mM IPTG; left) and ‘on’ (10mM IPTG; right) state. GFP production rates at each time point calculated as an
average GFP production rate over the previous 1.5 hr (Methods). Shaded region shows time period over which no regulation is observed. Source data are
provided as a Source Data file.
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Assembly of controllers. All part plasmids were either directly synthesised
(GeneArt, Thermo Fisher Scientific) or assembled as complementary single-
stranded DNA oligos annealed together. Controllers consisting of 8 parts (pA–pH)
plus a backbone (pMLC-BB1) were assembled using a standard Golden Gate
cloning method (Fig. 2B)27. Briefly, for each assembly, we started with 18.5 ng of
required part plasmids (pA–pH) and 18.5 ng of the backbone (pMLC-BB1) to be
added to a 5 μL Golden Gate reaction. The standard manufacturer’s reaction
conditions were used, but at a quarter of their normal volume (New England
Biolabs, E1601). Two microliters of this reaction mix was then used to transform
12.5 μL of chemically competent DH10-β cells (New England Biolabs, C3019). All
assembled constructs were sequence verified by Sanger sequencing (Eurofins
Genomics). Annotated sequences of all part and backbone plasmids and assembled
controllers are provided in GenBank format in Supplementary Data 2. Plasmid
maps are shown in Supplementary Figs 4 and 5. All plasmids are available from
Addgene (#166922–166941).

Characterisation experiments. Single colonies of cells transformed with an
appropriate genetic construct were inoculated in 200 μL M9 media supplemented
with glucose and kanamycin for selection in a 96-well microtiter plate (Thermo
Fisher Scientific, 249952). Cultures were grown for 14 hr in a shaking incubator
(Stuart, S1505) at 37 °C and 1250 rpm. Following this, the cultures were diluted
3:40 (15 μL in 185 μL) in M9 media supplemented with glucose, kanamycin for
selection and IPTG for induction in a new 96-well microtiter plate and grown for a
further 4 hr under the same conditions. Finally, the cultures were further diluted
1:10 (10 μL into 90 μL) in phosphate-buffered saline (PBS) (Gibco,18912-014)
containing 2 mg/mL kanamycin to halt protein translation. These samples were
incubated at room temperature for 1 hr to allow for full maturation of GFP before
flow cytometry was performed.

Flow cytometry. Measurements of GFP fluorescence in single cells was performed
using an Acea Biosciences NovoCyte 3000 flow cytometer equipped with a
NovoSampler to allow for automated collection of samples from a 96-well
microtiter plate. Data collection was performed using the NovoExpress version
1.2.4 software. Cells were excited using a 488 nm laser and GFP fluorescence
measurements taken using a 530 nm detector. At least 106 events were captured per
sample. In addition, to enable conversion of GFP fluorescence into calibrated
MEFL units58 a single well per plate contained 15 μL of 8-peak Rainbow Cali-
bration Particles (Spherotech, RCP-30-5A) diluted into 200 μL PBS. Automated
gating of events and conversion of GFP fluorescence into MEFL units was per-
formed using the forward (FSC) and side scatter (SSC) channels and the FlowCal
Python package version 1.2 with default parameters58. To correct for the GFP
autofluorescence of cells, E. coli DH10-β cells containing no genetic construct were
grown in identical conditions. An average measurement of GFP fluorescence in
MEFL units from three biological replicates of these cells was then subtracted from
fluorescence measurements of cells containing our genetic constructs to correct for
cell autofluorescence.

Plate reader measurements of construct performance in vivo. Single colonies of
cells transformed with an appropriate genetic construct were inoculated in 200 μL
M9 media supplemented with glucose and kanamycin for selection in a 96-well
microtiter plate (Thermo Fisher Scientific, 249952). Cultures were grown for 4 hr in
a shaking incubator (Stuart, S1505) at 37 °C and 1250 rpm. Following this, the
cultures were diluted 3:40 (15 μL in 185 μL) in M9 media supplemented with
glucose, kanamycin for selection and IPTG for induction in a 96-well 190 µm clear
base imaging microplate (4titude, Vision PlateTM, 4ti-0223). This spectro-
photometric assay was performed using a BioTek Synergy Neo2 plate reader at
37 °C. Optical density at 600 nm (OD600) was measured every 10 min over a 16-hr
period. OD600 measurements were also taken from samples of M9 medium sup-
plemented with glucose containing no cells to allow for quantification of media
autofluorescence. Samples were shaken continuously throughout the experiment.
Data collection was performed using the Gen5 version 3.04 software. For each time
point, media autofluorescence was subtracted from the sample measurement.

Cell-free expression. The E. coli cell lysate for CFPS was prepared using an
autolysis protocol59. In this protocol, E. coli BL21-Gold (DE3) cells harboring a
pAS-LyseR plasmid give a high-quality cell lysate by freeze-thawing. Specifically,
these cells were grown overnight at 37 °C in LB broth supplemented with ampi-
cillin. On the following day, cells were subcultured in 2 L of 2× YTPG medium
supplemented with ampicillin and grown at 37 °C to an OD600 of 1.5. Cells were
then harvested at 2000 × g for 15 min at room temperature in four centrifuge
bottles and 45 mL of cold S30A buffer (50 mM Tris-HCl at pH 7.7, 60 mM
potassium glutamate, 14 mM magnesium glutamate, final pH 7.7) was added to
each. Cells were then resuspended by vigorous vortex mixing and poured into a
pre-weighted 50 mL falcon tube and centrifuged as in the previous step. The
supernatants were completely removed, and the falcon tubes weighted again. The
net weight of each pellet was calculated and relative to its weight two volumes of
cold S30A supplied with 2 mM DTT was added (3 mL for 1.5 g of pellet). After
vigorous vortex mixing, the samples were stored at −80 °C. The next day, frozen
cells were placed in a room temperature water bath to thaw, vigorously vortexed,

incubated at 37 °C on a shaker for 45 min, vortex mixed again, and then incubated
at 37 °C for 45 min The samples were then centrifuged at 30,000 × g for 60 min at
4 °C. The supernatants were carefully pipetted out and aliquoted in 1.5 µL tubes,
and then finally centrifuged at 20,000 × g using a tabletop centrifuge for 5 min to
remove residual cell debris. Aliquots of the lysate were stored at −80 °C after flash-
freezing in liquid nitrogen.

For the prepared lysate, Mg-glutamate and K-glutamate were titrated in with all
components of the cell-free reaction based on the protocol of Sun et al.60 resulting
in concentrations of 10 nM and 60 mM, respectively, for optimal GFP production.
Each reaction was prepared at a final volume of 10.5 µL containing 33% lysate, Mg-
glutamate and K-glutamate as titrated, and amino acids mix, energy mix, and PEG
8000. For cell-free experiments of the SLC and MLC constructs, maxi-prepped
plasmids (using Machery-Nagel NucleoBond Xtra Maxi kit) were added at a final
concentration of 10 nM along with varying concentrations of IPTG (0, 0.002, 0.01,
0.05, 0.1, 0.25, 0.5, 1, 2, 5, 10 mM). While gently mixing by pipette, 10 µL of
reactions were transferred to a 384-well plate (Greiner Bio-One, 784076) and GFP
fluorescence was monitored (excitation/emission wavelengths of 485/528 nM and
gain= 100) every 10 min in a plate reader (Tecan Infinite 200 PRO).

Signal to noise ratio. The signal to noise ratio (SNR) in decibel (dB) units was
calculated from the flow cytometry GFP fluorescence distributions using the
equation23

SNRdB ¼ 20 � log10
log10ðμON=μOFFÞ
�
�

�
�

2 � log10ðσÞ
� ð1Þ

Here, μON and μOFF are the geometric means of distributions for the ‘on’ and
‘off’ states, respectively, and σ is the geometric standard deviation of the
distribution for the ‘off’ state. ‘off’ and ‘on’ states correspond to cells grown in 0
mM and 1mM IPTG, respectively.

Data analysis and numerical simulation. Data analysis was performed using
Python version 3.7.4 and the NumPy version 1.17.4, SciPy version 1.3.1, Pandas
version 1.0.3, FlowCal version 1.2, and Matplotlib version 3.1.1 libraries. ODE
models were simulated using the odeint function of the SciPy package with default
parameters. Steady-state response functions of the controllers were calculated by
fitting median GFP fluorescence values from the flow cytometry distributions for a
range of input IPTG concentrations to the following Hill function

y ¼ ymin þ ðymax � yminÞ
xn

Kn þ xn
� ð2Þ

Here, y is the output GFP fluorescence in MEFL units, ymin and ymax are the
minimum and maximum output GFP fluorescence in MEFL units, respectively, K
is the input IPTG concentration at which the output is half-maximal, n is the Hill
coefficient, and x is the input IPTG concentration. Fitting of the experimental data
was performed using non-linear least squares and the curve_fit function from the
SciPy package. Genetic diagrams were generated using DNAplotlib version 1.061,62

and figures were composed using Omnigraffle version 7.15 and Affinity Designer
version 1.8.3.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Annotated sequences for all plasmids in GenBank format are available in Supplementary
Data 2. Flow cytometry data from this study are available at: https://osf.io/wm9cq/ Any
other relevant data are available from the authors upon reasonable request. Source data
are provided with this paper.

Code availability
Python scripts for simulating the ODE models of the direct and multi-level controllers
can be found in Supplementary Data 1.
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