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Abstract: Immunotherapy, which stimulates the body’s immune system, has received a considerable
amount of press in recent years because of its powerful benefits. Cancer immunotherapy has shown
long-term results in patients with advanced disease that are not seen with traditional chemotherapy.
Immune checkpoint inhibitors, cytokines like interleukin 2 (IL-2) and interferon-alpha (IFN), and
the cancer vaccine sipuleucel-T have all been licensed and approved by the FDA for the treatment
of various cancers. These immunotherapy treatments boost anticancer responses by stimulating
the immune system. As a result, they have the potential to cause serious, even fatal, inflammatory
and immune-related side effects in one or more organs. Immune checkpoint inhibitors (ICPIs)
and chimeric antigen receptor (CAR) T-cell therapy are two immunotherapy treatments that are
increasingly being used to treat cancer. Following their widespread usage in the clinic, a wave of
immune-related adverse events (irAEs) impacting virtually every system has raised concerns about
their unpredictability and randomness. Despite the fact that the majority of adverse effects are
minimal and should be addressed with prudence, the risk of life-threatening complications exists.
Although most adverse events are small and should be treated with caution, the risk of life-threatening
toxicities should not be underestimated, especially given the subtle and unusual indications that
make early detection even more difficult. Treatment for these issues is difficult and necessitates a
multidisciplinary approach involving not only oncologists but also other internal medicine doctors to
guarantee quick diagnosis and treatment. This study’s purpose is to give a fundamental overview of
immunotherapy and cancer-related side effect management strategies.

Keywords: immunotherapy; cancer; chemotherapy; immune checkpoint inhibitors; cytokines;
interferon-alpha

1. Introduction

Immunotherapy is one kind of cancer therapy that revolutionized the treatment of a
variety of cancers by boosting the body’s natural defenses against cancer. The importance of
tumor-induced immune suppression in tumor progression is overlooked by traditional can-
cer treatments that aim to halt tumor cells from growing and multiplying [1–3]. Antitumor
activity in some cancers is promoted by immune checkpoint inhibitors (ICPis) and chimeric
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antigen receptor (CAR) T-cell treatment through the reduction of immune suppression.
These clinical developments could mark a watershed moment in cancer immunother-
apy [4–7]. The most extensively utilized immunotherapy methods–like immunological
checkpoint inhibitors–are responsible to reduce a variety of immune checkpoints in active
tumor-specific T cells, including cytotoxic T-lymphocyte–associated antigen 4 (CTLA-4)
and programmed death 1 (PD-1)/Programmed death-ligand 1 (PD-L1) ICPis. PD-1 is
majorly expressed on the T cells of the immune system, whereas PD-L1 is on the cancer
cells and antigen-presenting cells. Therefore, the inhibitors that block the interaction of
PD-1 and PD-L1 will cause the resurrection of the T-cell mediated anti-tumor immune
effect. James P. Allison and Dr. Tasuku Honjo, two cancer immunotherapy experts, were
jointly awarded the Nobel Peace Prize in 2018 for their work identifying ways to engage the
immune system to target cancer, a breakthrough in generating novel cancer treatments [8].
Antibodies to CTLA-4 and PD-1/PD-L1 have recently been identified for their role in the
treatment of a variety of malignancies, including metastatic melanoma [4,9] and nivolumab
for non-small cell lung cancer (NSCLC) [10,11]. ICPs have also been shown to improve
overall survival (OS) in a variety of cancer subtypes, including renal cell carcinoma (RCC),
hepatocellular carcinoma (HCC) [12], and urothelial cancer (UC) [12].

Another promising immunotherapy is chimeric antigen receptor (CAR) T-cell treat-
ment, which uses gene transfer technology to develop a patient’s cytotoxic T cells that con-
sistently make CARs [12]. CAR T-cell treatment targeting CD19 [13] and CD20 has shown
great potential in the therapy of malignant tumors of the B-cell type; acute lymphocytic
leukemia (ALL) is one example [14,15], as is non-Hodgkin lymphoma (NHL) [14]. Boosting
the immune system, despite the promise of clinical findings of cancer immunotherapy in
certain malignancies, separates from the regular side effects of standard cancer treatments;
immune-related adverse events (irAEs) produce immune-related adverse effects, which
are a subset of inflammatory toxicities (irAEs) [16]. The majority of cancer immunotherapy
side effects are moderate and manageable with appropriate monitoring and care, however,
in rare cases, serious and even life-threatening side effects have been reported. Due to
their different techniques, the toxic characteristics of anti–CTLA-4 and anti–PD-1 treatment
differ slightly, with anti–CTLA-4 antibodies generating more severe symptoms. The first
FDA-approved antibody, apilimumab, has been related to colitis and hypophysitis, whilst
nivolumab and pembrolizumab have been linked to pneumonitis and thyroiditis, respec-
tively [15]. Fever, hypotension, and leukopenia are all common CAR-T treatment adverse
effects that can be managed.

However, serious issues like cytokine release syndrome (CRS) and severe neurotoxicity
(SNT) have been documented [17]. Individuals with less pretreatment immunological
markers exhibited higher post-immunotherapy increases in these measures, as well as
a higher risk of irAEs, according to a recent study [18]. The use of ICP in patients with
symptomatic disease or a history of recent organ transplantation demands a comprehensive
examination of potential dangers and advantages [19].

ICPis in conjunction with CTX, targeted treatment, radiation therapy, intratumorally
medications, other immunomodulators, or adoptive cell therapy are all being investigated
as potential long-term survival improvements [20]. Even though this guideline does not
include the management of combination therapy-related toxicities, practitioners need to
be conscious of the potential for new toxicity with combination therapy and endeavor to
identify the causative agent(s) for optimum care [19,21,22].

Cancer immunotherapy has drastically improved patient survival and quality of
life. However, not all tumors are created equal, and there are currently few predictors of
response and toxicity. Despite the fast advancements in the area, immuno-oncology is
still in its infancy, with many problems and obstacles to overcome. With time, it became
clear that the usual tools for evaluating treatment options in the age of chemotherapy and
targeted therapies might not be applicable to the new immunotherapies. The Response
Evaluation Criteria in Solid Tumors (RECIST) was changed to generate iRECIST, which
accounts for the unique patterns of response seen during immunotherapy, such as tumor
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pseudo progression [23]. Novel methods are essential in the era of cancer immunotherapy,
much as TNM staging was critical in directing treatments in the period of chemotherapy.
In colon cancer, the Immunoscore has already been shown to offer important prognostic
information to TNM staging [24]. As T cells are now widely recognized as major mediators
of antitumor success with conventional treatment, the Immunoscore may be an appealing
approach for guiding treatment selection in other cancer types as well. However, that
option does not rule out the possibility of using additional factors to gain further insight
into the peculiarities of each situation. Increasing the efficacy of combination medicines that
are already in use in clinical practice is becoming more difficult. In metastatic melanoma,
combination CTLA-4 and PD-1 inhibition led to a five-year overall survival rate of more
than 50% [25].

In the intention-to-treat population, the same combination has been linked to an over-
all survival rate of more than 60% at three years in metastatic renal cell carcinoma [26]. Few
unique combinations have attained efficacy levels comparable to those new standards of
care across the vast landscape of current early-phase clinical studies. Their safety profiles
can most definitely be enhanced. In the setting of melanoma, the approved induction and
regimen dose of combination icis (ipilimumab 3 mg/kg and nivolumab 1 mg/kg every 3
weeks) is linked to a 59 percent rate of grades 3–4 toxicities [25]. CheckMate 511 demon-
strated a considerable improvement in toxicity without losing efficacy [27] while using
an alternate dose (ipilimumab 1 mg/kg and nivolumab 3 mg/kg every 3 weeks). Given
that iris is sometimes linked to death and considerable long-term morbidity (for example,
de novo insulin-dependent diabetes, persistent pituitary dysfunction, or immune-related
inflammatory arthropathies), predictors and novel ways to mitigate these side effects are
desperately needed. A new treatment for patients that are primary non-responders to
ICIS as well as those who develop secondary resistance to these therapies is also urgently
needed. Few treatments have been researched beyond ici failure, and doctors frequently
rely on previously validated standards of care for each cancer. Early evidence suggests
that ICIS exposure may alter the responsiveness to typical therapies administered after
progression. After ici failure, for example, extremely high response rates to chemotherapy
have been observed on occasion [28,29]. Those findings could be the result of immunother-
apy removing the inhibition imposed by tumor cells or other immune cells, followed by
cytotoxic chemotherapy-mediated tumor cell death. On the other hand, first-line exposure
to ICIS [30] may have a negative impact on progression-free survival and the adverse
event profiles associated with targeted therapy (such as braf inhibition in melanoma). To
conclude, the future of cancer immunotherapy may rely on combinations of checkpoint
inhibitors with tailored cancer vaccines and innovative targeted therapeutics focused on
the tumor microenvironment, tumor glycosylation, and the host microbiome, as discussed
in this study. Advances in those fields will enable a shift from the current wide “shot-
gun” approach, in which all cancers within the approved indications are exposed to ICIS,
to therapies customized to the characteristics that make each cancer and host a unique
coupling [31].

Clinicians must be aware of the symptoms associated with immunotherapy medi-
cations, as well as how to monitor and manage them, as their usage in cancer treatment
regimens grows. This study’s aim is to investigate current evidence-based breakthroughs
in cancer immunotherapy-related symptom management and knowledge.

2. Overview of Immune Checkpoint Inhibitor

Tumor cause is associated with the monitoring of the immune system. All malig-
nancies are explained by inherited alterations and germline gene and autonomic genetic
changes. The variations in DNA undoubtedly lead to a change in proteins as per the
central biological ideology. Neoantigens may play an important role in helping the body
make an immune response against cancer cells. Many biologically and biochemically
modified novel neoantigens may act as activators, but tumor cells can increase the sensitiv-
ity between tumors and cancer stems by changing the binding sites of blocking receptor
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recognition, allowing them to resist immunologic invasions [32]. The immune system
response is regulated through numerous depressant and anti-proliferative elements, as the
immunosuppressive method initially implemented by Schreiber et al. in 2002 shows that
the immune reaction perhaps consists of three stages of removal, balance, and recovery [33].
Tumor cells perform a key part in the development and implementation of the immunologic
indirect indicator [34]. The research for a lung cancer immunotherapeutic rarely comes to
an end. At the start of the research, chemotherapy medications focused on malignancy and
anti-monoclonal antibody, but they were ineffective [35].

Cancer vaccination Tecemotide is diagnosed with clinical III NSCLC and did not
improve treatment outcomes in comparison to the placebo. Currently, the chemotherapy
approach has already been transformed from improving the immune system to preventing
immunological evacuation. Innate immunity control plays a vital role throughout the
natural body in preventing T-cell sophistication and efficiency, maintaining immunogenicity,
and eliminating autoimmune conditions. Cancer cells can, therefore, acquire immunological
clearance by increased regulation of biochemical mediator production. Consequently,
the T-cell mechanism can indeed be reestablished, and immunological stimulation is
sustained, as well as the immunosuppressive impact of T-cells boosted by the blockage of
immune control molecules against receivers. There are already two immunological control
points for treatment that have been approved: CTLA-4/PD-1 immune checkpoints. T cell
immunoreceptors with immunoglobulin and ITIM domains (TIGIT) are also investigated
(Table 1) [36].

Table 1. Checkpoint inhibitors for cancer immunotherapy have been approved by the FDA [36].

Medications Molecular Target Indication FDA Granted Year
[37]

Pembrolizumab PD-1

1. Melanoma 2014
2. NSCLC 2015
3. Hodgkin
lymphoma 2017

4. Urothelial
carcinoma 2017

Nivolumab PD-1

1. Melanoma 2013
2. NSCLC 2014
3. Renal cell
carcinoma 2015

4. Hodgkin
lymphoma 2016

Durvalumab PD-L1 Urothelial carcinoma 2017

Ipilimumab CTLA-4

1.Melanoma 2011
2.Melanoma in
combination with
nivolumab

2014

Avelumab PD-L1

1.Merkel cell
carcinoma 2017

2.Urothelial
carcinoma 2017

Atezolizumab PD-L1
1.Urothelial
carcinoma 2016

2.NSCLC 2016

Tumor cells use co-stimulatory and co-inhibitory signals to prevent being killed by
immune cells. CTLA-4 and PD-1 co-inhibitory receptors on T cells, as well as their ligands
produced by cancer cells, are the targets of immune checkpoint inhibitors (ICIs) [38,39]. This
sparked a surge in melanoma immunotherapy research, with antibodies targeting CTLA-4
and PD-1 proven to be very effective. These antibodies are not effective against advanced
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melanoma, making treatment difficult for clinicians [22]. When an immune checkpoint
inhibitor (ICI) is utilized, T cells are stimulated, and their cytotoxic activity is induced. CD8+
T cells, CD4+ T cells, and macrophages are highly infiltrated in dMMR-MSI-H tumors, and
the tumor microenvironment comprises more type I interferons than other CRCs [40,41].
Stage 4 dMMR-MSI-H malignancies make up about 2–4% of all metastatic CRCs, however
they have greater levels of PD-1, CTLA4, and PD-L1, making them more susceptible to
immune checkpoint drugs [42]. Figure 1 depicts some key targets of immunotherapeutic
medicine mechanisms in colon and rectal cancer.
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Figure 1. Important targets of immune checkpoint inhibitors approved by the FDA. Degraded
proteins are presented on major histocompatibility complex (MHC). Class I proteins expressed on
the surface of all the human cells including cancer cells and the MCH class I- peptide complex are
recognized by T cell receptors (TCRs). B7 family ligands (CD80 and CD86) can bind to cytotoxic
T lymphocyte antigen 4 (CTLA4) expressed on the activated T cells. PD-L1 and PD-L2 expressed
on the cell membrane of tumor cells can bind to PD-1 expressed on T cells, which might inhibit T
cells through T cell energy and/or apoptosis. Cancer cells can be destroyed by an antibody that
attaches to inhibitory receptors on T cells or their ligand on tumor cells. T-cell cytotoxicity is a word
that describes T-cell toxicity. T-cell cytotoxicity is initiated and induced as a result. Apilimumab,
pembrolizumab, and nivolumab are examples of FDA-approved immune checkpoint inhibitors;
atezolizumab, pembrolizumab, and nivolumab, respectively, target CTLA4, PD-1, and PD-L1. Pem-
brolizumab, nivolumab, and nivolumab/ipilimumab have all been authorized for use in the treatment
of colorectal cancer [43].

3. Atypical Patterns of Responses

RECIST (response evaluation criteria in solid tumor) uses the solid tumor effectiveness
criteria to assess the efficacy of chemotherapeutic and fast therapy in the treatment of
malignancies. Chemotherapeutic reactions and radiotherapy have two parameters, reaction
and progression, however there are many more unusual response patterns [44].

3.1. Delayed Response

When commencing an immune response therapy with PD-1/PD-L1, the t cells’ im-
munologic system must recognize and destroy white blood cells in tumor cells on a daily
basis. The result is a therapeutic effect that is distinct from both pharmacologic and im-
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munotherapy: a delayed response. We have noticed three things: (i) tumor cells shrinking
in therapy, additional constriction, and possibly a missed diagnosis chance [45]; (ii) the
initial phase of immune response therapy did not show significant changes in malignancy,
and RECIST was classified as a stable disorder (SD), however after ongoing treatment or
therapy, the biopsy started to shrink or vanished; and (iii) the cancer cells were significantly
increased or new sores appeared, and RECIST was assessed as the disease progressed. If
the tumor is treated with particular antibodies, it may shrink. The average initial period
of PD-1/PD-L1 is 2.1 to 2.8 months [46,47]. Treatment methods and cancer treatment are
extremely slow; supervisors can be suspicious about the effectiveness of chemotherapy
throughout that period. Consequently, the latest indicator must substitute a radiological
assessment to know the impact of chemotherapy. However, this impact is so much higher
than that of the computed tomography assessment thanks to the changes occurring in
circulatory cancer cell DNA (ctDNA). The average opportunity to prove ctDNA impact was
24.5 days, and 72.5 days for X-ray analysis, i.e., 48 days before the radiological analysis [49].

3.2. Delayed Response

When commencing an immune response therapy with PD-1/PD-L1, the t cells’ im-
munologic system must recognize and destroy white blood cells in tumor cells on a daily
basis. The result is a therapeutic effect that is distinct from both pharmacologic and im-
munotherapy: a delayed response. We have noticed three things: (i) tumor cells shrinking
in therapy, additional constriction, and possibly a missed diagnosis chance [45]; (ii) the
initial phase of immune response therapy did not show significant changes in malignancy,
and RECIST was classified as a stable disorder (SD), however after ongoing treatment or
therapy, the biopsy started to shrink or vanished; and (iii) the cancer cells were significantly
increased or new sores appeared, and RECIST was assessed as the disease progressed. If
the tumor is treated with specific antibodies, it may shrink. The average initial period
of PD-1/PD-L1 is 2.1 to 2.8 months [46,47]. Treatment methods and cancer treatment are
extremely slow; supervisors can be suspicious about the effectiveness of chemotherapy
throughout that period. Consequently, the latest indicator must substitute a radiological
assessment to know the impact of chemotherapy. However, this impact is so much higher
than that of the computed tomography assessment thanks to the changes occurring in
circulatory cancer cell DNA (ctDNA). The average opportunity to prove ctDNA impact was
24.5 days, and 72.5 days for X-ray analysis, i.e., 48 days before the radiological analysis [48].

3.3. Hyper Progression

In 2016, the European Society of Medical Oncology reviewed 89 instances of NSCLC
for the first time, including eight immunotherapeutic cases (8% of which received hyper-
progressive chemotherapy (HP)). The HP Definition requires that (i) progress, or a pro-
gression duration (TTP) of 2 months, be the first assessment after chemotherapy; (ii) cell
proliferation size rise by more than 50%; and (iii) the tumor rate of increase (TGR) increases
by two times. The concept of HP must be clarified; Dr. Tourneau described a palm identifi-
cation when HP is assumed at the 2018 American Society of Clinical Oncology Conference
(ASCO): (i) pharmacological evaluation, (ii) scanning performed, and (iii) tumor biopsies.
The aim is to prevent insufficient early intervention and move towards yet again another
chemotherapy that is possibly involved. It is an issue to conduct the very first assess-
ment after chemotherapy, however, a PSPD evaluation can be assessed close to the end of
chemotherapy, and the PSPD can be used as PD to distinguish the associated answers. It
has been shown that at 12 weeks of treatment is a crucial time to identify the effectiveness.
For RECIST and IrRC, the two-year percentage of starvation as SD, RECIST as PD, and
irRC as Non-PD, are measured at 77.6, 37.5, and 17.3 percent, respectively, including both
as the non-PD at 12 weeks [49]. To accomplish early diagnosis and aggressive diagnosis of
HP, the iRECIST explores the issue of early cancer analysis during studies (e.g., 4–6 weeks
rather than 8–12 weeks after treatments begin) [50].
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4. Immune Checkpoints in Cancer

T cell identification and action versus tumor antigens necessitate dual T cell receptors
to bind with antigen peptides delivered inside the environment of major complexes of
histocompatibility, as well as costimulatory receptor activation of CD28 on T cells and CD
(80/86) on those cell that have antigen-containing cells, or cancer cell (tumor) [51]. Thus, the
immunity of anti-tumor may decrease by action of 4[CTLA-4] and PD-1; these are immune
check points. This CLTA 4 helps inhibit receptors; it generally works Versus CD-28 for CD
80 or 86. Moreover, they have a high attraction to bind with CD 80 or 86 [51]. T cell energy is
signaled by regulation of the CTLA4 pathway rather than T cell stimulation, which occurs
when CD28 attaches with CD 80 or 86. In same way, PD-1 attaches with its ligand (PD-L 1
or 2); this happens on cells that contain antigens or tumor cells, and affects the decrease of t
cell division and decrease the lifetime of cell. When there is no cancer, a reaction occurs
among t cells and antigens of self against non-self [52]. This reaction is controlled by PD-1,
CTLA4, and so this suppression influences the opening of auto operative t cells, resulting
in irAES and relating to check point inhibition (immune system) [52]. Thus, the treatment
of irAEs changes the input from the treatment of cytotoxic-chemotherapy side effects [53].

4.1. Immune Checkpoint Inhibitor (ICI) Approved for dMMR-MSI-H Cancers

Immunotherapy has yet to be proven effective in patients with dMMR-MSI-L, who
make up the vast majority of metastatic CRC patients. Medication with pembrolizumab
had no effect upon dMMR-MSI-L CRC patients [43]. A modest response was seen in one
out of every 20 dMMR-MSI-L CRC patients treated with a mixture of anti-PD-1 and anti-
CTLA4 antibodies. A mixture of PD-1 inhibitors and other immune checkpoint enhancers
may be useful for a few people with dMMR-MSI-L, but different combinations must be
researched for the most of CRC patients. Table 2 summarizes some of the most well-known
dMMR-MSI-H CRC drug testing employing immunotherapy drugs at various levels of
development.

4.2. CLTA4 Checkpoint Inhibition and Therapy

CTLA-4 is still an inhibiting transcription factor that synthesizes the initial phases
of the proliferation of T and the very first molecular diagnostic mechanism checkpoint
to the destination. CTLA-4 is morphologically similar to CD2, still generated on the
immunological cellular membrane, and produced on the cell surface. Regrettably, this is
also the case with molecule B7. Furthermore, B7 is closer to CTLA-4 than CD28. CTLA-4
binds B7 to provide an inflammatory response by inhibiting the routes of CD28/B7-1 and B7-
2, which suppress T-cell propagation and stimulation [54]. CTLA-4 agonists have the ability
to lower CTLA-4 binding to B7 and weaken the B7-1 and B7-2/CTLA-4 suppression systems
that allows T cells to perform their anti-tumor functions more effectively. CTLA-4 blockers
include ipilimumab and tremeimumab [44]. A 4-monoclonal anti-CTLA inhibitor causes a
pathological change mainly in melanoma-based sufferers, but there are several therapeutic
NSCLC chemotherapy reports outlining the lymphocytes proliferated inappropriately
following inhibition of CTLA-4. This effect can be attributed to severe autoimmune impact
and led to widespread proliferation in tissues and organs (Figure 2) [55].
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Figure 2. T cell deactivation (A) and T cell activation and proliferation (B). One (same antigen given
through an APC) and signal two: CD-28 interacting with CD 80 or 86, energize the T cell in the lymph
node, so that it can help to increase cell numbers and help the activities of T cells [56]. Activities
enhance the evolution of the t cytotoxic surface size of the cell, which is related to CLA4. This can
combine with CD 80 or 86 rather than 28. These activities are in advance of the checkpoint and are
responsible for inactivating the T cell. This middle checkpoint is refused by anti CTLA-4 and the
ambit for t cell delegation falls, growing T cell operation [55].

4.3. Inhibition of the PD-1 and/or PD-L1 Checkpoints, as Well as Treatment

In lymphocytes, innate immune cells (NK), macrophages, and B cells, PD-1 are gener-
ated. The PD-l1 occurs mainly on malignant cells membranes and in the environment of the
tumor. T cells are suppressed when PD-1 attaches to PD-L1. PD-L1 can be inappropriately
incorporated in the cancer cells’ mucosa, blocking lymphocyte proliferation, resulting in
cell dedifferentiation [57]. Both PD-1 and PD-L1 inhibitions will allow lymphocytes to
recover the capacity to comprehend tumor cells and target them, inhibiting their immuno-
logical flight. The PD-1 antagonists contain atezolizumab, durvalumab, avelumab, etc., also
include nivolumab and pembrolizumab. Latest innovations aside, the cell lung cancer first
step and second-string treatments are all attributed to PD-1/PD-L1 Blockers (Figure 3) [44].
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Figure 3. Inhibition of T cell activity (A) and upregulation of the immune response (B). Activity of
CTLA-4 is generally in the tissue of lymph nodes, which are secondary; PD-1 is manifested into T
cells, transported from the lymph side, and works on the tumor cell. These cells are peripheral tissue.
PD-1 interacts with apoptosis ligand one, found in many tissues, and PD-L2 is is limited for allergen
containing cells [58].

The check-point suppression of the PD-1 channel is not simple; FDA provided medicines
target both PD-1 and PD-L1. The PDL-1 suppressor supplanter of PDL-2 is effective in cases
of effectual clusters of differential 4 (CD4+) cells conciliated in the immune system [8]. The
repercussions of this uniqueness are still to be fully appreciated; however, some research shows
that significant immune-related side effects can arise [59]. Immune checkpoint inhibitors have
several clinical trial outcomes for different types of cancer (Table 2).

Table 2. Immune checkpoint inhibitors have shown to be effective in a variety of cancers in clinical
trials [38].

Target Drug Condition Treatment
Regimen

Treatment in Control
Group

Objective
Response Rate

%
Reference

Programmed cell
death protein 1

(PD-1) signaling

Nivolumab
(IgG4a)

Melanoma (stage
III/IV)

3
mg/kg/2 week Combination therapy 43.7 [60]

Renal cell
carcinoma

(metastatic)

3
mg/kg/2 weeks 10 mg/day Everolimus 25 (4% control) [61]
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Table 2. Cont.

Target Drug Condition Treatment
Regimen

Treatment in Control
Group

Objective
Response Rate

%
Reference

Hodgkin’s
lymphoma (re-

lapsed/refractory)
3 mg/kg/2 weeks n/a 87 [62]

Squamous-cell
carcinoma of the
head and neck

(recurrent)

3 mg/kg/2 weeks
Single-agent systemic
therapy (methotrexate,

docetaxel, or cetuximab)

13.3
(5.8% control) [63]

Ovarian cancer
(platinum-resistant)

1 or
3 mg/kg/2 weeks n/a 15 [64]

Pembrolizumab
(IgG4a)

Melanoma (stage
III/IV)

10 mg/2 weeks
or 3 weeks (vs. ipilimumab) 33.7–32.9 [65]

Merkel cell
carcinoma 2 mg/kg/3 weeks n/a 56 [66]

Progressive
metastatic

colorectal cancer

10 mg/kg/every
2 weeks n/a 40/0 [67]

Pidilizumab
(IgG1)

B cell lymphoma
(after autologous
stem cell transfer

1.5 mg/42 days n/a 51 [68]

Follicular
lymphoma
(relapsed)

3 mg/kg/4 weeks
(+rituximab) n/a 66 [69]

T-
lymphocyteassociated

protein 4
(CTLA-4) signaling

CTLA-
4Ipilimumab

(IgG1)

Melanoma (stage
III/IV)

10 mg/kg plus
decarbazine Decarbazine alone 15.2

(10.3% control) [70]

3 mg/kg/3 weeks (vs. Pembrolizumab) 11.9 [57]

3 mg/kg/3 weeks (vs. combination with
nivolumab) 19 [60]

Tremelimumab
(IgG2)

Melanoma (stage
III/IV) 15 mg/kg/90 days

Chemotherapy
(temozolomide or

dacarbazin)

10.7
(9.8% control) [71]

Combination
therapy

Nivolumab +
Ipilimumab

Melanoma (stage
III/IV)

3 mg/kg/2 weeks Nivolumab
3 mg/kg/3 weeks

Ipilimumab
(vs. single) 57.6 [60]

Non-small cell lung
cancer

Nivo + Ipi:
1 + 3 or

3 + 1 mg/ml
Nivolumab alone 23/19

(10% control) [72]

5. Immune Related Adverse Event Patterns

Pembrolizumab and nivolumab are authorized drugs for the treatment; both are
PD-1 inhibitors. Immunotherapy was reported to have a smaller number of negative
effects overall when compared to cytotoxic chemotherapy [73]. In any case, the types of
side effects differed significantly between immune check point suppressor therapy and
chemotherapy [73,74].

Frailness, drowsiness, vomiting, and loss of motion can occur as side effects of im-
mune treatment and chemo-related therapies, which are related to anemia, infections in
the stomach, etc. [73]. The same types of undesired effects can be observed with CLTA
4 suppressor, which suggests that cytotoxic therapies are less bearable than immune check
point suppressors; research expressed that CTL-4 suppressor is absent with chemotherapy.
Negative effects related to immunotherapy can create an effect on body systems called
irAEs [75]; CLTA4 has more value and brutality of irAEs than PD one suppressor [76] in
70–90% of people [77]. Although they have been observed to occur around 3–6 months
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after starting CTLA4 or PD-L1 antagonist treatment, irAEs frequently emerge in a dose-
dependent way as a feature within the year prior or post a person has been subjected to
PD-1 antagonists [77]. This seems to become the antagonist among other side effects such
as tumors, or like hyperpigmentation in melanoma patients [77].

6. Mechanisms Underlying irAEs (Immune Related Adverse Events)

When ICI extended the life expectancy of patients with incurable cancer, there was
good feedback alongside some undesirable effects (irAEs) [78]. These effects can create
a limitation in the case of providing medication and therapies. IrAEs cause harm to the
GIT, respiratory system and cardiac system, and cause hormonal issues, osteoarthritis,
dermatitis, etc. [79].

Despite cancer immunotherapy’s enormous potential, its therapeutic effects in known
indications have yet to be established. The failures and toxicities of cancer immunotherapy
are determined by the immunosuppressive extracellular matrix, which collaborates to
obstruct innate immunity and immunotherapy efficacy via numerous routes. The tumor
microenvironment contains Treg cells, MDSCs, T cells, TAMs, and other inhibitory im-
munological checkpoints that may play a role in lowering anticancer immune action while
limiting autoimmunity. By blocking these signals, ICPs impair immunological integrity,
which can result in a range of autoimmune reactions. The impact of ICP therapy in mice
models is connected to a greater ratio of Teff to Treg cells. As a result, removing Treg cells
from their extracellular environment may have a beneficial effect (Figure 4).

T lymphocytes that have become overly active may injure normal tissues that display
the target antigen, putting healthy cells at risk in addition to targeting viral antigens.
Regular cells produce neoantigens, cancer antigens, and auto-antigens in reaction to cell
disruption caused by cytotoxic T lymphocytes, worsening the injury by ‘targeting’ body
cells [80]. Furthermore, activation of Th1 and Th17 T cells after CAR-T cell therapy increases
serum cytokine output, like IFN-, IL-17, and IL-6, which typically leads to cytokine release
syndrome (CRS).

A relationship between the gut microbiome and ICP-related colitis has been discovered
in several studies. On one hand, microbiota components such as Bacteroides spp. and
Burkholderiales have been shown to increase Th1 immune activity, which boosts anti-CTLA-
4 treatment efficacy. Certain gut microbes, particularly gram-positive microbiota, have,
on the other hand, been linked to the beginning of inflammatory diseases. Lactobacillus
reuteri probiotics [81], for example, may reduce the number of group 3 innate lymphoid
cells in the mucosa, reducing colitis after ICP therapy (ILC3s).
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7. Main Features of irAEs
7.1. Diversity

Most human organs are strongly linked to an overactive immune system because of
irAEs (immune-related adverse events), including the skin, endocrine tissue, intestines,
liver, kidneys. The CNS (central nervous system) may also be impacted [83]. In irAEs, the
most prevalent signs are GIT (gastrointestinal) and dermatological problems [84]. Skin
toxicity, which include rash and mucositis, affects more than 30% of patients who are treated
with immunotherapy [85]. GIT issues such diarrhea and colitis have also been documented
in 30–40% of those who have been given anti-CTLA-4 antibodies [72]. Some of the less
prevalent adverse effects, such as endocrine, nephritis, pancreatitis, and neurological
diseases, should not be overlooked [58,86,87].

7.2. Hysteresis

Dermatological side effects are most common during the first two weeks after starting
an immune checkpoint inhibitor medication. Around six weeks after initiating medication,
GIT side effects are common [88,89]. Hepatitis can emerge anywhere from 1–49 weeks
after the beginning of treatment, with a median of five weeks [90]. Ipilimumab has a
7-week median onset of endocrine toxicity, while nivolumab has a 10-week median onset
of endocrine toxicity [91]. Generally, immune-related pneumonitis occurs 8–14 weeks after
the commencement of therapy [86].
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7.3. Unpredictability

As per clinical accounts, irAEs can develop anywhere, at any moment, and span a wide
range of symptoms impacting many organs during treatment [76], even leading to death; as
a result, they require prompt diagnosis and treatment. Much research has been undertaken,
and CD177 and CD80 are two neutrophil activation markers that have been discovered.
CEACAM1 has the potential to be a biomarker for GIT toxicity, especially for ICPis toxicity.
However, perhaps neither of these indicators will be approved for clinical tests to support
diagnosis and effective preventive interventions due to inaccurate pathophysiology [92].

8. Diagnosis and Management of irAEs
8.1. Dermatological: Rash and Pruritus

The most common side effects include rashes, vitiligo, and pruritus, which are all
dermatological reactions; however, additional side effects have also been connected to ICPis
(immune checkpoint inhibitors). Rashes and pruritus are now prevalent in individuals
on anti-CTLA-4 medicines, which are responsible for more than 40% of those who take
ipilimumab. Around 20% of people on PD-1/PD-L1 blockers have experienced this side
effect [93]. Bullous pemphigoid [94] skin changes resembling scleroderma [95] and severe
cutaneous bad responses (SCARs) [20] are examples of significantly lower commonly
diagnosed toxicities. In the first two weeks after starting treatment with an immune
checkpoint inhibitor, dermatological side effects are common. However, toxicity might
occur at any moment. Vitiligo, as an example, only appears later after many months of ICPis
medication [96]. Because dermatological toxicities are common, thorough medical records
of immune-related skin problems are important for each immunotherapy patient [93].

To assess the number and kind of skin lesions, a complete medical examination focus-
ing on the skin mucous membrane is required [86], as other etiologies must be ruled out [20].
Whenever a possibly serious diagnosis is being evaluated, several specialized accessory
investigations can help to identify the order of seriousness. Patients with eosinophilia and
systemic symptoms who have had a drug reaction are given hepatic and renal function
testing [93,94]. For autoimmune disorders such as lupus or dermatomyositis, targeted
serologic investigations such as the ANA test are required [20]. Whenever rashes become
difficult to treat or individuals are identified as having SCARs (severe cutaneous adverse
reactions), a skin biopsy is required [93,95].

Topical creams and mild–moderate strength topical corticosteroids are the first line of
treatment for a reduced rash with ICPis [20,85]. In the meantime, minimizing skin allergens
and excessive sun exposure is critical for preventing damage [20]. Cold compresses and
oatmeal showers have been described as effective treatments for pruritic complaints. If the
illnesses are affecting one’s life quality, oral antihistamines with medium to high effective
topical corticosteroids should be used until the skin diseases subside to category 1 [20].
Although most skin eruptions are mild and most people can maintain cancer treatment [85],
there are some rare but serious catastrophic dermatological events: DRESS and Stevens-
Johnson syndrome are two examples. In cases like these, ICPis treatment should be stopped
once no improvement has been seen as a result of these therapies until a dermatologist can
determine if there is a hope of healing [96,97].

8.2. Gastrointestinal: Diarrhea and Colitis

GIT illnesses are amongst the most frequent irAEs, yet it is uncertain if immunotherapy
causes GIT side effects directly [98]. The most typical causes of GIT toxicity are colitis and
diarrhea. Anti-CTLA-4 medication has been seen to increase the incidence of all diarrheas in
patients undergoing ICPis up to 30% [99], or 44% in the case of a combined treatment [102].
Patients also feel unusual digestive symptoms like stomach discomfort and vomiting. GIT
adverse effects are commonly brief and minor, appearing after around six weeks after
starting treatment [8]. However, when nivolumab is combined with ipilimumab, a high
grade of diarrhea is recorded in more than 9% of patients [100]. Patients that have ileal
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rupture are relatively uncommon following immunotherapy for terminal ileitis except
colitis, especially when used in tandem [101].

It is difficult to tell the difference between colitis and diarrhea. In addition to blood
tests to determine the inflammatory response in colitis, stool samples are sent for etiological
testing to rule out infection [102]. A whole-blood mRNA signature, according to some
research, can distinguish category 2 or greater colitis or diarrhea from small diarrhea or
colitis in the early stages, allowing for appropriate intervention [103]. Symptomatic ther-
apies are suggested when a category 1 GIT issue happens [104] and immunotherapy can
also be maintained with adequate dietary adjustments based on observations of dehydra-
tion [20]. IV or oral corticosteroids can be used to treat category 2 colitis, commencing at 1
mg/kg/day for category 2 and 2 mg/kg/day for category 3–4 [102]. ICPis therapy must be
stopped at the same time if problems cannot be resolved [20]. After 72 h of high-dose IV
steroids, infliximab can be utilized in hormone-refractory individuals, and symptoms can
occur within 24 h [105]. It is also worth mentioning that if an intestinal perforation occurs,
surgical treatment should begin immediately [101].

8.3. Hepatotoxic: Hepatitis

Hepatitis, the most prevalent liver toxicity induced by ICPis, has a place in irAEs,
although it is less common than GIT illnesses. Hepatitis develops in less than 6% of patients
who receive anti-PD-1 antibodies, around 7% of individuals who receive CTLA-4, and more
than 30% of patients who receive PD-1/PDL-1 and CTLA-4 blocking combinations [28].
Hepatitis is also responsible for 16% of all fatal immunotherapy reactions [106]. Hepatitis
may manifest itself as an asymptomatic elevation in ALT (alanine aminotransferase) and
AST (aspartate aminotransferase) readings, as well as a rise in blood bilirubin levels, after
6 to 14 weeks of treatment [90]. Because hepatitis is often asymptomatic, liver activity
tests are recommended for all patients prior to their first therapy session, as well as once
or twice weekly if AST and ALT values rise in the event of a worsening to category 2 or
higher [103]. Biopsies reveal two unique types histologically: zone 3 hepatitis and pan
lobular hepatitis [107].

Immunotherapy [110] has been shown to disclose previous subclinical liver issues, as
indicated by the research above. In this scenario, a thorough examination is required to
rule out viral hepatitis or other infectious diseases, liver metastases, and AIH (autoimmune
hepatitis) [104,108,109,113]. Corticosteroids are suggested as a medication for category 2 or
higher hepatitis with indications. Despite the possibility of hepatotoxicity, infliximab may
not be prescribed for the management of hepatitis [20,90,107].

8.4. Endocrine: Hypophysitis and Thyropathy

Immune checkpoint blockers have been linked to a variety of endocrine side effects,
varying from typical diagnoses like headache, nausea, and tiredness, to major or life-
threatening indications including renal and thyroid crises [91]. Adrenal, thyroid, and
pituitary glands seem to be the most implicated components throughout the endocrine sys-
tem. Thyropathy and hypophysitis are much more prevalent, with rates of 1.8% and 0–9%,
respectively. Hypophysitis [110] is typically classified as both a category 3 or 4 toxicity
with a dosages pattern [91,110]. Hypophysitis can cause a variety of symptoms (e.g.,
headaches, libido loss, mild fatigue, and mood swings). Such symptoms are usually caused
by swollen glands or hormone deficiency [111,112]. Due to pituitary failure, it is suggested
to test thyrotropin, corticotropin, and luteinizing hormone in peripheral blood via essential
laboratory procedures [20,112].

Such symptoms are clearly developed and controllable with adequate hormone re-
placement therapy, making continuing medical immunotherapy feasible. Hormones such
as estrogen and testosterone can be supplied as necessary to treat category 1 hypophysitis
in people who have no contraindications [20,113]. Whenever patients are identified as
having category 2 or higher hypophysitis, immunotherapy must be controlled [114].
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However, if there are damaging and serious medical signs, adequate emergency steroid
administration is required before replacement treatment [20,114]. Hyperthyroidism and
primary hypothyroidism are the most frequent forms of thyropathy, with hypothyroidism
being the most common. Hypothyroidism usually appears after four weeks of ipilimumab
treatment and 10 weeks of nivolumab treatment [91]. As a result, serum TSH and FT4
levels are measured every 4–6 weeks for screening tests and activity follow-up [20]. As a
result, professional experience and contact with an endocrinologist are critical in managing
all these toxicity issues. Early detection and HRT can help reduce medical symptoms to the
greatest extent possible [115]. Patients must be taken to the hospital and given steroids and
betablockers as required to ease symptoms and prevent infection [20,91,115].

8.5. Respiratory: Pneumonitis

Immune concerned pneumonitis caused by ICPis treatment is a rather unusual side
effect. However, in certain people, it is possible that the toxicity will be severe, or even
lethal [116]. Pneumonitis is substantially more common in anti-PD-1 patients than in
anti-PD-L1 or anti-CTLA-4 patients [117]. The combination of PD-1 and CTLA-4 inhibition,
on the other hand, was found to produce more lung damage than any single immune
checkpoint blocker, increasing from 5% to 10% in any category, and 2% for categories 3
to 4 [118]. When on ICPs, patients with preliminary respiratory problems like tachypnea,
cough, hypoxia, dyspnea, and frosted glass on pulmonary imaging could be suspicious of
pneumonitis rthermore; the symptoms listed previously may not be useful in determining
a treatment plan [119].

As a result, physicians should exercise caution when diagnosing and treating pneu-
monitis [123]. Patients with a large suspicion of pneumonitis should first determine the
extent of their condition before making a medical decision [120]. Immunotherapy must be
stopped until the patient’s condition improves to a category 1 or lower, and prednisone
must be given according to protocol for patients suffering from category 2 pneumonitis [19].
If pneumonitis progresses to category 3 or 4, it is also recommended that ICPis must be
stopped, and prednisolone and antibiotics prescribed instead [20,121].

8.6. CAR-T Induced: CRS and SNT

CRS (cytokine release syndrome) and neurotoxicity are the most known adverse
events of CAR T cell treatment, which usually appear 7 and 21 days after treatment,
respectively [18,122]. The rate of neurologic side effects ranges between 40% to 44%
in teenagers, but 50% in adults [123]. CRS has been recorded in 77% of patients, with
47% developing category 3 to 4 toxicities [19]. Treatment must be dependent on the
severity of toxicity in individuals [124], and early measures for relieving pain should be
administered [50]. Corticosteroids, also known as helpful for immunocyte reduction, are
also essential for the treatment of CAR T-cell therapy’s major adverse effects [18,127,129].

8.7. Rheumatic irAE

There were 136 new Rh-irAE cases, 22 of which were multiplex Rh-irAE cases (18.8%).
Symmetrical polyarthritis (33.1%), PMR-like symptoms (12.5%), sicca (8.1%), arthral-
gias/myalgias (11.0%), and other Rh-irAEs were the most common Rh-irAEs (11.0%).
In 17.6% of the population, those with numerous Rh-irAE markers, such as symmetrical
polyarthritis and myalgias, were more likely to have sicca symptoms. Other Rh-irAEs
included a variety of symptoms that were thought to be associated to ICI therapy but
could not be classified as a specific inflammatory rheumatic phenotype like Raynaud’s
or adhesive capsulitis. With 65.4% of Rh-irAE patients classified as CTCAE grade 1 or 2,
one hepatitis, and one myositis, only two patients in this cohort suffered life-threatening
episodes. There were no women in that group, nor were there any deaths associated with
irAE. Even though these data were only available for 74 patients, further ICI infusions
aggravated Rh-irAE symptoms in 37.5% of cases [125].
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8.8. Non-Rheumatic irAEs

This batch has a large number of other-irAE. There were 94 incidences in 64 patients.
Rashes (17%), endocrinopathies (13.8%), colitis (13.8%), and hepatitis (13.8%) were the most
common conditions (13.8%). Additionally, pneumonitis (8.5%), ocular involvement (2.1%),
hematologic abnormalities (1.1%), and myocarditis (1.1%) were also reported (4.2%) [125].

8.9. Tumor Response to irAE Treatment

Overall, 63.2% of this cohort had a complete or partial cure of their cancer before
starting irAE, whereas 19.6% (n = 23) had progressed on ICI treatment. Tumor responses
improved in 22.2% of cases, decreased in 7.7% of cases, and stayed constant in 61.5% of pa-
tients after beginning treatment for an irAE. Tumor responses were higher in 26.6% (n = 12),
29.4% (n = 5), 33.3% (n = 3), and 12.5% (n = 1) of patients with symmetric polyarthritis,
PMR, myositis, or biologics, respectively. In 13.3% (n = 6), 0% (n = 1), 11.1% (n = 1), and
12.5% (n = 1) of the patients, tumor responses decreased. After the study, 61.5% (n = 72) of
all customers were in full or partial remission, whereas 15.4% (n = 18) experienced tumor
progression. Three patients (2.6%) did not respond to the treatment. Three patients (2.6%)
did not react to treatment, while four patients (3.4%) required adjuvant therapy. In addition,
18 patients’ (15.4%) cancer conditions were unknown, while two patients died before the
follow-up period was finished [85].

9. Cancer Immunology and Cancer Immunotherapy Advances

Cancer immunology is entering its Golden Age after years of failures. As a result
of recent advancements in cancer immunology, new cancer therapeutic strategies have
evolved. Antibodies that disrupt the immunological checkpoint CTLA-4 and PD-1/PD-
L1) pathways for the treatment of melanoma were approved by the FDA in 2011 and
2014, respectively. In March 2015, the FDA authorized Nivolumab, an anti-PD-1 antibody,
for the treatment of squamous lung cancer. Antibodies addressing PD-1 or PD-L1 are
shown to be effective and safe in a variety of malignancies, including non-small cell lung
carcinoma (NSCLC), renal cell carcinoma (RCC), bladder cancer, and Hodgkin’s lymphoma.
Adoptive cell transfer has becoming more popular and increasingly common in recent
years. Alternative T cell-based treatments for several tumor types are currently being
explored. Chimeric antigen receptor (CAR) T technology has demonstrated to be beneficial
in treating B cell malignancies, and alternative T cell-based treatments for a variety of tumor
types are currently being researched. We will go over the most recent developments in
cancer immunotherapy and immunology, including innovative drugs currently in clinical
trials and possible techniques that have demonstrated promising results in experimental
studies [75,126,127].

Cancer is a complex and dynamic tissue that grows and spreads via a variety of strate-
gies including immune evasion [128]. Indeed, the idea of “avoiding immune destruction”
as a new cancer hallmark was included in Hanahan and Weinberg’s updated analysis in
2011 [129]. The relationship between immunity and cancer has been extensively inves-
tigated in recent decades [130], and immunotherapy has lately emerged as a promising
cancer treatment option [131]. Based on Burnet and Thomas’ cancer immunosurveillance
theory, it is now commonly accepted that the immune system is capable of identifying
tumor antigens spontaneously and of launching a lethal response via the production of spe-
cialized anti-tumoral CD8+ T cells [132]. On the other hand, this spontaneous anti-tumor
T cell response eventually fails due to two factors: (1) the process of eliminating cancer
cells that express antigens recognized by T lymphocytes is known as cancer immunoedit-
ing [133,134]; and (2) the activation of immune suppressive pathways by tumor cells and
the tumor microenvironment, known as immune checkpoint activation, which inhibits the
initial anti-tumoral T cell response [135–138].

The concept of cancer immunosurveillance has evolved over time into the more recent
cancer immunoediting theory. Activation of an innate and adoptive immune response
that kills tumor cells (elimination phase), survival of sporadic tumor cells that trigger
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immunoediting (equilibrium phase), establishment of low-immunogenic tumors, and
an immunosuppressive microenvironment (escape phase) are the three phases of cancer
immunoediting [139–141]. Crosstalk between immune cells, cancer cells, and the microen-
vironment results in adaptive immune resistance, which is a normal process. The immune
system has a dual duty in this mechanism: it protects the host from tumor growth while
also assisting tumor advancement. Because T cells are so important in immunosurveillance,
early immunotherapies tried to modify T cells to induce endogenous antitumor immu-
nity [135,136]. Blocking immune checkpoint regulators such CTLA-4 and PD-1/PD-L1
pathway in solid tumors [137], as well as customized T cell therapy in acute lymphoblastic
leukemia (ALL), cancer immunotherapy, as a monotherapy or in combination with other
treatments, has recently ushered in a new age.

10. Blockade of Immune Checkpoints in Cancer Patients

Two promising cancer treatments that have recently gained popularity are immune
pattern checkpoint inhibitors (ICPIs) and chimeric antigen receptor (CAR) T cell therapy.
Following its widespread use in clinics, a slew of immune-related adverse effects, including
autoimmune responses, emerged [137,138]. Even if most adverse events are mild and
controllable, and even if atypical symptoms make it difficult to recognize them in time,
life-threatening toxicities should not be tolerated. This review discusses immunotherapy
and the pathways that lead to irAEs. To improve the efficacy of immunotherapy, we are
concentrating on early detection methods and the management of a variety of toxicities, as
well as improving the efficacy of toxicant-specific screening [120,137,139,140].

11. Future Direction

Cancer drug treatments and targeted therapies are expected to be related to an in-
creased irAE prevalence [35]. The most observed combinational therapeutics for developed
hepatocellular carcinoma, thyroid problems (25–35%), and arthralgia (18–20%), were ac-
cepted by the end of 2019 for the diagnosis of pembrolizumab and avelumab with the inter
protease inhibitor axitinib [54]. Furthermore, tofacitinib improves the provision of specific
antibodies–therapeutic agents–to tumor cells by modifying immune cells in an animal
model [141]. As the toxicity profile of alternate paths of immunotherapeutic management
is affected by the growing attention based on inter chemotherapy, it is essential to see
if more regionalized therapeutics impact the occurrence and intensity of irAEs sparked.
Supply options are equipped to reduce off-tissue impacts intended to in-living regional
and cellular uptake, with different therapeutic substances selected depending on patient
objectives. There are several structures such as nanomaterials, trusses, hydrophilic, and cell
type specimens for biopsy, even though this allows yet more investigation as to whether
these systems reduce irAE developments [45].

While doctors’ knowledge of how to handle irAEs has grown as ICI has become more
widely used, some obstacles remain. The intricate network of downstream pathways linked
with CTLA-4 and PD-1/PD-L1 amplification must be clarified regarding their influence
on irAE profiles as well as oncologic therapy results. In addition, irAEs vary in intensity
and localization, with some being more specific to the cancer type being treated and the ICI
class employed than others [142–146]. Immune surface receptor clustering, for example,
appears to predict endocrine irAEs based on ICI class. Thyroid irAEs from ICIs are more
common with PD-1/PD-L1 inhibitors than with CTLA-4 inhibitors. Hypophysitis, on the
other hand, is more common in CTLA-4s than in PD-1/PD-L1s. Higher rates of PD-1 and
CTLA-4 receptor concentrations at the indicated areas explain both these findings [147].
Aside from receptors linked to ICIs, work has been made in developing assays that pinpoint
specific laboratory parameters that can predict the development of irAE. Quantitative T cell
subpopulation assessments, T/B cell surface receptor concentrations, autoantibody panels,
cytokine levels (particularly IL-17), and eosinophilia are some of the tests available. Despite
this improvement, larger investigations are required to establish the feasibility and efficacy
of these laboratory research before they can be used in clinical settings [148–151]. Under-
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standing these pathways can help us gain a better understanding of IO-related immune
dysregulation from a scientific and clinical standpoint. Furthermore, steroid-sparing based
medicines may provide oncologic patients with additional therapy alternatives. This can
help patients with steroid contraindications (DM, metabolic syndrome, psychosis, etc.) by
reducing long-term side effects, addressing steroid-resistant irAEs, and providing options
for patients with steroid-resistant irAEs. This could allow treating clinicians to utilize
steroid-sparing medicines earlier in the treatment process, saving high-dose steroids for
symptom progression or more serious conditions in the future [152].

In comparison to ICI monotherapy, the frequency and severity of irAEs are projected
to rise as the usage of combination regimens increases. The rates of irAEs by the ICI
regimen demonstrate this. In addition, compared to monotherapy, combination treatments
may cause synergistic irAE activation through more complex processes. The important
combination regimens will be examined in the future, considering the enormous number
of ongoing IO clinical trials. The key cellular targets being investigated in conjunction with
PD-1/PD-L1 medicines as a fraction of all PD-1/PD-L1 combination trials. The current
percentage of total IO trials evaluate combination treatments. Furthermore, in IO-based
combination therapy with chemotherapy or targeted therapy agents, it may be difficult
to tell if a symptom like diarrhea is due to irAEs or a side effect of the non-IO drug(s) in
the combination [75]. Patients with pre-existing autoimmune illnesses were commonly
excluded from clinical studies that led to ICI treatment approval. There have been nine
investigations that have followed these patients with pre-existing immunologic diseases.
Polymyalgia rheumatica, myasthenia gravis, rheumatoid arthritis, and psoriasis/psoriatic
arthritis were all found to have the highest rates of autoimmune reactivation/flares with
ICI therapy (>50% of patients receiving ICIs) [153]. The basic purpose of irAE prevention
is to risk stratify patients prior to therapy. Associated laboratory/clinical data are being
studied in a variety of ways in order to better identify high-risk individuals and the
most common irAEs by malignancy and ICI class [154–156]. Pre-ICI therapies, in which
steroids were given before the start of the ICI, were found to have little to no effect on
the rates of irAEs in studies [157]. Anti-TNF-alpha drugs have shown success in treating
uveitis, colitis, and hepatitis in steroid-resistant irAEs [158]. Additional research has
found that cyclophosphamide and mycophenolate for pneumonitis, and methotrexate and
hydroxychloroquine for arthritis, are effective for steroid-resistant irAEs [159].

While certain irAEs are solely connected with ICI side effects, research has shown
that certain irAEs have positive relationships with oncologic outcomes. Vitiligo and other
dermatologic irAEs may be positive prognostic indications for melanoma patients [160].
Thyroid cancer, renal cell carcinoma, and other malignancies irAEs [161–163] showed
similar relationships with efficacy. In patients with metastatic renal cell carcinoma, side
effects linked with non-IO treatments, such as Sunitinib, have comparable relationships
and effects on baseline thyroid function [164].

Because of the influence on cancer treatment, these irAEs may require more investiga-
tion to enable for appropriate ICI continuing. Certain aggressive cancers with complicated
connections with the endocrine, humoral, and cellular-based immune systems may re-
quire oncologic-specific algorithms. Mixed results have emerged from studies assessing
the effects of IO agents on certain high-grade neuroendocrine (HG-NEN) tumors, raising
issues about the predictive/prognostic usefulness of PD-1/PD-L1 expression alone for IO
deployment and side-effect management [165]. While some NENs, such as melanoma and
non-small cell lung cancer (NSCLC), have shown promising outcomes in terms of PD-1/PD-
L1 expression and ICIs, some malignancies, such as Merkel cell carcinoma (MCC), require
further clinical trial data to better advise IO management [166]. Current debates in the
irAE literature revolve around how irAEs are reported, documented, and hence managed.
There is significant variability between providers and institutions for irAE reporting out-
side of endocrine irAEs, which have specified laboratory cutoffs and restricted alternative
diagnoses [167]. As a result, uniformity of terminology, documentation, and diagnostic
parameters within the irAE research field is critical [167]. Clinicians must consider the costs
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and benefits of these new IO treatments when dealing with IrAEs. IrAEs are complicated,
with both positive and negative relationships with oncologic outcomes. IrAE management
algorithms, documentation patterns, and pre-ICI screenings appear to be at the forefront of
irAE research right now, and they have the potential to transform how we manage these
side effects (Figure 5).
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12. Conclusions

Cancer immunotherapy offers hope to people with cancer, particularly those with
hematologic malignancies, metastatic melanoma, and non-small cell lung cancer (NSCLC).
Most immune-related adverse events (irAEs), such as rashes, are modest and treatable
with symptomatic and supportive therapies. However, because of the mild and unique
symptoms that make early diagnosis difficult, the incidence of unexpected or even life-
threatening toxicities should not be underestimated. To aid self-monitoring, patients
should be aware of any potential precursory symptoms that may have occurred throughout
various stages of treatment prior to starting immunotherapy. For a better prognosis and
to avoid toxicity, more scientific and clinical study is required. Standardized diagnosis
and management necessitate interdisciplinary collaboration, and more perspectives from
many sectors of medicine must be shared to achieve this goal. Additional perspectives
from diverse sectors of medicine must be exchanged to achieve the equilibrium.
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